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Abstract.   Current U.S. forest fire policy emphasizes short-term outcomes versus long-term goals. This 
perspective drives managers to focus on the protection of high-valued resources, whether ecosystem-based 
or developed infrastructure, at the expense of forest resilience. Given these current and future challenges 
posed by wildland fire and because the U.S. Forest Service spent >50% of its budget on fire suppression in 
2015, a review and reexamination of existing policy is warranted. One of the most difficult challenges to 
revising forest fire policy is that agency organizations and decision making processes are not structured 
in ways to ensure that fire management is thoroughly considered in management decisions. Current 
resource-specific policies are so focused on individual concerns that they may be missing the fact that there 
are “endangered landscapes” that are threatened by changing climate and fire. We propose that forest 
restoration should be at least equal to other land management priorities because large-scale restoration is 
necessary for the sake of forest ecosystem integrity now and into the future. Another proposal is to switch 
the “default” rule in federal planning documents that currently have to “justify” managed wildland fire; 
instead, U.S. federal agencies should be required to disclose the long-term ecological impacts of continued 
fire suppression. Proposed legislation that identifies the most expensive 2% of wildfires annually to be 
funded from emergency funding instead of by the federal land management agencies. If increases in forest 
restoration fail to accompany the change in how large wildfires are funded, then U.S. fire suppression costs 
will remain high while resilience will continue to decline. Expansion of the wildland–urban interface will 
continue to drive suppression costs higher; new federal partnerships with States and local governments 
are needed to address this problem. Given the legacy of fire suppression and a future of climate change, 
management for other values in forests will be, in the long run, futile without also managing for long-term 
forest resilience.
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Introduction

In 1995, wildfire-related expenses repre-
sented 16 percent of the U.S. Forest Service 
(USFS) appropriated funds; by 2015, 52 per-
cent of the appropriated funds were related to 

wildfire management (USDA 2015). This sub-
stantial shift toward greater wildfire-related 
expenditures directly impacts the USFS ability 
to manage its lands because less resources are 
available for other programs (e.g., vegetation 
management, habitat restoration, research, and 
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recreation; USDA 2015). The U.S. National Park 
Service (NPS) has also reduced funding for fire 
restoration by shifting funds in the last decade 
to reduce fire hazards primarily near the wild-
land–urban interface (T. Nichols, personal com-
munication, 2015). These changes are particularly 
problematic as U.S. federal agencies are facing 
declining ecosystem integrity in many dry forest 
types, brought about by the interacting effects 
of past management practices and increased 
drought stress associated with climate change 
(Allen 2007, Williams et al. 2010, 2014, Hessburg 
et al. 2015). Ecological restoration of forest com-
position, structure, and processes based on refer-
ence conditions prior to fire regime interruption 
and excessive resource exploitation is linked 
to greater resilience to wildfire and other con-
temporary stressors including climate change 
(Larson et al. 2013, Kalies and Yocom Kent 2016).

Current forest and fire policy in the western 
United Sates emphasizes short-term outcomes 
versus long-term goals (Calkin et al. 2015). This 
emphasis precludes the western United States 
from creating a strategy to produce a sustainable 
fire program. In contrast, the southeast United 
States has been successful in implementing a 
program of prescribed fire in federal, state, and 
private lands beginning early in the 20th century 
(Brenner and Wade 1992, Ryan et al. 2013). There 
are many reasons for the continued challenges 
in western U.S. fire management, some legal 
and bureaucratic, perhaps more of them polit-
ical and even basic human nature/psychology 
(Thompson 2014, Fischer et al. 2016). Irrespective 
of the specific causes, this short-term perspec-
tive drives land management to focus on protec-
tion of certain high-valued resources, whether 
ecosystem-based (wildlife habitat) or developed 
infrastructure (homes in the urban–wildland 
interface), at the expense of forest resilience. This 
protection focus attempts to preserve many of 
these resources in their current state. Protecting 
infrastructure in the urban–wildland interface, 
which largely drives the costs of fire suppression 
(Gude et al. 2013, Thompson et al. 2013), is a jus-
tifiable preservation goal. However, the goals are 
more complex for ecological resources given our 
understanding of the dynamism that character-
izes “intact” functioning landscapes (Bonnicksen 
and Stone 1982, Hessburg et al. 2005, 2015, Spies 
et  al. 2006). In “intact” landscapes dominated 

by dry forest types, fire can both maintain exist-
ing vegetation conditions by limiting the extent 
(Collins et al. 2009) and severity (Parks et al. 2014, 
Rivera-Huerta et al. 2016) of subsequent fires and 
can create new, early seral vegetation patches 
(Collins and Stephens 2010).

Past and current policies focused on fire sup-
pression and resource protection have contrib-
uted to significant ecological change in many 
dry, mid- to low-elevation forests in the western 
United States. Changes at the scale of individ-
ual forest stands include increased tree densi-
ties, smaller average tree diameters, increased 
proportions of shade-tolerant tree species, and 
elevated surface fuel loads relative to histori-
cal or pre-Euro-American settlement conditions 
(Parsons and Debenedetti 1979, Stephens 2004, 
Scholl and Taylor 2010, Collins et  al. 2011). At 
the landscape scale, dry forests have shifted from 
highly variable arrangements of different vegeta-
tion structure/composition patches (e.g., Collins 
et al. 2015) to more homogenous forested condi-
tions (Hessburg et al. 2005, 2016). These changes 
have substantially increased the vulnerability of 
many dry forests to uncharacteristically extensive 
and severe perturbations, particularly from fire 
and insects/disease (Allen 2007). There is uncer-
tainty in both tree regeneration (e.g., Collins and 
Roller 2013) and susceptibility to reburning (e.g., 
Coppoletta et al. 2016) following such events in 
these forests.

The concept of ecological resilience has under-
gone numerous interpretations (Newton and 
Cantarello 2015) since being initially popular-
ized by Holling (1973). We consider resilience 
to be the ability of a system to absorb impacts 
before a threshold is reached where the sys-
tem changes into a different state (Gunderson 
2000). In the context of wildland fires, resil-
ience is illustrated by the recovery of Rocky 
Mountain lodgepole pine (Pinus contorta var. lat-
ifolia) forests following the severe 1988 fires in 
Yellowstone National Park (Turner et  al. 2003). 
In contrast, due to fuel accumulation after a 
century of fire exclusion, some ponderosa pine 
(P. ponderosa) and dry mixed conifer forests have 
been converted to alternative stable states such 
as shrublands and grasslands by severe fires, 
displaying a lack of resilience by not returning 
to the original forest condition (Savage and Mast 
2005, Odion et al. 2010, Collins and Roller 2013, 
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Cocking et al. 2014). Under historical regimes of 
frequent surface fires, these forests were once 
relatively open and dominated by large trees 
(Collins et al. 2015, Stephens et al. 2015); logging 
and fire exclusion led to dense stands of smaller 
trees with high horizontal and vertical fuel con-
tinuity, increasing the probability of crown fire 
(Fulé et al. 2012, Hagmann et al. 2014). Resilience 
is implied in the concept of ecological resto-
ration, “the process of assisting the recovery of 
an ecosystem that has been degraded, damaged, 
or destroyed” (Society for Ecological Restoration 
2004). Ecological restoration involves recaptur-
ing the range of natural variability in ecosystem 
functions and processes, such as fire regimes 
(Falk 2006). Millions of hectares of dry western 
U.S. forests are in need of restoration to increase 
their resilience to fire, insect attack, and climate 
change-induced drought.

Given the current and future challenges posed 
by wildland fire, a review and reexamination of 
existing policy is warranted. This article builds 
upon previous studies (Stephens and Ruth 2005, 
Calkin et al. 2015, North et al. 2015a) by describ-
ing additional barriers to policy modification 
and presenting strategies for responding to an 
increasingly difficult forest resilience problem 
with implications for communities, federal land 
management agencies, States, counties, fire-
fighters, and the public. We begin by identifying 
important impediments to achieving large-scale 
forest resilience and propose ways to restructure 
agencies to prioritize long-term goals for fire 
management. We recognize that the mixed pub-
lic and governmental context, as well the context 
of the land management agencies themselves 
with their own histories and traditions, may nat-
urally resist policy changes (Stephens and Ruth 
2005).

Our analysis proceeds from a perspective that 
long-term forest resilience is an essential goal for 
ecologically sustainable forest management. We 
recognize the importance of values in making 
socially important natural resource management 
decisions in the context of scientific uncertainty, 
and that there are important values in forests 
besides long-term forest resilience (Biber 2012). 
However, given the legacy of fire suppression, 
management for other forest values long-term 
will be futile without managing for forest resil-
ience in dry forests.

Current Impediments to Forest Resilience

Procedural and legal challenges
Although relatively large-scale forest resto-

ration has been advocated by the Forest 
Landscape Restoration Act of 2009 (Schultz et al. 
2012) and the National Cohesive Wildland Fire 
Management Strategy (WFLC 2014, Pyne 2015), a 
key challenge is the current process of planning 
and environmental review. Stakeholders dissat-
isfied with agency decisions can resort to law-
suits to challenge the management plans they 
disagree with. Courts have generally deferred to 
agency expertise, but the risk of a courtroom loss 
(often on procedural grounds) means that the 
agency does have an incentive to invest in more 
thorough analyses (USDA 2002, Keiter 2006). 
While planning and environmental review are 
necessary components of effective manage
ment  decision making, at some point increased 
investment in planning decreases the availabil-
ity  of resources for on-the-ground restoration 
activities.

Beyond the environmental review process, 
U.S. federal agency organizational structure and 
decision making processes may also be limiting 
meaningful progress toward forest restoration. 
Specifically, there is an apparent lack of sufficient 
incentives for agencies to prioritize long-term 
goals over shorter-term impacts. Managing wild-
fire for resource benefit is a glaring example of 
this. The literature indicates that increased use 
of fire (prescribed and managed wildfire) under 
appropriate weather and fuel conditions should be 
a central part of restoring forest resilience because 
it is a dominant ecosystem process (Franklin and 
Agee 2003, Dombeck et al. 2004, Aplet 2006, van 
Wagtendonk 2007, North et al. 2009, 2015a). This 
has also been recognized in high-level agency fire 
management documentation (e.g., USDA-USDI 
2009, WFLC 2014). Despite this apparent consen-
sus, there is little evidence to suggest there has 
actually been increased implementation of man-
aged wildfire in the western United States (North 
et al. 2015a). In 2009, the category “wildland fire 
use” was eliminated from fire statistics reporting, 
moving all unplanned ignitions to a single “wild-
land fire” category that is further divided into 
planned and unplanned ignitions. The current 
system does not allow for separating out wildfire 
area burned for resource benefit but does give 
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more flexibility to fire managers to manage active 
events. There are a few isolated areas with notable 
documented achievements regarding managed 
wildfire (the southwest United States and portions 
of the Northern Rocky Mountains), but as a whole, 
there has been little change in the amount of wild-
fire managed for ecological goals. The most likely 
reason is the external constraints on agency deci-
sion making, namely public and political pressure 
to minimize short-term risk by suppressing fires at 
all costs. A key challenge for policy making is find-
ing leverage points to ameliorate those constraints.

Another important challenge facing forest 
restoration is that considerations of particular 
resources or species can dominate forest plan-
ning. The Endangered Species Act (ESA), Clean 
Air Act, Clean Water Act, and special species con-
siderations under National Forest Management 
Act (NFMA) all require a focus on particular 
resource issues or species (Stephens and Ruth 
2005). While there are benefits from a focus on 
protecting individual resources or species, this 
focus can also be implemented in a dysfunctional 
way, leading to a tunnel vision that concentrates 
only on how management decisions might have 
negative impacts on specific resources. This is 
particularly true for fire management, which 
does not receive particularized attention under 
any federal statute, but which is an overarching 
concern for forest management. A failure to rec-
ognize and plan for direct (short-term) and indi-
rect (long-term) effects will lead to unsustainable 
forests, both for the biotic communities they 
support and the ecosystem services they pro-
vide to society (Table 1). Focusing too much on 
individual resource concerns may lead managers 
to overlook the “endangered landscapes” these 
resources are within. We use this term “endan-
gered landscapes” to convey the vulnerability of 
many dry forests to significant, long-term state 
changes due to their currently departed condi-
tions (Fig. 1). An example of this vulnerability is 
the widespread tree mortality observed in pon-
derosa pine and mixed conifer forests through-
out California (Asner et al. 2016).

Resilience is outranked by other goals
Agencies such as the USFS pursue “multiple-

use” goals because Congress has directed them 
to manage public lands for a wide range of objec-
tives, from mining to cultural landscapes, from 

timber to habitat, from wilderness to recreation 
(Biber 2009, Calkin et al. 2011). Of course, agen-
cies always must choose among these goals when 
they make decisions. Choices might include 
whether to reserve a particular piece of land for 
oil and gas leasing or for habitat protection, or 
whether to spend agency staff time on enforcing 
off-road vehicle closures or conducting wildlife 
surveys. Even in managing fire, agencies face 
multiple trade-offs between these different goals 
(Wilson et  al. 2011, Spies et  al. 2014). Because 
resources are limited, there are inherent conflicts 

Table  1. Summary of policy recommendations 
(ranked most important (1) to least important (5)) 
that could improves U.S. federal forest and fire 
management.

Priority Recommendation

Procedural and legal
1 Make forest resilience a stand-alone, 

top land management priority and 
connect it to managing long-term 
for endangered species

2 Ensure fire suppression funding does 
not impede restoration efforts

3 Switch default environmental review 
rules for managed wildfire

4 Provide for equal balance in decision 
making between long- and 
short-term impacts

Planning and  
implementation
1 Mandate evaluation of opportunities 

for ecologically beneficial fire in 
land management planning

2 Expand capacity and utilization of 
interagency modules dedicated to 
increasing beneficial fire

3 Develop specific performance 
measures for forest resilience

4 Increase educational requirements 
for wildfire and forest manage-
ment personnel to included fire 
ecology and ecosystem dynamics

5 Analyze long-term impacts of 
continued suppression

Outreach and  
collaboration
1 Engage in collaborative planning to 

ensure firewise development in 
the WUI, including appropriate 
fire suppression cost sharing

2 Increased public–private collabora-
tions for landscape-level fuel 
management (including expand-
ing ecologically beneficial fire)

3 Increase education and outreach to 
non-federal resource agencies on 
inevitability of fire
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between the different goals agencies pursue. In 
choosing which goals to pursue, agency leaders 
will generally emphasize goals (1) for which the 
incentives or stakes are higher, and (2) for which 
success or failure is easier to measure (Biber 
2009). Both of these factors cut against agencies 
managing for forest resilience as opposed to 
other goals they are tasked with, especially fire 
suppression.

Forest resilience is only provided for in a lim-
ited way in the federal statutes that guide USFS 
decision making. It is barely mentioned in two 
of the major statutes guiding USFS decision 
making (the Forest Service Organic Act and the 
NFMA) nor is it covered in the more generic 
laws that are most important for agency decision 
making (the National Environmental Policy Act 
(NEPA), or the ESA). The only statute that does 

refer to the concept to some extent, and imposes 
some mandates on the agency to consider for-
est resilience, is the Healthy Forests Restoration 
Act (HFRA). However, the HFRA focuses on 
streamlining administrative and legal proce-
dures for particular restoration projects, rather 
than setting an overall mandate for the agency 
as a whole (Keiter 2006). Thus, compared to 
many of the other goals that the USFS is tasked 
to accomplish, forest resilience has lower legal 
salience. Outside groups can challenge agency 
decisions for failure to consider the impacts on 
endangered species, for instance, and often win 
(Miner et al. 2014). But a legal claim against the 
USFS for failing to manage for forest resilience 
would be difficult to win. Thus, the legal stakes 
for forest resilience are lower than they are for 
many other agency goals.

Fig.  1. Conceptual model depicting two divergent land management approaches for dry forests that 
historically experienced frequent, low–moderate intensity fire regimes. The approaches are indicated by the 
different arrow colors. The starting point is a common condition for many landscapes dominated by these forests 
today in the western United States. The “+” indicates external pressures that may further reinforce the feedback 
loop.
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Measurement is also easier for many other 
goals than forest resilience. It is easy to quantify 
how much timber has been cut on a National 
Forest or how much oil and gas has been pro-
duced on leases. Even visitation numbers often 
can be estimated reasonably well. But measuring 
forest resilience is more challenging (Das et  al. 
2007, Collins et  al. 2014). We can measure how 
many hectares of land has received treatments 
(such as thinning or prescribed fire) or estimate 
the number of fires that an area has theoretically 
missed during fire suppression (Safford and Van 
de Water 2014), but these methods fail to directly 
assess progress toward improved resilience. 
Despite a growing capacity to conduct assess-
ments of fire risk based on fuel treatments (Ager 
et  al. 2010a, b, 2014) and research that has doc-
umented the effectiveness of fuel treatments in 
modifying wildfire behavior (Agee and Skinner 
2005, Fulé et  al. 2012), estimating how success-
ful treatments will be over the long-run is still 
difficult. Uncertainties exist in fire management, 
including how future fires will burn in particu-
lar places and times, how those fires will affect 
specific resources, and how dynamic changes 
in ecosystems and climate will affect future fire 
behavior (Finney 2005, Thompson and Calkin 
2011, Hyde et al. 2013, Franklin et al. 2014). Given 
these measurement challenges and uncertainties, 
it is perhaps no surprise that land management 
agencies often emphasize oversimplified metrics 
for accomplishments (e.g., area treated) rather 
than actual improvements in forest resilience 
(Stephens and Ruth 2005, Aplet 2006).

Risk aversion and disincentives
The political and legal stakes of fire suppres-

sion are sky-high, especially with the expansion 
of the urban–wildland interface. There is tremen-
dous public, media, and political pressure on U.S. 
federal agencies to ensure that fires do not harm 
private property, endanger lives, or threaten 
socially valued resources (Busenberg 2004, Aplet 
2006, Canton-Thompson et  al. 2008, Liang et  al. 
2008, Donovan et al. 2010, Quinn-Davidson and 
Varner 2012, Calkin et al. 2013, Moritz et al. 2014). 
The public generally perceives fire as both bad 
and preventable and expects quick results in con-
trolling fires (Dombeck et  al. 2004, Kauffman 
2004, Hardy 2005, Moritz and Stephens 2008). 
Failure by the agency to control fires might result 

in legal liability for harm to private property, pri-
marily in the urban–wildland interface (Yoder 
et  al. 2004, Aplet 2006, Keiter 2006, Canton-
Thompson et al. 2008). Although managers may 
aim toward the goals of resilience and suppres-
sion simultaneously as presented in the National 
Cohesive Wildland Fire Management Strategy 
(WFLC 2014), the pressures related to suppres-
sion far exceed those calling for improved forest 
resilience (Maguire and Albright 2005, Aplet 
2006, Wilson et  al. 2011). Thus, it is no surprise 
that the USFS operates in a risk-averse manner 
and emphasizes fire suppression, such that the 
vast majority of fires are suppressed, even in wil-
derness where the potential harm to private prop-
erty or lives are minimal, and even where 
managed wildfire may be approved under rele-
vant agency planning documents (Aplet 2006, 
Doane et al. 2006, Thompson 2013).

The long-term nature of forest resilience adds 
incentives to focus on fire suppression. People 
tend to discount long-term risks compared to 
short-term risks, and emphasize the small risks of 
short-term losses of important resources (Sunstein 
1993, Maguire and Albright 2005, O’Laughlin 2005, 
Wilson et al. 2011, Calkin et al. 2013). Preventing 
a fire from severely burning a community or 
endangered species habitat avoids a short-term 
risk, one that is weighed heavily by the public and 
land managers even if it is a relatively small one 
(Donovan et  al. 2010, Wibbenmeyer et  al. 2013, 
Calkin et al. 2015). Treating a forest landscape to 
make it more resilient to fire, insects, and climate 
change can incur short-term impacts, but overall 
will reduce long-term risk (e.g., Tempel et al. 2015, 
Jones et al. 2016).

Accordingly, fire suppression response contin-
ues to prevail due to a set of decisions and disin-
centives that heavily favor short-term outcomes. 
First, it is often most cost-effective in the short-
term to contain fire at the smallest reasonable 
extent but the collective impact of this response 
over the long-term is to ensure continued fuel 
accumulation and greater future fire hazard, 
especially in forests adapted to low–moder-
ate intensity fire regimes (Stephens et  al. 2013; 
Fig. 1). Second, line officer (people with general 
decision authority) and fire manager decisions 
are influenced by the potential to incur personal 
and career liability (Stephens and Ruth 2005, 
Calkin et  al. 2011, Donovan et  al. 2011), which 
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often results in more risk adverse responses (i.e., 
aggressive suppression). These decisions are 
often more legally or politically defensible than 
those that attempt to use fire to achieve resource 
benefit because all fires pose some risk to life and 
property (O’Toole 2007, Ager et al. 2014). Third, 
at the level of wildland fire agencies themselves, 
the emergency-like nature of aggressive suppres-
sion may be one way to counteract declining or 
flat budgets, especially given the lack of resource 
extraction-derived revenue in some land man-
agement agencies (Lueck and Yoder 2015).

Incentives are therefore not in place to pro-
mote long-term forest or community resilience 
(Donovan and Brown 2005, 2007). Fire suppres-
sion outcomes are praised by the public and pol-
iticians: Fire fighters are always heroes because it 
is dangerous work. People and fire suppression 
businesses continue to get paid; in fact, the “fire–
industrial complex” is growing (see O’Toole 
2007). Additionally, long-duration fires with 
large numbers of personnel can be a major boost 
to rural economies in the short-term, in some 
cases exceeding that from recreation and tour-
ism (Davis et al. 2014). However, what has been 
accomplished at the end of the day? Have eco-
systems been improved? Safety increased? The 
urban–wildland interface improved? From a per-
spective of long-term resilience, success needs to 
be defined differently.

Restructuring Agencies to Prioritize 
Forest Resilience

Forest restoration as an “umbrella” goal
Given the momentum and rationale behind 

continued fire suppression, substantive change 
that appropriately balances short-term outcomes 
with long-term consequences may be difficult. 
However, changing the structure of agency deci-
sion making and analysis to provide greater 
incentives for emphasizing forest resilience could 
begin to shift the current paradigm (Maguire and 
Albright 2005). Making forest restoration a top 
land management priority would begin this tran-
sition (Table 1). It could be argued from the exis-
tence of high-profile restoration initiatives that 
this is already a high priority for U.S. federal 
agencies (USDA 2012, 2013, WFLC 2014). How
ever, it appears commitment of resources and the 
incentives to choose restoration outcomes over 

other more immediate goals (e.g., wildlife habitat 
conservation, fire suppression) may not yet be in 
place to meaningfully advance implementation 
of restoration activities (North et al. 2012, 2015a, 
Calkin et al. 2015, Hessburg et al. 2015). To make 
a substantive change in ecological resilience, for-
est restoration should at least be equal to other 
land management priorities because large-scale 
restoration in frequent fire-adapted forests is nec-
essary for the sake of forest ecosystem integrity 
now and into the future.

While numerous co-benefits can result from 
a wide range of restoration activities such as 
fire hazard reduction (Agee and Skinner 2005), 
habitat improvement for endangered species 
(Tempel et al. 2015, Stephens et al. 2016), wood 
production (Hartsough et al. 2008), job creation, 
and possible increased water yield (Boisrame 
et al. 2016), each on its own often cannot justify 
the expense and potential impacts of the scale 
of restoration needed. For example, fire hazard 
reduction is often used as a key justification for 
implementing restoration treatments. However, 
current fire frequencies are so diminished in 
many areas that the probability of a severe wild-
fire actually impacting a treated area during its 
expected lifespan of effectiveness is relatively 
low (Ager et al. 2010a, b, Campbell et al. 2011). If 
treatment costs are evaluated solely against the 
chance that a wildfire burns a treated area, it may 
be difficult to justify the investment, although 
Snider et al. (2006) argued that treatments were 
cost-effective. However, if forest restoration was 
a high priority, stand-alone objective, linked with 
incentives and targets, decisions could be made 
that do not rely on other outcomes (e.g., treated 
areas burned by wildfire, wood and biomass 
production). This prioritization might be accom-
plished through agency regulations or planning 
documents, or through changes to the agency’s 
statutory authority.

Another benefit of focusing on forest resto-
ration as a primary justification for management 
is that it can build trust with stakeholders about 
management decisions (Table  1). For instance, 
some environmental groups may be suspicious 
that restoration projects are simply cover for 
increasing commercial logging on public lands 
(Stephens and Ruth 2005). Demonstrating that 
projects are justified solely on forest resilience 
grounds can alleviate those concerns. Recent 
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research has improved the structural underpin-
nings that could be used during mechanical res-
toration treatments (Larson and Churchill 2008, 
2012, North et al. 2009, Fry et al. 2014). Building 
trust with public groups is a central component 
of improving public acceptance of fire and forest 
restoration (McCaffrey et al. 2012).

Promoting ecologically beneficial fire
A switch in the “default” rule in federal plan-

ning documents is another option (Table  1; 
Thompson 2013). For instance, instead of having 
to justify managing a wildland fire for resource 
benefit, the USFS and NPS might instead be 
required to disclose the long-term ecological 
impacts (thorough NEPA analysis) of continued 
fire suppression and exclusion. This would send 
a message about the importance of forest resil-
ience relative to fire suppression as well as 
increase the incentives to allow managed wild-
land fire, prescribed fire, and mechanical resto-
ration treatments. Indeed, the paperwork 
burdens of developing planning documents for 
the use of fire have been cited as a major impedi-
ment to greater managed wildland fire (Aplet 
2006, Thompson 2013, Calkin et  al. 2015). As a 
first step, recent changes in USFS planning guid-
ance require spatial fire plans to identify zones in 
which managed wildland fire would be optional 
or promoted for resource benefit (WFDSS 2015). 
Going further, a programmatic NEPA analysis in 
these areas could provide some streamlining 
benefits in facilitating later environmental review 
for prescribed and managed fire.

While the current USFS planning rules do 
include fire as one issue to be considered in the 
mandatory sustainability analysis for the plan 
(36 C.F.R. § 219.8(a)(1)(v)), and as one of the uses 
to be provided for on National Forest lands (36 
C.F.R. § 219.10(a)(8)), providing more specific and 
concrete planning requirements for managers to 
allow for wildland and prescribed fire would be 
beneficial. Likewise, while agency guidance calls 
for plans (Fire Management Reference System 
and Spatial Fire Plans) for all areas with burn-
able timber, the document fails to set the baseline 
for analysis based on a presumption of allow-
ing fire to occur (USDA-USDI 2009, USDA n.d.). 
Similarly, while the USFS Manual and Handbook 
include fire as one of the resources to be con-
sidered in management decisions and land-use 

planning, again the particular long-term nature 
and challenge of fire is not addressed. And while 
the uncertainty in forest resilience will limit the 
ability of agencies to make precise predictions, 
even the process of doing the analysis should 
help reduce legal and institutional barriers to 
increasing long-term forest resilience. National 
forests in California (Inyo, Sequoia, Sierra) are 
pioneering some of these efforts, but system-
wide guidance and requirements would provide 
stronger incentives for all units to take these steps 
(Thompson et al. 2016; USDA-FS 2014).

Shifting toward a broad view of restoration
Resource managers will benefit from thinking 

in terms of connecting resilience and adaption 
strategies to managing long-term for endangered 
species protection, beginning with an acceptance 
of a broader perspective on habitat conservation 
(Stephenson 2013), even re-assessing what habi-
tats are feasible for conservation under new envi-
ronmental constraints (Fill et al. 2015). Traditional 
decision making for management of endangered 
species will rely less upon place-based habitat 
goals (Gregory et al. 2013) and more on facilitat-
ing the movement of plants and animals to his-
toric or newly suitable habitats (Millar et al. 2007, 
Minteer and Collins 2010, Stephens et  al. 2010, 
2016). Fire management is integral to these deci-
sions. Managers could explicitly design pre-
scribed fire and mechanical treatments to 
produce more varied forest conditions to meet 
both habitat and resilience needs (Larson and 
Churchill 2008, 2012, North et al. 2009, Fry et al. 
2014). By accepting short-term movement or loss 
of individuals in response to restoration treat-
ments, local populations may benefit long-term 
from the improving survivability of key habitat 
features (e.g., large trees) in future wildfires 
(Franklin et  al. 2014, Stephens et  al. 2014a, 
Hessburg et al. 2015). Increased heterogeneity in 
forest structure will complement resilience objec-
tives in forests adapted to frequent fire (Stephens 
and Fulé 2005, Larson and Churchill 2012, Collins 
et al. 2016). We note that there are challenges in 
this approach that will need to be addressed. For 
instance, how should late-seral species be man-
aged as climate warms? How can diverse, rela-
tively young habitats that occupy sites currently 
managed for the preservation of old-growth 
wildlife be restored and maintained? More 
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broadly, we will need to weigh or reduce the 
uncertainty inherent in trading the loss of current 
individuals of an endangered species for the 
potential for more and better quality habitat in 
the future.

Management Implementation that 
Facilitates Forest Resilience

Fire suppression continues to be the dominant 
theme of fire management in the United States 
and worldwide (Stephens et al. 2014b). Although 
wildfire suppression success in the United States 
appears to be relatively stable (between 97 and 99 
percent of ignitions are contained at less than 
120  ha), the amount of area burned from large 
fires has been increasing over the last several 
decades further prompting increased wildfire 
suppression effort (Westerling and Swetnam 
2003, Westerling et  al. 2006, Calkin et  al. 2015). 
These large fires are in the small percentage that 
“escape” initial suppression efforts, primarily 
because they burn under extreme weather and 
fuel conditions (North et al. 2015a). The patterns 
that these large fires create on the landscape are 
quite different from those created by wildfires 
managed for resource benefit (Miller et al. 2012, 
Meyer 2015). Despite this, drivers of fire suppres-
sion response, both within the current season 
and future responses, are forcing an increasing 
suppression response with negative conse-
quences to future wildfire risk and associated 
loss (Calkin et al. 2015).

To break away from a continued focus on fire 
suppression, more emphasis could be placed on 
developing and utilizing managed fire interagency 
teams (Table 1; North et al. 2015a). Currently there 
are over 40 “Wildland Fire Modules” throughout 
the United States (http://www.wildlandfiremod-
ules.info/index.html). Increasing the number and 
use of these modules would require allocating 
more personnel to take advantage of favorable 
burning conditions (with both prescribed and 
managed wildfire). This would include keeping 
some of these modules intact and available year-
round and focused on using fire in restoration. 
Climate change is forecasted to produce more dry 
winters (Seager et al. 2007) that could be used to 
increase beneficial fire area. Currently the major-
ity of U.S. federal firefighters are hired seasonally, 
so reform in job descriptions and hiring policies 

would be needed to allow some of them to work 
throughout the year with consideration for not 
placing excessive stress on firefighters. Burning 
during seasons when fire did not occur historically 
would require careful monitoring as ecological 
effects may be different (Knapp et al. 2009), but the 
advantage is these fires could occur when weather 
and smoke dispersal could be more favorable.

Broader use of fire under appropriate weather 
and fuel conditions and greater social acceptance 
can also come from increasing public–private 
collaboration. Non-governmental organizations, 
notably The Nature Conservancy (TNC), are fos-
tering cooperation through the Fire Learning 
Network (Schultz et  al. 2012). With a relatively 
small staff, TNC reaches out to fire professionals 
as well as landowners and people in the private 
sector to facilitate development of interagency 
fire qualifications for non-governmental employ-
ees. The network supports partnerships to maxi-
mize opportunities for integrating fire planning, 
increasing efficiency, and allowing more burning 
under appropriate conditions. Through the pre-
scribed fire training exchange (TREX) program, 
TNC and agency partners host university stu-
dents, private fire companies, tribes, and federal 
and state managers to combine education with 
practice. Partnerships do more than help the non-
governmental people; they also spur innovation 
within governmental agencies through exposure 
to the differing goals and approaches of outside 
entities, whether they are environmental activists, 
for-profit enterprises or tribal nations.  In the legal 
and administrative realm, Prescribed Fire Councils 
are being formed to develop standards of practice 
for using prescribed fire and reducing hazards in 
the wildland–urban interface (Ryan et  al. 2013). 
Drawing on the long experience of other regions of 
the United States, such as the southeastern United 
States (Kobziar et al. 2015), newer prescribed fire 
councils in the west are working to create agree-
ments that allow for substantial expansion of ben-
eficial fire. These networks could be expanded to 
facilitate the use of fire in private, State, tribal, and 
federal land management (Table 1).

In addition to expanding ecologically beneficial 
fire, significant expansion of mechanical treat-
ments will be needed to achieve long-term forest 
resilience objectives. Most available evidence sug-
gests that mechanical restoration and fire hazard 
reduction treatments are accomplished with few 

http://www.wildlandfiremodules.info/index.html
http://www.wildlandfiremodules.info/index.html
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unintended resource impacts, as most ecosys-
tem components (vegetation, soils, song birds, 
small mammals, bark beetles) exhibit very subtle 
changes or no measurable effects at all (Stephens 
et al. 2012). Longer-term treatment impacts to car-
bon sequestration and wildlife with large home 
ranges are not as clear and often hinge on two key 
variables: expected wildfire probability and vege-
tation recovery following wildfire (Law et al. 2004, 
Campbell et al. 2011, Stephens et al. 2014a, Tempel 
et al. 2015, Hurteau et al. 2016). Although mechani-
cal treatments do not serve as complete surrogates 
for fire (Schwilk et al. 2009), their application often 
meets restoration objectives while mitigating fire 
hazards (Collins et al. 2014). Allowing local man-
agers to select the most appropriate restoration 
treatments for their area is the best approach 
because of diverse land management objectives, 
infrastructure, and current conditions.

Workforce changes are another way to advance 
land management agencies focus on long-term 
resilience. Most federal wildland fire manage-
ment programs rely primarily on a workforce of 
technician-level personnel, with little importance 
placed on college education (Kobziar et al. 2009). 
Efforts to standardize federal fire programs to 
include professional level management positions 
have mostly failed. Only Department of the Interior 
agencies have chosen to require college-level edu-
cation for managerial positions within their fire 
programs. The USFS has opted instead for a sys-
tem based only on managerial experience and fire 
management-specific qualifications for all but a 
few positions. This can result in a managerial fire 
staff with limited understanding of fire ecology and 
fuels management, which are of critical importance 
for understanding the short- and long-term impli-
cations of fire management decisions (Kobziar et al. 
2009). Requiring university undergraduate educa-
tion for more specialist and managerial-level fed-
eral fire jobs could enhance the ability of agencies 
to get appropriate treatments done.

Addressing Political and Other 
External Constraints on Fire 
Management

Developing analytic and training tools to manage 
the political risks of fire

Spatially explicit analyses of exposure to wild-
fire at large spatial scales can be used to estimate 

risk associated with managing wildfire for 
resource benefit. This has been carried out for 
project planning areas (Ager et  al. 2010b, Scott 
et al. 2012) as well as for all National Forests in 
the western United States (Ager et  al. 2014). 
These analyses provide robust quantification of 
fire risk to the wildland–urban interface, in par-
ticular, and can be used to identify areas where 
forest restoration efforts may be able to reduce 
housing exposure to wildfire. Often these tar-
geted areas may be well outside of the urban–
wildland interface (Ager et al. 2014). The critical 
component to this approach is that these treat-
ments create more opportunity to use fire under 
appropriate conditions to advance forest resil-
ience (North et al. 2012, 2015a), rather than sim-
ply creating anchor points to stop fire spread 
(Moghaddas and Craggs 2007, Reinhardt et  al. 
2008). These treatments can complement the use 
of flame-resistant construction materials and 
improved land-use planning, which are critical 
to reduce the risk of losses in the urban–wildland 
interface (Cohen 2000, Gill and Stephens 2009, 
Gibbons et  al. 2012, Calkin et al. 2014, Moritz 
et al. 2014).

Risk-based decision support systems for stra-
tegic wildfire management could be further 
emphasized in fire management. These systems 
include new analytical methods to measure wild-
fire risk to human and ecological values and to 
inform fuel treatment investment strategies at 
national, regional, and local scales (Calkin et al. 
2011). However, training on how to implement 
appropriate wildfire risk management concepts 
in land management planning is currently lim-
ited. The National Wildfire Coordinating Group 
(NWCG) training program could be modified to 
address this need with an intended audience of 
agency line officers and incident management 
teams that are responsible for implementing fire 
management strategies (Table  1; Calkin et  al. 
2011).

Better balancing fire with other goals
Identifying external political and legal con-

straints and asking for them to be removed may 
not be an effective way to improve fire manage-
ment and forest resilience. Instead, there needs 
to be a better understanding of why those con-
straints exist and what their impacts are (Fischer 
et  al. 2016). In the end, it may be determined 
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that forest resilience requires the superseding 
of those other goals. But it is more politically 
feasible, and may lead to better policy out-
comes, if the primary focus is on identifying 
ways that most of those other goals 
can  be  achieved while still advancing forest 
resiliency.

The San Joaquin Valley in California (Fig.  2) 
has the worst air pollution in the country, 

imposing significant and disproportionate health 
impacts on its communities (Cisneros and Perez 
2007). Simply waiving air quality restrictions 
on all fire management techniques could sig-
nificantly undermine air quality protection, 
especially given the large amount of federally 
managed land within and adjacent to this air 
basin (Fig.  2), although it should be noted that 
emissions from prescribed or managed fire are a 

Fig. 2. The San Joaquin Air Basin in California, USA. This basin is largely defined by topography, which in 
combination with prevailing wind patterns tends to lead to poor air quality, particularly in the southern portion 
of the basin.
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small component of this airshed (Cisneros et al. 
2014, Schweizer and Cisneros 2014, Preisler et al. 
2015). However, if prescribed fire were to receive 
different treatment from air quality regulations, 
agricultural interests may well ask whether their 
burning techniques should be less regulated as 
well; after all, both involve the use of fire to man-
age natural resources.

There is potential for a solution that could 
achieve both air quality and forest resilience 
goals. For instance, one justification for pre-
scribed and managed wildfire is that it reduces 
the risk and scope of uncontrolled wildfires and 
improves forest resilience (Fig.  1; e.g., Parsons 
and Debenedetti 1979, Agee and Skinner 2005). 
Given the observed trends in large fire occur-
rence (Dennison et al. 2014) and predicted future 
fire activity (Westerling et al. 2011), restoration 
of forest landscapes is crucial. Uncontrolled 
wildfires will likely produce much worse air 
quality problems over the long run than any 
managed or prescribed fire program (Schweizer 
and Cisneros 2014). From a long-term perspec-
tive, prescribed fire and managed wildfire can 
improve air quality in the Valley. Thus, if the 
air quality constraint is rewritten to require a 
demonstration that the fire management tool 
will produce long-run air quality benefits, it 
may be able to both facilitate managed wildfire 
and prescribed fire and protect air quality (both 
by reducing uncontrolled wildfires in the future 
and by preventing increases in agricultural 
burning).

Another option might be to “level the play-
ing field” by requiring similar air quality anal-
yses for wildfires and prescribed and managed 
fires (Engel 2013). Wildfire smoke in the Clean 
Air Act is exempted from regulatory compliance 
standards, while smoke from prescribed and 
managed fire is regulated. This inconsistency is 
short-sighted and only adds to the list of disin-
centives for promoting proactive fuels and res-
toration work. Absent state and federal efforts to 
aggressively develop and implement an active 
prescribed and managed fire or mechanical pro-
grams to reduce uncharacteristic wildfire events 
and their emissions, state air regulatory agencies 
should count wildfire emissions when deter-
mining compliance with air quality standards. 
Including wildfires in the air quality account-
ing would become a driver for ecologically 

appropriate fire management and other resto-
ration (i.e., mechanical) treatments.

Addressing resistance to ecologically beneficial  
fire in state and local agencies

Non-federal fire agencies also play an import-
ant role in shifting the default “full suppression” 
response. Black et  al. (2010) interviewed state 
and local cooperating fire agencies and county 
commissioners regarding the USFS’s use of 
alternative (less than full suppression such as 
burning fuels between a natural fire break and 
the wildfire) fire management strategies. Most 
interviewees stated they did not support these 
actions. All the cooperators interviewed said 
that their mission included a full suppression 
mandate, and some were suspicious that any-
thing less than full suppression was simply the 
federal agencies’ way of trying to contain costs 
under declining budgets. Alternative fire sup-
pression strategies have an advantage of enhanc-
ing restoration, especially under moderate 
weather in areas with limited roads and steep 
topography that does not allow machine access 
(Collins and Stephens 2007, van Wagtendonk 
2007, van Wagtendonk and Lutz 2007, North 
et al. 2012, 2015b, Meyer 2015). It is in the long-
term interest of the federal land managers seek-
ing to undertake effective and ecologically 
sustainable forest management to increase the 
area burned by appropriate fire regimes on pub-
lic and private lands, and this will probably 
require revised fire management agreements 
with non-federal partners (Table 1). One possi-
ble option to facilitate a change in perspective 
among state and local fire agencies is federal 
funding for training courses on resilience for 
local fire agency personnel. The National 
Cohesive Wildland Fire Management Strategy 
emphasizes collaboration across federal, state, 
and local entities to more effectively manage fire 
and is a promising starting point for these efforts 
(USDA-USDI 2014).

Change how fire management is funded
Budgets are a fundamental constraint on 

restoring forest resilience. This is particularly 
true given the combined effects of flat or declin-
ing budgets and greater proportions being allo-
cated to suppression (USDA 2015). Increased fire 
suppression costs in the last decades can partially 
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be explained by the expanding urban–wildland 
interface (Gude et al. 2013, Thompson et al. 2013). 
Aggressive firefighting adjacent to populated 
areas deflects the true cost of development by 
placing the burden on the federal taxpayer 
instead of the developer or homeowner (Calkin 
et al. 2011), which further subsidizes continued 
development in the urban–wildland interface. 
Because the federal government has not histori-
cally regulated development policies in the pri-
vately owned wildland–urban interface, state 
and local jurisdictions could pay for fire suppres-
sion in the interface (Stephens et al. 2013). State 
and local jurisdictions might even charge land-
owners to cover some of the fire suppression 
costs that their development activities impose 
(Table 1), as California has recently carried out. 
This could enable a significant increase in critical 
federal forest restoration funding by eventually 
reducing construction in the urban–wildland 
interface.

Conclusion

In a democracy, laws are the product of a deci-
sion making process that (ideally) reflects public 
preferences. One of the reasons why fire manage-
ment has not received the attention it deserves is 
because fire is a difficult problem for the public 
to fully understand. Fire is a long-term process, 
and managing fire involves risks to private prop-
erty and natural resources (Table 1). Public and 
political discourse does not handle long-term 
risks such as fire well. Any changes in policies 
and management will need to take these political 
dynamics into account and, ideally, help shape 
future debates and public understanding (Collins 
et  al. 2013). Indeed, having a motivated public 
endorse long-term forest resilience objectives 
could be one of the fundamental pathways to 
increased forest restoration at large spatial scales 
(North et al. 2015a).

There are limits to what alternate fire manage-
ment strategies can accomplish. For instance, in 
contrast to forests adapted to frequent, low–mod-
erate fire regimes, forests adapted to infrequent, 
high-severity fires (such as Rocky Mountain 
lodgepole pine) have different resilience con-
cerns. There are no clear guidelines for increasing 
the resilience in these forests other than allowing 
natural fires to burn and minimizing additional 

stresses from excessive grazing, recreation, and 
salvage logging (Stephens et  al. 2013). As long 
as current fires are within the range of histor-
ical variation of past fire regimes, they will not 
reduce ecosystem resilience (Keane et  al. 2008). 
However, should current fires diverge from his-
torical fire regimes, ecological resilience will be 
degraded (Collins and Roller 2013, Hagmann 
et al. 2014, Hessburg et al. 2015, Stephens et al. 
2015). The creation of novel ecosystems could be 
the product of changing fire regimes in crown 
fire-adapted ecosystems (Hobbs et al. 2009).

One of the most important and fundamental 
challenges to revising forest fire policy is the fact 
that agency organizations and decision making 
processes are not structured in ways to ensure 
that fire management is thoroughly considered 
in management decisions. There are insufficient 
bureaucratic or political incentives for agency 
leaders to manage for long-term forest resil-
ience; thus, fire suppression continues to be the 
main management paradigm. Current resource-
specific policies and procedures are so focused 
on individual concerns that they may be missing 
the fact that there are “endangered landscapes” 
that are threatened by changing climate and fire 
(Fig.  1). Without forest resilience, all other eco-
system components and values are not sustain-
able, at least over the long-term. It is therefore 
necessary to create incentives and agency struc-
tures that facilitate restoration of wildland fire 
and ecologically based fuel treatment to forest 
landscapes.
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