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Abstract 
Active forest management practices for reducing fire risk and enhancing forest integrity 

have become necessary in many U.S. forests. The risks of inaction and escalating costs of 

continued fire suppression far outweigh the risks of implementation.  If the goal is to maximize 

the long-term efficacy of treatments, then creating and maintaining a more fire-resilient forest 

should be a priority. Strategic placement of thinning treatments coupled with regular prescribed 

fire could expand the efficacy of treatments in terms of long-term forest integrity over larger 

portions of the landscape. Predicting landscape fuel treatment effectiveness is confounded by 

uncertainty in future fire weather, especially during more “extreme” fire weather conditions that 

are likely to occur as the climate warms, with increasing frequency and variability throughout 

this century. We focused our research on three landscapes associated with the federal 

Collaborative Forest Landscape Restoration Program, namely the Dinkey Creek watershed: 

within the Sierra National Forest (NF), Malheur NF, and Osceola NF, which all have ongoing 

fuel treatment programs. The overall objective of this study was to develop prioritization 

strategies for implementing fuel treatments across these three landscapes, with the goal of 

maximizing treatment efficacy using optimal placement and prescriptions under extreme fire 

weather conditions to create more fire resilient landscapes. For all three landscapes, we used the 

Landscape Disturbance and Succession model, LANDIS-II v.6.0, which is used for 

understanding ecosystem dynamics, feedbacks associated with wildfire, and fuel treatment 

effectiveness across space and time. We simulated the regeneration and growth of vegetation, 

detritus and soil nutrient cycling, heterotrophic respiration, stochastic wildfires, and forest 

treatments (harvesting, thinning, and prescribed fire). We implemented multiple model scenarios, 

namely a no-management scenario to determine landscape fire risk, a typical fuel treatment 

scenario, a prioritized treatments scenario based on simulated fire risk from the no-management 

scenario. These scenarios were run with contemporary and extreme fire weather conditions. For 

all three study sites, we found that prioritizing treatments to simulated high fire risk areas yielded 

comparable treatment efficacy to the other less strategic or typical approaches, but with fewer 

management inputs. Treatment efficacy is strictly from the landscape perspective, in terms of 

enhancing carbon sequestration potential, reducing wildfire area burned and reducing fire 

severity. This provides managers with a model-informed decision framework that can be used for 

developing spatial placement options for long-term treatment planning. Importantly, the 

continued application of prescribed fire in perpetuity was required in all instances to maintain 

landscape scale benefits. Our results suggest that using treated areas to restore surface fire within 

and between stands in the short-term can yield long-term carbon storage gains (i.e. low overstory 

mortality through time) across the landscape, particularly later in the century when extreme fire 

weather is more likely to occur. Long-term prescribed fires maintained a fire-resilient system in 

terms of increasing forest carbon sequestration potential, reducing long-term emissions from 

wildfire (when compared to no-management projections), reducing the intensity and severity of 

wildfires when they do occur in those areas, and is considerably less expensive than mechanical 

treatments. Only at the more local scale did we find site-specific effects between the treatment 

placement scenarios. As such, the consideration of localized effects is often site-specific and 

reliant on local expertise and careful planning.  Long-term prioritization approaches to 

implementing treatment, particularly with the continuation of prescribed fire has been found here 

to be the most optimal approaches to maintaining carbon stability and increasing fire resilience.  
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Objectives 
The overall objective of this study was to develop prioritization strategies for 

implementing fuel treatments across three CFLRP landscapes, with the goal of maximizing 

treatment efficacy using optimal placement and prescriptions under extreme fire weather 

conditions to create more fire resilient landscapes. We defined treatment efficacy as the ability to 

minimize fire severity across the landscape. We simulated multiple scenarios for each landscape 

to explore site specific strategies for maximizing treatment efficacy. More specifically, our 

objectives were to: 

Objective 1: Determine high priority treatment areas across each landscape by simulating 

wildfire risk (e.g. rate-of-spread, fires severity) without any treatments. Simulate wildfire risk for 

each landscape assuming a fully restored landscape (idealized landscape), where fire effects are 

consistent with the historic, fire-maintained condition. The difference in wildfire risk values 

between untreated and completely treated will be used to rank areas for treatment in the 

subsequent objectives. 

Hypothesis 1: Wildfire risk will be significantly lower in the idealized landscape than in 

the untreated landscape. 

Objective 2: Test the effectiveness of placing treatments (i.e., thinning followed by 

prescribed fire) in the highest wildfire risk areas (lower proportion of landscape treated) and 

additionally treating moderate wildfire risk areas (higher proportion of the landscape treated), 

where treatment placement will be determined as a function of wildfire risk (e.g. rate-of-spread, 

severity). 

Hypothesis 2: The effect of additional treated area on landscape wildfire risk will decline 

after all high wildfire risk areas have been treated. 

Objective 3: Test the effectiveness of the two treatment scenarios in objective 2 with the 

addition of prescribed burning in adjacent untreated areas, on the distribution of wildfire rate-of-

spread and severity relative to the idealized landscape. 

Hypothesis 3: The addition of prescribed burning across the landscape will restore 

landscape structure and function to more fire resilient conditions compared to treating 

high fire risk areas alone (i.e., Objective 2), leading to reduced landscape-scale wildfire 

risk . 

Objective 4: Relate wildfire risk and priority treatment areas to spatial configuration (e.g., 

treatment area size and distance apart), biotic (e.g., canopy cover), abiotic (e.g., slope, aspect), 

and socioeconomic determinants (e.g., distance-to-roads, distance-to-infrastructure, population 

density, etc.). Compare these environmental and socioeconomic relationships among landscapes 

to derive general principles (commonalities across landscapes) and to identify unique 

determinants for each landscape. 

Hypothesis 4: Wildfire risk is unevenly distributed spatially and is significantly 

correlated to biotic, abiotic, and socioeconomic patterns on each landscape. 

 

The objectives for this project have been met. They directly responded to the FY14 FON 

task statement related to treatment configuration effects on future wildfires (objectives 1&2), 

effects from varying treatment characteristics (objectives 2&3), and proximity to high wildfire 

risk areas (objective 4) with the overall goal to maximize efficacy in extreme fire weather and 

across multiple large landscapes (all).   
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Background 
Active forest management practices (e.g., mechanical thinning, prescribed fire) for 

reducing fire risk and enhancing forest integrity have become necessary in many U.S. forests 

(Stephens et al. 2013).  The risks of inaction and escalating costs of continued fire suppression 

far outweigh the risks of implementation (North et al. 2009).  Fuel treatments are well known to 

reduce the intensity and spread of wildfires at the stand level, but their effectiveness is reliant on 

the timing of future wildfires and the location of fuel treatments across a landscape (Schmidt et 

al. 2008, Loudermilk et al. 2014). Although thinning treatments are effective at reducing 

hazardous fuels, their effectiveness has a limited duration (Rhodes and Baker 2008).  Beyond 

this period of effectiveness, typically 10 to 15 years in many western U.S. forests and 1-5 years 

in southeastern pinelands (Kreye et al. 2014), treatment typically needs to be repeated.  If the 

goal is to maximize the long-term efficacy of treatments, notwithstanding the importance of 

placement, then creating and maintaining a more fire-resilient forest should be a priority. This 

requires a more adaptive or dynamic approach to forest management, such as strategic placement 

of thinning and subsequent increased use of prescribed fire. Prescribed fire not only controls 

surface fuel loads, but restores ecosystem processes in which, for instance, Sierran mixed-conifer 

forests (Loudermilk et al. 2013) and southeastern pine forests (Mitchell et al. 2009) have 

evolved.  This cannot be achieved with thinning alone (North et al. 2009).  Strategic placement 

of thinning treatments coupled with regular prescribed fire could expand the efficacy of 

treatments in terms of long-term forest integrity over larger portions of the landscape (North et 

al. 2009).  

Predicting landscape fuel treatment effectiveness is confounded by uncertainty in future 

fire weather, especially during more “extreme” fire weather conditions that are likely to occur as 

the climate warms (Hurteau et al. 2013).  Extreme (85th – 100th percentile) fire weather has 

occurred more often in the last decade as compared to the last century and wildfire activity has 

increased, even in systems where fire suppression has not altered fuel loads (Littell et al. 2009).  

These events will likely continue to increase in frequency throughout this century (Westerling et 

al. 2011) with more variability (Mitchell et al. 2014).  In these conditions, fire severity may be 

higher than usual because of coupled effects from dry fuels and drought stressed trees.   

Our research benefits ongoing fuel treatment programs in three landscapes associated 

with the federal Collaborative Forest Landscape Restoration Program (CFLRP, Title IV of the 

Omnibus Public Land Management Act of 2009), and will broadly inform future landscape-scale 

restoration efforts across each region.  These three landscapes (Dinkey Creek watershed: within 

the Sierra National Forest, Malheur National Forest, and Osceola National Forest) are all 

undergoing extensive fuel treatments and experience regular wildfires. We designed our 

landscape simulation experiments to inform forest planning by illustrating the complex spatial 

and long-term interactions that different types of fuels treatments and strategies have on 

landscape-level wildfire risk and species distributions, particularly when “extreme” fire weather 

conditions are prevalent. Our research has broad applicability because our analyses were 

designed to extract general principles about the biotic, abiotic, and management context that can 

be applied beyond the initial three landscapes.  
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Materials and Methods: 

Study Sites 

This modeling study utilized three study landscapes (Figure 1) namely, the Dinkey Creek 

watershed (CA), the Malheur National Forest (OR), and the Osceola National Forest (FL), which 

are all a part of the Collaborative Forest Landscape Restoration Project (CFLRP).  

The Dinkey Creek watershed is an 87,500 ha area in the southern Sierra Nevada, CA. The 

watershed spans roughly 2,700 meters in elevation (300 to 3,000 m), with a precipitation 

gradient of 50 - 100 cm yr-1 and variability in mean daily minimum temperatures from -3 to 10 

°C and mean daily maximum temperatures from 12 to 25 °C (DAYMET). Vegetation ranges 

from mixtures of oak (Quercus spp.) and shrubs at the lowest elevations to ponderosa pine 

(Pinus ponderosa) and mixed-conifer forests at mid-elevations, and subalpine forest types at the 

highest elevations. 

The Malheur National Forest is located in the southern Blue Mountains in central 

Oregon. Its nearly 940,000 hectares are dominated by dry mixed-conifer forests predominantly 

composed of ponderosa pine, Douglas fir, and grand fir. A smaller component of moist mixed-

conifer forest occupies the highest elevations and some north-facing slopes, and there are 

interspersed sagebrush shrublands and grasslands. Wildfires were historically frequent (10 - 29 

year mean fire return interval) and of low and mixed severity (Johnston 2016). Fire suppression 

and exclusion have led to an increase in fuel density, and recent fires have been 

uncharacteristically large and severe such as the 2015 Canyon Creek Complex, which burned 

nearly 45,000 ha (InciWeb 2015, https://inciweb.nwcg.gov). The study landscape is largely 

publicly managed by the USDA Forest Service with smaller areas managed by other federal and 

state agencies and some private non-industrial forest. Current management includes a variety of 

techniques such as pre-commercial thinning, commercial harvest, and prescribed fire to achieve 

multiple objectives including the reduction of fuels (USDA Forest Service, Malheur National 

Forest 2015).  

 The Osceola National Forest is about a 90,000 ha area located in northeastern FL. The 

Osceola is a relatively flat landscape, with little to no significant topographic relief. However, 

the low mean elevation of roughly 40 m results in wetlands throughout the forest where any 

depressions in the landscape persist. This strong dichotomy of dryer ‘upland’ sites and 

predominantly saturated wetland sites creates discrete edaphic bins throughout the landscape that 

dictate the aboveground vegetation structure. The dominant Osceola vegetation is split according 

to the soil type, with the upland sites being dominated by single or dual age pine (Pinus 

palustris, Pinus taeda, Pinus elliottii) and a thick understory of Serenoa repens. The wetland 

sites are primarily a dense mixture of Liquidambar styraciflua, Magnolia virginiana, Gordonia 

lasianthus, Acer rubrum, Nyssa biflora, Taxodium distichum and Taxodium ascendens. 

 

 

https://inciweb.nwcg.gov/
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Figure 1. The three study sites of this project. The Malheur National Forest, OR (yellow 

cross), the Dinkey Creek watershed, CA (purple diamond), and the Osceola National Forest, FL 

(green star).  

Landscape modeling approach: LANDIS-II 

For all three landscapes, we used the Landscape Disturbance and Succession model, 

LANDIS-II v.6.0, which is used for understanding ecosystem dynamics, feedbacks associated 

with wildfire, and fuel treatment effectiveness across space and time. LANDIS-II’s Century 

Succession extension was used to simulate the regeneration and growth of vegetation, detritus 

and soil nutrient cycling, and heterotrophic respiration (Scheller et al. 2011, Loudermilk et al. 

2013). Vegetation growth and response to disturbance and climate is determined by the life 

history attributes of woody vegetation, available soil water, and available nutrients. Wildfires 

were simulated using the Dynamic Fire and Fuels extension (Sturtevant et al. 2009), which 

simulates stochastic mixed severity wildfires. Fire behavior (rate of spread, direction, intensity) 

is dependent upon fuels, daily weather conditions, ignition rates, and topography.  To determine 

mortality, crown fraction burned is estimated using a combination of rate of spread, fine foliar 

moisture content, and fuel-type specific parameters, all indicators of fire intensity. Fire severity 

depends on the tree species present and their relative susceptibility to fire. The extension was 

parameterized to reflect each landscape’s wildfire regime (e.g., fire rotation period, ignition 

rates). The wildfire regime under more extreme fire weather conditions was simulated such that 

fire effects are an emergent property of changing weather patterns. Forest thinning and 

prescribed fire used for fuel treatments were simulated using the Biomass Harvest extension (v. 

2.0.1). This extension simulates the removal of aboveground live leaf and woody biomass of 

designated species and ages within selected areas and simulates post-treatment effects on 

wildfire behavior.   

Model Implementation  

The following paragraphs describe model parameterization, calibration, and scenario 

design for each of the three modeled landscapes. 

 



6 

Dinkey Creek watershed 

As all of the methods for the Dinkey Creek watershed have been published (Krofcheck et 

al. 2017, 2018), details here are brief. For input projected climate, we forced the model using 

projections from the Coupled Model Intercomparison Project Phase 5, using the Localized 

Constructed Analogs statistically downscaled climate projections (Pierce et al., 2014), a daily, 

1/16th degree resolution downscaled product that has been shown to track local variability in 

precipitation better than the coarser resolution parent models.  We developed fire weather 

distributions using temperature and precipitation from the climate model projections and 

empirical windspeed data.  Similar ‘extreme’ fire weather data were used as inputs to the Dinkey 

Creek simulations (as the other two sites), with published results (Krofcheck et al. 2017). The 

inclusion of climate projections was an added value to this project, also with published results 

(Krofcheck et al. 2018).  

Scenario development: We developed three scenarios: no-management, naive 

placement, and optimized placement. Both management scenarios employed combinations of 

mechanical thinning and prescribed burning. The naive placement scenario simulated mechanical 

thinning from below and prescribed fire to all forest types that have experienced a departure in 

fuel load and stem density from their historic condition due to fire exclusion. Within each forest 

type that received mechanical thinning, thinning was constrained based on operational limits 

(slope > 30%, which totaled 22,436 ha available for mechanical thinning). The optimized 

placement scenario further constrained the area that received mechanical thinning by limiting 

thinning to areas that also had a high probability of mixed- and high-severity wildfire. The 

optimization process was based on 50 replicate simulations resulting from previous work 

(Krofcheck et al. 2017), wherein we simulated wildfire across the watershed using a distribution 

of fire weather from the extreme tail of the distribution over a 100 year period. To achieve the 

optimization, we calculated average total number of fires per grid cell and then we calculated the 

number fires per grid cell that resulted in some crown mortality (fires > severity class 3 in the 

model). Finally, we divided the number of crown killing fires by the total number of fires in each 

grid cell. The resulting probability surface described the likelihood of crown fire across the 

watershed, in aggregate under the most extreme fire weather events captured in the contemporary 

record. We used this surface to prioritize areas for treatment and excluded areas available to treat 

that had a low probability of severe fire, resulting in a total of 7,266 ha identified for mechanical 

thinning.  This approach accounted for the influences of fuel type, canopy base height, slope, and 

fire weather on the probability of severe wildfire (Krofcheck et al. 2018). 

Malheur National Forest 

Although the methods for the Malheur National Forest are included in a recent 

dissertation, they are not otherwise published and more detailed methods are provided here. The 

soil and weather data were used to classify the landscape into 25 ecoregions that are assumed to 

have homogeneous climate and soil moisture conditions. Soil data were obtained from SSURGO 

soil data Soil Resource Inventory data. Maximum temperature and average precipitation for 

growing season months (June, July, and August) were obtained as 30-year normals (1980 – 

2010; PRISM Climate Group) and reclassified into five climate regions using Iso Cluster 

Unsupervised.   All methods, results, and discussion for the Malheur are found in Cassell (2018). 

Initial community vegetation data was obtained from the Gradient Nearest Neighbor 

(GNN) maps from the Landscape Ecology, Modeling, Mapping and Analysis (LEMMA) group 
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(https://lemma.forestry.oregonstate.edu/data/home) and the GAP Analysis Program’s Ecological 

Systems map ( https://gapanalysis.usgs.gov/gaplandcover/data/download/). There were 4,631 

unique communities on the landscape, each with up to 11 tree species, four shrub functional 

groups, and native and non-native grasses. Life history traits were obtained from the literature 

and available public datasets including the USDA Fire Effects Information System, USGS 

Vegetation Atlas of North America, the Northeastern Ecosystem Research Cooperative’s Foliar 

Chemistry Database, the National Atmospheric Deposition Program, the Oak Ridge National 

Laboratory database, and from previous studies (Loudermilk et al. 2014, Lucash et al. 2014, 

Creutzburg et al. 2016).  

Historical fire data were retrieved from the Monitoring Trends in Burn Severity database 

(2016) and the USFS (Blue Mountains Fire History Polygons, released 2016). Two versions of 

the Dynamic Fire and Fuels System (DFFS) extensions (Sturtevant et al. 2009) simulated 

wildfire disturbance and interactions with climate and fuels. Extreme weather fire simulations 

were completed using DFFS v2.1, which allows a separate input file for fire weather than that for 

the NECN Succession extension. DFFS v3.0 (unpublished), which links weather between NECN 

and DFFS, was used for contemporary-weather scenarios to simulate fire events with the same 

daily weather conditions that control vegetation growth. Both versions of DFFS utilize 

vegetation succession data from NECN, dynamically changing fuel beds based on current 

vegetation. Fuel types were developed to represent 15 unique combinations of tree species and 

ages, as well as shrublands and grasslands, with individual fire behavior and consumption 

parameters. Slope and aspect maps were also inputs. 

For contemporary weather, daily weather data were retrieved from the USGS Data Portal 

(maximum and minimum temperatures (˚C), average precipitation (mm/day), daily average wind 

speed (m/s; Maurer et al. 2002), and wind direction (degrees clockwise from north; Abatzoglou, 

2013) for the period 1979 – 2010, using area-weighted grid statistics for each of the five climate 

regions. To ensure that treatments and fire events would be applied to consistent forest 

composition and structure across scenarios, historical climate controlled tree growth and forest 

succession for all scenarios. Therefore, for both contemporary weather and extreme weather 

scenarios, trees were grown with identical daily weather conditions. For simulations under 

extreme weather, climate inputs were decoupled between forest succession and wildfire. Extreme 

weather inputs were derived from years with greater-than-normal fire activity on the study 

landscape: 1990, 2007, 2014, 2015, and the entire year’s daily precipitation, temperature and 

wind speed and direction data were included. 

Growth and biomass validation was accomplished by comparing aboveground tree 

biomass with Forest Inventory Analysis (FIA) data. Simulated total biomass ranged from 0 to 

105 Mg/ha with a mean value of 45 Mg/ha, while biomass estimates from FIA data ranged from 

0 – 236 Mg/ha with a mean of 45 Mg/ha. Out of the 11 tree species simulated, nine achieved 

average biomass within 30% of GNN data for that species. Fire was calibrated to approximate 

annual area burned and fire size for the period 2000 – 2014 within the study area. The DFFS 

extension uses log-normal duration data to generate the distribution of fire durations, which was 

then used to calibrate annual area burned, which also follows a log-normal distribution. Three 

replicates of 50 years were run and averaged during the calibration process. 

Fuel treatment scenarios were designed to compare among: 1. weather scenarios 

(contemporary weather vs. extreme fire weather); 2. management extent scenarios (i.e., treating 

more and less area with prescribed fire per year and adding treatments in riparian areas); and 3. 

spatial scenarios, i.e., distributing treatments across the landscape vs. targeting areas with high 

https://lemma.forestry.oregonstate.edu/data/home
https://gapanalysis.usgs.gov/gaplandcover/data/download/
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fire risk (hereafter “distributed” and “optimized”). They were developed from workshops and 

meetings with USFS personnel. Fuel treatment prescriptions included mechanical thinning for 

ponderosa pine, dry mixed-conifer and moist mixed-conifer forest, pre-commercial thinning, and 

prescribed burning. Management scenarios included, 1. untreated landscape (Untreated), 2. 

“business as usual” (BAU) management, 3. additional treatments in Riparian Habitat 

Conservation Zones (Riparian), 4. application of additional prescribed fire (2x the area of BAU; 

RxFire), and 5. tripled application of additional prescribed fire (3x the area of BAU; RxFire3x).  

Scenario development: All scenarios were run under both contemporary and extreme 

weather conditions, and each of the three management scenarios that include treatments (i.e., all 

except the untreated scenario) were run with fuel treatments placed through two different spatial 

strategies: 1. distributed across the entire forested portion of the landscape and 2. with optimized 

placement of treatments in areas of the landscape that have the highest likelihood of high 

severity fire (Figure 2). Ten replicates of each simulation were run for 100 years.  

 

■  
Figure 2. Distributed and spatially optimized management areas. About half of the land 

is under USDA Forest Service management with the remainder divided among private 

landowners and other federal and state agencies. The Distributed map represents all publically-

managed land available for fuel treatments. The Optimized map targets treatment placement in 

areas that frequently burned and where wildfire severity was highest over 1,000 simulation-years 

concentrates treatments in 43% of the area available when treatments are distributed.  

Osceola National Forest 

We modeled carbon dynamics using the NECN extension (a version up and re-naming of 

the Century extension), the Dynamic Fuels and Fire extension to simulate fire and fuels 

interactions, and the Biomass Harvest extension to simulate management and harvest within our 

modeling environment. We modeled the landscape on a 150 m grid, resulting in 2.25 ha pixels. 

Given the lack of topographic variability across the Osceola, we let the edaphic variability across 

the region govern ecoregion creation. We used a geospatial layer of swampland areas (USFS, 

personal communication) to delineate the ‘lowland’ stands, and took the remainder of the 

vegetated area for the ‘upland’ stands to create the simulation ecoregions (Figure 3). We then 

used a method similar to Krofcheck et al., 2017 to assign the soil characteristics to each 

ecoregion using GSSURGO data (https://gdg.sc.egov.usda.gov/). 

https://gdg.sc.egov.usda.gov/
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Figure 3. Ecoregions used to simulate the uplands (gray) and lowlands (black) across the 

Osceola National Forest. White regions within the simulation represent open, unvegetated water 

or land ownership zones not part of the national forest 

. 

To parameterize and calibrate the Dynamic Fuels and Fire extension we used 17 years of 

fire history data recorded by the Osceola National Forest to parameterize the mean fire size and 

number of fires per year for the landscape, following a methodology described in Krofcheck et 

al. 2017.  

For the Biomass Harvest extension, we split the study site into areas that receive specific 

fuels management or harvest prescriptions throughout the landscape. We chose to simulate 

management across the entire upland, pine dominated ecoregion, and created a second 

management unit that included a 300m buffer around the lowland ecoregion. In this manner, we 

were able to prioritize the application of fuels management to upland, pine dominated stands that 

bordered un-managed, swampland stands. 

To initialize the landscape, we used FIA plots stratified by upland and lowland 

ecoregions to create species and age distributions for the area. We then used maps of stand age 

and recent harvests provided by the Osceola National Forest to inform the mean stand age for a 

given grid cell. The species assignment for each upland grid cell was then a probabilistic 

function of stand age, and the species abundance described by the FIA plots. The resulting 

upland stand structure was constrained to meet the desired age demographics, consisting of 

primarily single or double age stands. The lowland ecoregion cells were populated entirely using 

FIA data and time since disturbance, such the resulting landscape scale values for region 

coincided well with published data. 

We drove vegetation dynamics with Daymet daily surface weather over a 1‐km grid for 

the period 1980–2015, acquired via the USGS Geo Data Portal (http://cida.usgs.gov/gdp/, 

Thornton et al. 2012). We computed weighted area grid statistics for the Osceola using the 

export service in the data portal and converted these data to monthly means for simulating 

vegetation growth and reproduction in the NECN extension. We chose to use the same climate 

inputs for both ecoregions, given their similar elevations relatively small spatial extent. 

http://cida.usgs.gov/gdp/
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Figure 4.  Contemporary (gray) and extreme (orange) fire weather distributions used to 

drive wildfire in the model simulations. The 90th percentile of the contemporary distribution data 

is shown along with the measured conditions during a notable high severity wildfire that took 

place on March 24, 1956 (the Impassible Bay fire). 

 

For the Dynamic Fire and Fuels extension we used local RAWS stations to generate 

distributions of temperature, relative humidity, and precipitation from which we generated the 

required fire weather inputs for the simulation (see Krofcheck et al. 2017 for details). We 

generated two bins of fire weather: contemporary and extreme. We generated the contemporary 

fire weather in the manner described previously using the entire 15 years of RAWS data. We 

used the 90th percentile subset of that data to generate the extreme fire weather, a conservative 

distribution according to historical documents that were associated with large and notable fires in 

the Osceola, for example the Impassible Bay fire which took place on 3/24/1956 (Figure 4). 

We developed three management prescriptions: 1) no-management, 2) thin and burn, and 

3) thin, burn and harvest, and were all developed from meetings and input from ongoing 

management at the Osceola. We ran simulations of each of these management prescriptions with 

wildfire events driven by either contemporary or extreme fire weather (described above), 

resulting in 6 model scenarios. In both management prescriptions, the rates of thinning and 

burning were identical (Table 1), with mechanical thinning from below removing fractions of 

the biomass in a given stand based on the species and age combinations present in that grid cell. 

Harvest was simulated by removing 50% of the cohorts in a stand above 30 years in age, and was 

applied at a rate of 2% per year. Prescribed burning in the model functions in a similar way, but 

targets the majority of smaller, younger cohorts and tends to leave the majority of older, larger 

cohorts undamaged. We assigned treatment rates for mechanical thinning such that only the 

pixels surrounding the lowland regions (“Lowland Buffer”) received mechanical thinning 

treatments, and the entire area was treated once in the first five years of each simulation. 

Mechanical thinning of the uplands region, which comprises the remainder of the pine dominated 

stands across the Osceola, received no mechanical thinning. In contrast, the harvest prescriptions 

were only applied to the upland region, and not to the lowland buffer. Prescribed fire was applied 

to all the pine dominated management zones (both uplands and the lowland buffer) on a mean 

return interval of 5 years. No management prescriptions were applied to the lowland ecoregions. 
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Prescribed 

fire 

(%/year) 

Prescribed 

fire 

(ha/year) 

Thinning* 

(%/year) 

Thinning*  

(ha/year) 

Harvest  

(%/year) 

Harvest  

(ha/year) 

 

Upland 20 4,831.6 - - 2 483.16 

Lowland 

Buffer 20 6,094.6 20 6,094.6 - - 

Lowland - - - - - - 

Total  10,926.2  6,094.6  483.16 

 

Table 1. Management prescriptions used in the scenarios where fuels reduction and 

biomass harvest were applied. *All thinning treatments were conducted over a 5 year period, and 

not repeated for the duration of the simulations. Prescribed fire rates resulted in a 5 year return 

interval across the treated areas. No lowland areas were treated with any management 

prescriptions. 

 

We ran 30 replicate 100-year simulations for each of the six model scenarios. We used 

analysis of variance and Tukey’s honestly significant difference for mean separation following 

Bartlett’s test for homoscedasticity. For comparisons where data were heteroscedastic, we 

employed Kruskal–Wallis tests with post hoc Dunn’s comparisons. We conducted all model 

parameterization and output analyses, as well as figure generation using Python (Python 

Software Foundation, version 2.7. http://www.python.org). 

Results and Discussion 
 In all three landscapes, we achieved our project goals of determining site specific 

strategies of implementing fuel treatments in order to maximize their long-term efficacy. We 

worked with managers and multi-stakeholder groups to develop treatment prescriptions and 

applied those in a landscape context to explore ideal spatial and temporal configurations.  As per 

our objectives and hypotheses, we successfully parameterized simulation models for all 3 

CFLRP landscapes determining that 1) wildfire risk is drastically lower in a continuously treated 

landscape compared to an untreated landscape, H1), 2) that treatment effectiveness is greatest in 

the beginning of the simulations, with more intensive initial thinning treatments are used at high 

carbon cost, but continuous less-intense treatments (light thinning and/or prescribe burning) 

thereafter maintain effectiveness over time at a low carbon cost, H2), 3) that the addition of 

prescribed fire is necessary to maintain landscape resiliency to overall wildfire risk and maintain 

fire resiliency compared to treating high fire risk areas alone (placement and continued 

prescribed fire are important, H3), and 4) that wildfire risk is spatially complex, requiring a 
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landscape-level understanding (hence landscape simulations) of linked components of 

geographic structure, forest composition, and connectivity/fragmentation (H4). This work is 

supportive and supplemental to what we know about fuel treatment effectiveness, particularly 

pertaining to the importance of treatment initialization and continuation (Reinhardt et al. 2008), 

treatment placement (Schmidt et al. 2008), and short-term carbon loss and long-term net carbon 

gain from the ecosystem due to landscape fuel treatments and resulting efficacy (Loudermilk et 

al. 2014, Loudermilk et al. 2017, North et al. 2011). There has been however, a stronger focus on 

understanding fuel treatment efficacy in western forest systems, where this is one of the few 

landscape-scale modeling studies (e.g., Martin et al. 2015) that examines these long-term 

dynamics in a southeastern forest.  

Overall advancements provided by this study are the use of a site-parameterized model in 

three very different landscapes to inform on high fire risk areas due to interactions between 

extreme fire weather, topography, fuel and forest conditions, and ignition patterns, which all 

interact in complex ways over space and time. The model was utilized successfully to determine 

optimal treatment placement due to extreme fire weather, but each site required unique 

management strategies to maintain resilience. 

Similarities between treatment strategies included applying an initial round of intensive 

thinning treatments to kickstart the long-term management process of efficacy, and then 

supplementing with prescribed burning based on specific site needs, such as required frequency 

and location based on when and where wildfires would likely occur on the landscape. We found 

that although spatial complexity, including connectivity or fragmentation, have an effect on 

wildfire risk, these landscapes are relatively cohesive in structure and are not bordered by a 

significant amount of urban infrastructure.  Fragmentation is primarily geographic and legacy 

from past management as opposed to development. 

Below are more specific results and discussion for each simulated landscape. 

Model Results by Research Site 

Dinkey Creek watershed 

In all three scenarios, the greatest burn severity (Figure 5a-c) occurred in areas 

dominated by ponderosa pine and pine-dominated mixed-conifer forests. The impact of treatment 

in both management scenarios was lower mean fire severity relative to the no-management 

scenario. In both management scenarios mean severity was significantly reduced, with a mean 

reduction of 16.1% for the naive placement, and 18.4% for the optimized placement scenario (p 

< 0.001; Figure 5d-e). 
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Figure 5. Mean fire severity for the no management (a), naive placement (b), and 

optimized placement (c) scenarios, and the resulting percent change in fire severity relative to the 

no management scenario caused by the naive (d) and optimized (e) treatments. 

 

The similarity between these two treatment outcomes and the reduction in fire severity 

from the no-management scenario was captured in the abovegound carbon results.  We 

hypothesized that patterns of landscape aboveground carbon (AGC) accumulation would be 

similar in both treatment scenarios over both the short- (<20 years) and long-term (20-100 

years).  From simulations using climate projections (Krofcheck et al. 2018), the range of AGC 

across replicates and climate projections for each scenario are shown in Figure 6.  

 

 
 

Figure 6. Above ground carbon (AGC) for the no-management scenario (a), the naive 

placement scenario (b), and the optimized scenario (c). Each subplot shows the absolute 

minimum, maximum, mean (dashed) and lowest 95th percentile (dotted) of AGC for each year 

across 200 total simulations  
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The no-management scenario showed a wide range of potential outcomes, from 90.5 to 

121.2 Mg C ha-1 in the short term and 139.4 to 185.6 Mg C ha-1 in the long term. Both 

management scenarios showed significantly smaller variances in AGC relative to no 

management, with the naive scenario ranging from 98.7 to 115.4 Mg C ha-1 and the optimized 

scenario ranging from 100.6 to 118.3 Mg C ha-1. 

The maximum AGC is the maximum value for a given year from the 200 replicate 

simulations for a given scenario.  The initial treatment costs associated with mechanical thinning 

are most apparent in the comparison of maximum AGC, where treatment scenarios have lower 

maximum AGC than the no-management scenario during the first decade when thinning 

treatments are implemented.  However, this difference diminishes over the full 100 years of 

simulation (Figure 7a). Short-term reductions in maximum AGC relative to no management 

were 5.7 Mg C ha-1 for naive placement and 2.9 Mg C ha-1 for optimized, with long-term 

reductions of 2.6 Mg C ha-1 for naive and 1.6 Mg C ha-1 for optimized placement. 

The minimum AGC is the minimum value for a given year from the 200 replicate 

simulations for a given scenario. Therefore, the difference in minimum landscape AGC between 

treatments and the no-management scenario (Figure 7b) represents the gains in worst-case AGC 

that result from treatment. The naive scenario had minimum AGC values that were greater than 

the no-management minimum throughout the simulation period.  The 67% reduction in thinned 

area in the optimized scenario yielded lower minimum AGC values than the naive scenario over 

the majority of the simulation period and had lower minimum values than the no-management 

scenario in the short-term (Figure 7b).  The lower minimum values in the short-term are a 

function of the occurrence of a large wildfire in one replicate simulation early in the simulation, 

before the initial prescribed fire treatments had all been implemented. 

The lower 95th percentile of AGC represents the collection of highest disturbance 

affected simulation years from the 200 replicate simulations for each scenario. When we 

compared the difference in the lower 95th percentile AGC between the treatment scenarios and 

the no-management scenario, both treatment scenarios were lower than the no-management 

scenario in the short-term (Figure 7c).  However, the lower 95th percentile of AGC for the 

optimized scenario surpassed the no-management scenario in year 31 and in year 36 for the naive 

scenario.  While both the naive and optimized treatment placement scenarios underwent 

mechanical thinning and prescribed fire over the same time intervals, substantially less biomass 

was removed annually via mechanical thinning across the landscape in the optimized scenario 

(Figure 7d). 
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Figure 7. Relative differences in above ground carbon (AGC) between the naive 

placement (dashed), optimized placement (solid), and the no management scenarios (zero line). 

Differences between the maximum (a), minimum (b), lowest 95th percentile (c), and the AGC 

removed during management (d) are shown for each year of the simulation across 200 replicates. 

Malheur National Forest  

The addition of fuel treatments in riparian areas did not result in any differences in 

wildfire activity at the landscape scale from the BAU scenario. Therefore, there will not be any 

further discussion of riparian treatment results in this section. 

Overall, treatment reduced area burned under both historical and extreme weather (0.000 

< p < 0.02). Doubling the area treated with prescribed fire resulted in small additional reductions 

in average annual area burned, and tripling the area of prescribed fire resulted in a significant 

reduction from the BAU scenario (p < 0.006). Increasing treatment area also increased the 

number of years without any fire at all under both contemporary weather (from 139 years out of 

a possible 1,000 simulation years under BAU to 166/208 years with 

BAU+RxFire/BAU+RxFire3x respectively) and extreme weather (from 117 years to 132/172 

years). Spatial optimization of treatments into high-risk areas of the landscape was equally 

effective in reducing annual area burned, regardless of weather, for 5 out of the 6 scenario 

combinations (p = 1.0). The exception was RxFire3x under extreme weather, where spatially 

optimized treatments resulted in greater area burned than distributed treatments (p = 0.000; 

Figure 8). 
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Figure 8. Boxplots of wildfire annual area burned under contemporary (a.) and extreme 

(b.) weather for each management scenario. Under both weather scenarios, fuel treatments 

reduced annual area burned as compared with the untreated landscape (p = 0.0). Doubling the 

area treated with prescribed fire was not sufficient to significantly reduce area burned 

(Contemporary: p = 0.22, Extreme: p = 1.0), but tripling the area treated with prescribed fire 

resulted in significant decreases under both contemporary (p = 0.0008) and extreme weather (p = 

0.0005). Spatially optimizing treatments resulted in similar annual area burned for each treatment 

type under contemporary weather (i.e., no significant differences), indicating that under 
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moderate conditions, concentrating treatments in areas with high likelihood of burning at high 

severity is effective. However, under extreme weather, RxFire3x was more effective when 

distributed across the landscape (p=0.019). Area burned is expressed as the natural log, and log-

mean values for annual area burned are listed above each corresponding box.  

Wildfire was most frequent on the untreated landscape, and all treatment scenarios led to 

less frequent fire in all areas of the landscape with the greatest reductions in the central and 

southwestern portions. Fire rotation period (FRP) under contemporary weather was 90.53 while 

BAU management was 157 years, reflecting the significant reduction in annual area burned. 

Tripling the amount of area treated with prescribed fire had the greatest impact with an FRP of 

170 years. Under extreme weather simulations, fire frequency is based on forcing a much higher 

number of simulated fires than would be expected under normal conditions, and therefore FRP 

should be considered as an index to compare among treatments and not as a realistic number of 

years. FRP for the untreated landscape was 12.1 years, and treatment increased it to a range of 

16.5 years (BAU) to 19.0 years (RxFire3x). Spatially optimizing treatments reduced fire 

frequency in the areas treated (central and northeastern areas) but resulted in greater area burned 

in the untreated portion of the landscape (southwestern areas; Figure 9). This effect was most 

pronounced in the RxFire3x scenario where FRP decreased from 19.01 to 18.28 years when 

treatment placement was optimized. 
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Figure 9. Maps of total wildfire occurrence at each site over all replicates and years 

under extreme weather. Scale represents the number of fires that occurred in each individual cell 

over 100 years and 10 replicates. With management, fire was less likely over a greater proportion 

of the landscape, and the RxFire3x scenario led to the greatest reductions in fire occurrence. 

Spatially optimizing treatments reduced fire in the areas treated (central and northeastern areas) 

but resulted in greater area burned in the untreated portion of the landscape (southwestern areas). 

 

Under contemporary weather, reductions in severity at the landscape scale were not 

statistically significant (p = 0.165), and increased area treated with prescribed fire did not 

provide a significant further reduction in landscape-level fire severity. However, under extreme 

weather, all treatment scenarios had significantly lower severity than Untreated (0.0000 < p < 

0.001), and resulted in a 9-11% decrease in severity (Figure 10). The most effective treatment 

scenarios were spatially optimized BAU and distributed RxFire3x, both which resulted in 11% 

decreases in severity. The effects found from our multi-scenario design are in Table 2. 
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Figure 10. Density plots of mean fire severity under historical and extreme weather. 

Active management reduced mean fire severity under both historical (a) and extreme (b) weather 

scenarios, and tripling the amount of area treated with prescribed fire produced the greatest 

reductions. Under extreme weather, spatial optimization of fuel treatments further reduced mean 

fire severity, with the greatest reduction in fires in the 3.3 – 4.2 range of severities.  
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Table 2. Comparison of management scenarios’ effects on wildfire annual area burned 

and severity for 1) contemporary and extreme weather and 2) distributed and optimized 

treatment placement for the Malheur National Forest simulations. 

 

  Contemporary Weather Extreme Weather 

Distributed 

Placement 

·  Active management reduced 

annual area burned, but 

reductions to severity were 

not statistically significant. 

 

·  Doubling the area treated 

with prescribed fire was not 

sufficient to reduce annual 

area burned or severity at the 

landscape level. 

 

·  Tripling the area treated 

significantly reduced area 

burned. 

·  Active management reduced 

annual area burned and wildfire 

severity. 

 

·  Doubling the area treated with 

prescribed fire reduced annual 

area burned, but had no effect 

on severity. 

 

·  Tripling the area treated 

significantly reduced area 

burned and led to lower 

landscape-level fire severity. 

Optimized 

Placement 

·  Performed similarly in 

reducing area burned as 

distributed placement. 

 

·  The RxFire3x scenario 

reduced area burned from 

BAU, but was not as 

effective as distributing 

treatments. 

 

·  Reduced fire severity in the 

portion of the landscape that 

was treated, but resulted in 

an increase in overall mean 

severity. 

·  Performed similarly in 

reducing area burned as 

distributed placement (except 

RxFire3x). 

 

·  RxFire3x significantly 

increased area burned as 

compared with the RxFire3x 

distributed treatment 

placement. 

 

·  Severity was reduced in all but 

the optimized RxFire3x 

scenario. 
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Osceola National Forest 

Under contemporary fire weather conditions, the mean wildfire severity of both treatment 

scenarios differed very little when compared to the No Management scenario (Figure 11). The 

variance of fire severity however was significantly reduced under both treatment scenarios, with 

the principal regions of high variance in fire severity surrounding patches of dense or extensive 

swampland. There were no significant differences in either wildfire severity or variance in 

wildfire severity between the Treatment Placement and Treatment Placement with Harvest 

scenarios, however there was a moderate decrease in mean fire size (from 9170 to 7690 ha) when 

harvest was combined with Treatment Placement. 

 

 
Figure 

Figure 11. Mean wildfire severity for both contemporary fire weather (left column) and 

extreme fire weather (right column) simulations. No management (a,b), treatment placement 

(c,d), and treatment placement with harvest (e,f) are shown from top to bottom. 
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Extreme fire weather conditions significantly increased mean wildfire severity in all scenarios, 

with the No Management showing the largest increase of roughly 260% relative to 

contemporary, followed by the Treatment Placement with 235% increase, and Treatment 

Placement with Harvest increasing mean wildfire severity by 240% (Figure 12). The percent 

reduction in mean wildfire severity due to treatment was greatest in the Treatment Placement 

scenario, reducing mean wildfire severity by 21.7% relative to No management, and Treatment 

Placement with Harvest showing a similar reduction of 18.4% relative to No Management. The 

variance of mean wildfire severity also showed significant reductions with treatment, with the 

Treatment Placement scenario reducing the variance in mean wildfire severity by 38% relative to 

No Management, and the addition of harvest reducing the variance slightly less at 34%

 
Figure 12. Percent change in mean wildfire severity between no management and 

treatment scenarios under extreme fire weather conditions.  

 

Spatially, the reduction in mean fire severity under extreme fire weather was largest in 

the pine dominated areas where wildfires intersected with mechanical thinning and prescribed 

fire treated areas (Figure 12). A reduction in mean fire size in the pine dominated ecosystems 

due to treatment resulted in fewer fires that originated in pine dominated areas spreading into 

swamp stands. Consequently, the swamp stands showed an increase in mean fire severity relative 

to no management, due to a relative increase in fuels accumulation in those systems. 

Aboveground carbon dynamics showed little difference across all scenarios under 

contemporary fire weather (Figure 13). Carbon accumulation after the first 50 years under No 

Management showed a range of 54.2 to 57.8 Mg C ha, with a mean AGC of 68.7 Mg C ha by the 

end of 100 years of simulation. Both treatment scenarios showed a moderate increase in mean 

AGC of 3 Mg C ha by end of simulation when compared to the No Management scenario. Under 

extreme fire weather, treatment showed a much larger impact on the mean and range of AGC 

accumulation. While maximum AGC did not vary between scenarios, large and severe wildfires 

early in both treatment scenarios significantly reduced the range of AGC by the end of each 

simulation. No Management ranged from 59.2 to 69.2 with a mean of 66.3 Mg C ha, Treatment 
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Placement ranged from 70.9 to 72.7 with a mean of 71.9 Mg C ha, and Treatment Placement 

with Harvest scenarios ranged from 70.7 to 72.9 with a mean of 71.9 Mg C ha. 

 

 
Figure 13. Above ground carbon for both contemporary (left) and extreme (right) fire 

weather scenarios. Treatments are shown by row: no management (a,b), treatment placement 

(c,d) and treatment placement with harvest (e,f). Each subplot shows the absolute minimum, 

maximum, mean (dashed) and lowest 95th percentile (red) of AGC for each year across 30 

replicate simulations . 
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These landscape differences in AGC were largely driven by changes in biomass 

accumulation in the pine dominated ecosystems, with both treatment scenarios showing 

landscape scale significant increases in biomass accumulation relative to No Management (6.0% 

for the Treatment Placement scenario and 7.3% for the Treatment Placement with Harvest). 

Despite the moderate increases in swampland area mean fire severity with treatment, those 

regions showed little change in biomass accumulation, often a moderate decrease (Figure 14). 

 
Figure 14. Percent change in accumulated above ground carbon between no management 

and treatment scenarios under extreme fire weather conditions.  

Science Delivery Activities 

As per our proposed deliverables, we have worked with the three Fire Exchange 

Networks associated with each of the three regions (PNW, SW, SE) to disseminate three 

webinars and three research briefs.  We have completed one webinar (May 2017) and one 

research brief (March 2017) for the California Fire Science Consortium, one webinar (March 

2018) and one research brief (June 2018) for the Northwestern Fire Science Consortium, and one 

upcoming webinar and one upcoming research brief (both Fall 2018) for the Southern Fire 

Exchange. These are all produced after the model simulations have been finalized, publications 

are in preparation/review, and ready for “first looks” as a public release in the form of a webinar 

or research brief. We have presented four conference (oral/poster) presentations, with one 

planned for the Ecological Society of America (for the Osceola modeling) in August 2018, and 

others to come.  We will exceed the number of (3) promised journal articles, where we will have 

at least two publications for each study site, resulting in 6 total.  We already have two 

publications for the Dinkey landscape, three in preparation for the Malheur NF (currently written 

in a completed dissertation, see Appendix B), and two in preparation for the Osceola NF. We 

also plan to write a cohesive manuscript that incorporates results from all three CFLRP 

landscapes examining commonalities among sites with distinct restoration goals.  We will 

continue to work with managers, stakeholders, and interested parties to utilize the results of our 

work in adaptive management planning. 
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Conclusions, Implications, & Future Research  

Conclusions & Key Findings 

 

For all landscapes, our approach to determine the optimum placement of fuels treatments 

required simulations with multiple replicates to capture effects from stochastic wildfire ignitions 

and spread. The probability of high-severity fire across each landscape served as a means of 

determining optimum placement, in a post-hoc “treat the highest probabilities first” framework. 

This approach yielded a comparable treatment efficacy to other less strategic approaches, but 

with fewer management inputs. We also found that efficiently allocating resources for thinning, 

prescribed fire, or a combination thereof depended on site.  Our results suggest that using treated 

areas to restore surface fire in the short-term can yield long-term carbon storage gains because 

this approach restores adaptive capacity for more extreme fire weather that is projected to occur 

more often. 

The model optimization approach, based on targeting treatment areas from projections of 

wildfire risk, was successful for all three study sites. Prioritizing thinning treatments across the 

landscape using the probability of high severity wildfire illustrated a significant reduction in the 

area required for either mechanical thinning or thinning in general to achieve landscape scale 

reductions similar to a fully treated landscape.  Importantly, the continued application of 

prescribed fire in perpetuity was required in all instances to maintain landscape scale benefits, 

i.e. promoting fire-adapted tree species, reducing fire severity, and sequestering carbon. 

Specifically for the Malheur National Forest, our largest study site, we found that increasing the 

present-day annual area treated with prescribed fire by a factor of three was required to realize a 

detectable reduction in annual area burned by wildfire across the landscape regardless of fire 

weather scenario. These effects were evident in aboveground carbon values causing improved 

landscape carbon stability. Overall, carbon costs, including losses from prescribed fire, wildfire, 

and/or thinning treatments, were minimized (resulted in significant decreases compared to no-

management scenarios) under prioritized thinning and burning scenarios when compared to less-

strategic or naïve treatment placement scenarios. These carbon stabilization effects were 

particularly robust during extreme fire weather events, and also when implementing climate 

projections, which is highlighted in this report for the Dinkey Creek watershed. Notably, the 

reduction in the range of AGC - indicating more stable landscape carbon - often came with no 

change in the maximum sequestration potential found across replicates when treatments were 

implemented.  On the other hand, without treatments (‘no-management’ scenarios), maximum 

sequestration potential was reached much later in the century. 

At the landscape scale, fuel treatments were the most effective under extreme fire 

weather conditions, where the intersection of fire and treatments are most likely to occur 

compared to less extreme weather conditions, and significant reductions in wildfire severity were 

found. At the local scale, however, treatments were useful regardless of fire weather conditions 

because treatments increased forest resilience by promoting fire-dependent species, reducing 

drought-stress, and maintaining low fire risk conditions within those areas. And although 

treatment prescriptions were unique by site, their continued application through time and 

strategic placement were the most important aspects for reducing wildfire severity, area burned, 

and increasing landscape carbon sequestration potential and stability. Differences in prescription 

type at each site were less important. For example, adding harvesting of merchantable trees to 
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the current prescription regime (prescribed fire and thinning treatments) at the Osceola National 

Forest did not significantly alter the mean or variability of fire severity nor the total ecosystem 

carbon stored in the system. Similarly, adding mechanical and prescribed fire treatments in 

riparian habitat conservation areas of the Malheur National Forest was insufficient to alter 

landscape-scale fire severity or area burned. 

In some instances however, the effects of prioritizing treatments did have an impact on 

areas not treated, illustrating more localized effects on fire severity.  For example, at the Osceola 

National Forest, concentrating treatments in the uplands, which are spatially intertwined with the 

swamplands (or lowlands) reduced the amount of fires that originated in the pine-dominated 

uplands from spreading into the swamplands. But, this came at a future cost: The swamplands 

that did experience fire resulted in a higher mean fire severity relative to the no-management 

scenario due to increased fuel accumulation and less frequent fire. In conclusion for all three 

landscapes, we found that prioritizing treatment placement based on fire risk and implementing a 

long-term prescribed fire regime were the most optimal approaches to maintaining carbon 

stability and reducing wildfire severity and area burned.  

Implications for Management/Policy  

Treatments are only effective for reducing high-severity fire risk if they intersect with 

subsequent wildfires, and the probability that wildfire will occur in any particular location on a 

landscape is low. From this study, we used a landscape modeling technique to simulate 

interacting biophysical factors to identify high fire risk areas. We found that prioritizing 

treatments to these high fire risk areas yielded comparable treatment efficacy to the other less 

strategic approaches, but with fewer management inputs. Treatment efficacy is strictly from the 

landscape perspective, in terms of enhancing carbon sequestration potential, reducing wildfire 

area burned and reducing fire severity. This provides managers with a model-informed decision 

framework that can be used for developing spatial placement options for long-term treatment 

planning. Prioritizing treatment strategies is particularly helpful as resources for implementing 

treatments can take significant effort and resources, and can be constrained by regulatory 

restrictions. Fortunately, increasing the amount of prescribed fire on the landscape is an effective 

way to achieve multiple objectives, even if an initial more “heavy” treatment of thinning is 

needed to kick start the restoration process. Our results suggest that using treated areas to restore 

surface fire in the short-term can yield long-term carbon storage gains, particularly later in the 

century when extreme fire weather is more likely to occur. Long-term prescribed fires maintain a 

fire-resilient system in terms of increasing forest carbon sequestration potential, reducing long-

term emissions from wildfire (when compared to no-management projections), reducing the 

intensity and severity of wildfires when they do occur in those areas, and is considerably less 

expensive than mechanical treatments.  And, as wildland fires are an integral part of North 

American terrestrial ecosystems and imminent increases in extreme fire weather are likely, a ‘no-

management’ strategy is not economically or socially viable. Site implementation however, also 

takes into consideration local concerns, such as protection of small biodiversity hotspots, 

adjacency to urban infrastructure, native lands, archeological sites, etc. For these three 

particularly large study sites, we found that they are relatively cohesive in construct and not 

bordered by a significant amount of urban interface.  In fact, any fragmentation was primarily 

geographic and a legacy from past management, as opposed to development. This could allow 

for more flexibility when attempting to increase prescribed fire across these large landscapes, 
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particularly for the Malheur National Forest and Dinkey Creek watershed.  The Osceola National 

Forest is perhaps unique in that it already has a strong prescribed fire program in place and is 

effective at maintaining fire resilience in the pine uplands. However, the effects of treatment 

prioritization on adjacent inter-mixed swamplands was confounded. Although optimizing 

treatments around the swamplands may protect them even more from wildfire (reducing area 

burned), it may cause higher fire severity when a wildfire does occur due to more fuel 

accumulation.  These fire events and fire spread potential are also dependent on seasonal and 

decadal water levels within these swamplands. As such, the consideration of localized effects is 

often site-specific and reliant on local expertise and careful planning.  Long-term prioritization 

approaches to implementing treatment, particularly with the continuation of prescribed fire, have 

been found here to be the most optimal approaches to maintaining carbon stability and increasing 

fire resilience.  

Future Research  

A future research direction could include examining human adaptation to extreme fire 

weather, reducing accidental fires through educational efforts, and reducing the flammability of 

structures. Another avenue would be to design better support mechanisms for management as 

they implement their long-term treatment plans. This would provide a more positive accounting 

approach to monitor treatment efficacy. As managers are often forced to adhere to restrictions, 

they could be rewarded by reaching certain treatment efficacy goals through time. In addition to 

this, supporting the use of managed wildfire, rather than strictly “suppressing all wildfires” could 

be a useful avenue of research. As public opinion can be a barrier to carrying out prescribed fire 

operations, a focus on public outreach and education about the safety and efficacy of prescribed 

fire may be beneficial. 

In association with modeling efforts, a new LANDIS-II fire extension has been 

developed and is currently being tested in the eastern Sierra Nevada.  We could expand our 

current treatment scenarios and compare these with the two different approaches to simulating 

wildfires. In addition, there could be improvement to model carbon allocation, specifically to the 

relatively unknown production rates and storage potential of recalcitrant or black carbon, which 

can be stored for long periods of time (decades to centuries). If these values are substantial, 

frequently burned forests may have higher sequestration potential than currently understood.  

More fire-related studies could be focused in the eastern, specifically southeastern U.S. 

where extensive prescribed burning is performed and opportunities for fire science and ecology 

research are abundant.  Literature is limited in the southeast, focused at landscape-level 

simulations as they pertain to management feedbacks associated with net ecosystem carbon 

dynamics, disturbance, and ecosystem resilience (e.g., Martin et al. 2015, Swanteson-Franz et al. 

2018).  There is extensive and intensive management using prescribed fire (as well as thinning, 

herbicide, mulching, etc.) that is applied in the southeast. For example, more than two million 

acres of prescribed fire are applied per year in Florida alone. Understanding efficacy in all North 

American systems is important in future climate conditions and in the increasing wildland-urban 

interface. 

For lands that have fire-sensitive wetlands (but do experience periodic fires) and border 

more fire-prone areas, it would be interesting to study the spatial dynamism of wetland 

progression - expansion and retraction - across the landscape, as well change in ecosystem state - 

from wetland to pineland to wetland again. This was not included in the simulations for Osceola, 
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but the transitions could be rather quick (a few decades) given projected drought and fire 

conditions. 

In the Malheur, future study could include fire dynamics in the moist mixed-conifer 

forests, which are more prevalent in the northern portion of the National Forest as well as the 

Wallowa-Whitman National Forest. Although historical fire frequency was similar in these 

forests as the drier, more southerly forests, future interactions between extreme fire weather and 

wildfire may lead to unique shifts in forest composition and an altered fire regime. 
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Krofcheck D.J., Hurteau M.D., Scheller R.M. & Loudermilk E.L. (2017). Prioritizing forest fuels 

treatments based on the probability of high‐severity fire restores adaptive capacity in 

Sierran forests. Global Change Biology, 24, 729-737. 

In preparation 

Cassell, B.A., Hurteau, M., Loudermilk, E.L, Lucash, M., Scheller, R.M. More and widespread 

severe wildfires under climate change lead to dramatic declines in high-elevation species 

in the dry mixed-conifer forests of the inland western U.S. (In preparation)  

Cassell, B.A., Hurteau, M., Loudermilk, E.L, Lucash, M., Scheller, R.M. Optimizing placement 

of fuel treatments and accelerating prescribed fire ameliorates weather-driven wildfires in 

western mixed-conifer forests. (In preparation) 

Cassell, B.A., Nielsen-Pincus, M., Scheller, R.M., Loudermilk, E.L. Local resident perspectives 

on forest management and implications for fuel treatments in a rural community in 

eastern Oregon, U.S. (In preparation) 

Krofcheck, D., Hurteau, M. Hiers, J.K., Scheller, R. Loudermilk, E.L. Fuels management at the 

wetland-pine interface affects landscape scale wildfire severity under extreme fire 

weather conditions in the Osceola National Forest, FL. (In preparation) 

Krofcheck, D., Hurteau, M. Hiers, J.K., Scheller, R. Loudermilk, E.L. Future interactions 

between projected climate, wildfire, and management in a highly heterogeneous 

southeastern pine forest. (In preparation) 

Technical Reports 

None. 

Textbooks or book chapters 

None. 

Graduate Thesis 

Cassell, B.A. (2018). Assessing the Effects of Climate Change and Fuel Treatments on Forest 

Dynamics and Wildfire in Dry Mixed-Conifer Forests of the Inland West: Linking Landscape 

and Social Perspectives. Portland State University, Portland, OR. (Doctoral Dissertation) 
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Conference Proceedings 

None. 

Conference Abstracts 

 

Krofcheck, D.J., Loudermilk, E.L., Scheller, R.M., Hurteau, M.D. Forest management and 

wildfire under alternate climate futures in eastern Oregon. Ecological Society of America 

Conference, Portland, OR. August 2017. (oral presentation, published abstract) 

Cassell, B.A., Scheller, R.M., Loudermilk, E.L., Hurteau, M.D. Under extreme weather 

conditions, dry mixed-conifer forests in the western U.S. benefit from spatial optimization of fuel 

treatments. US-IALE 2018 Annual Meeting, Chicago, IL. April 2018 (oral presentation, 

published abstract) 

Posters 

Cassell, B.A., Scheller, R.M., Nielsen-Pincus, M. Would you like fires with that? Using 

stakeholder-derived forest management preference maps to model landscape-level fuel reduction 

treatment effects on wildfire spread. International Association for Landscape Ecology – US-

IALE 2017 Annual Meeting, Baltimore, MD. April 2017. (poster presentation, published 

abstract) 

Cassell, B.A., Scheller, R.M., Loudermilk, E.L., Hurteau, M.D. Assessing the Effectiveness of 

Fuel Treatments in a Mixed-Conifer Landscape: Linking Landscape and Social Perspectives. 

Association for Fire Ecology – 6th International Fire Ecology and Management Congress, San 

Antonio, TX November 2015. (poster presentation, published abstract) 

Workshop Materials 

None. 

Field Tour Summaries 

We toured all three field sites. We met with federal cooperators at the Malheur National 

Forest in April 2015.We toured the area and discussed project objectives and directions in 

relation to management goals. Several 'on the ground' personnel were present at various 

meetings.  They expressed the need for this type of research at the Malheur and offered 

considerable insight into fuel treatment operations, includes Rxfire. In June 2016, we toured the 

Dinkey Creek CFLRP with the District FMO, a District Burn Boss, the District Silviculturist, the 

CFLRP Coordinator, and the Province Ecologist.  On the tour, we described the objectives of the 

project and discussed some of the challenges and operation limitations that this CFLRP faces.  In 

November 2016, we met with the Osceola National Forest management, AFMO, and personnel, 

toured the site and discussed project objectives and needs of management. 
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Website Development 

None. 

Presentations, Webinars, Science Delivery 

Cassell, B.A. Fuel treatment effectiveness in the southern Blue Mountains of Oregon. 

Northwest Fire Science Consortium, March 21, 2018. (webinar) 

 

Cassell, B.A. Climate impacts on forest succession and wildfire in the Blue Mountains of 

Oregon. Portland State University, Environmental Science and Management Friday Science 

Seminar, March 21, 2018. (oral presentation) 

 

Cassell, B., Scheller, R. 2018. Spatially optimized fuel treatment and increased 

prescribed fire reduce wildfire activity under extreme weather. Research Brief provided to the 

USDA Forest Service and Northwest Fire Consortium. 1pp. (research brief) 

 

Cassell, B.A., Scheller, R.M., Loudermilk, E.L., Hurteau, M.D. Under extreme weather 

conditions, dry mixed-conifer forests in the western U.S. benefit from spatial optimization of fuel 

treatments. US-IALE 2018 Annual Meeting, Chicago, IL. April 2018. (oral presentation) 

 

Hurteau, M. Climate, wildfire, and management influences on forest carbon carrying 

capacity. California Fire Science Consortium. May 2, 2017. (webinar) 

 

Hurteau, M., Krofcheck, D. 2017. Restoring Surface Fire Stabilizes Forest Carbon. 

Research Brief provided to the USDA Forest Service Pacific Southwest Research Station and 

Southwest Fire Consortium. 1pp. (research brief) 

 

Krofcheck, D.J., Loudermilk, E.L., Scheller, R.M., Hurteau, M.D. Forest management 

and wildfire under alternate climate futures in eastern Oregon. Ecological Society of America 

Conference, Portland, OR. August 2017. (oral presentation) 

Appendix C  
Metadata for this project include all input text and GIS raster files used to run LANDIS-II 

simulations for all three study sites. These files will be archived with the USDA Forest Service 

Research Data Archive (https://www.fs.usda.gov/rds/archive/) as publications associated with 

the project are released and can be linked to the data source on this website. GIS input files 

include, e.g. ecoregions, fire regions, management areas, and stand units. Text files are used for 

parameter inputs for LANDIS-II, which include information such as species life history traits and 

physiological attributes, fire weather, climate, and management strategies, as well as calibrated 

parameters, such as forest productivity and wildfire regimes. Data sources used to develop these 

parameters will be provided in all associated publications and this final report. All simulation 

outputs can be replicated by running LANDIS-II with the input files provided. We did not use 

the repository with Pennsylvania State University as stated in the management plan because Co-

PI Hurteau (originally with Penn State) has transferred to the University of New Mexico.   

https://www.fs.usda.gov/rds/archive/

