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Where dispersal is energetically expensive, feeding and food availability can influence dispersal success. The

endemic Prince of Wales northern flying squirrel (Glaucomys sabrinus griseifrons) inhabits a landscape mosaic

of old-growth, 2nd-growth, and clear-cut stands, with the latter 2 representing energetically expensive habitats.

We estimated the diet of flying squirrels using stable isotope and fecal analyses, determined whether food

availability varies among forest stands, and assessed the likelihood of foraging across a managed landscape

given the distribution of foods on Prince of Wales Island (POW), Alaska. Both stable isotope and fecal analyses

revealed that conifer seeds, lichens, and fungi were the main dietary items consumed and assimilated by flying

squirrels. Similarly, soil macroinvertebrates were consumed by squirrels, whereas berries were not.

Nonetheless, although examination of stable isotope data suggested that squirrels assimilated few nutrients

from truffles, this food source was among the most frequent diet items in feces, probably because flying

squirrels assimilate elements other than nitrogen from fungi. Our surveys showed that conifer seeds, truffles,

and lichens were more prevalent in old-growth than 2nd-growth and clear-cut habitats. Thus, our results indicate

that diet and availability of food items on POW may influence foraging success and dispersal movements of G.
sabrinus across fragmented landscapes because of limited availability of food resources in the managed

habitats. DOI: 10.1644/09-MAMM-A-014R.1.

Key words: clear-cuts, fecal analyses, fungi, old-growth forests, soil macroinvertebrates, Southeast Alaska, stable isotope
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The endemic Prince of Wales flying squirrel (Glaucomys
sabrinus griseifrons Howell, 1934) inhabits a habitat altered

significantly by broadscale timber harvest; the once near

contiguous old-growth Sitka spruce (Picea sitchensis)–western

hemlock (Tsuga heterophylla) forests are now a mosaic of old-

growth remnants, younger 2nd-growth stands (,60 years in

age), and clear-cuts. Future timber harvest will further

fragment the old-growth forest on Prince of Wales Island

(POW), Alaska. Current plans to maintain a system of old-

growth reserves assume that, despite the increased fragmen-

tation, populations of old-growth obligate species will

function as metapopulations through continued dispersal

among old-growth isolates (United States Department of

Agriculture Forest Service 1997). However, our recent studies

demonstrated that flying squirrels gliding into 2nd-growth and

clear-cut habitats may experience difficulties orienting toward

the nearest forest edge, especially on cloudy, rainy nights

(Flaherty et al. 2008). Under such conditions, which are

common on POW, travel paths (relative to straight-line

distance) of flying squirrels across clear-cut and 2nd-growth

stands are considerably longer than in old-growth forests and

are characterized by multiple pauses, which translate to

greater travel time (Flaherty et al. 2008). In addition, we found

that the cost of quadrupedal locomotion, the mode of transport

adopted by squirrels in clear-cut and 2nd-growth stands, is

higher than expected, especially when compared to other

arboreal sciurids (E. A. Flaherty, pers. obs.). Thus, unless

flying squirrels are able to replenish their depleted energy

stores when dispersing across high-cost managed stands,

successful dispersal and viable metapopulations are unlikely

(Smith and Person 2007; Smith et al., in press).
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Although the diet of G. sabrinus has been studied

extensively (Smith 2007), limited information exists on the

diet of populations in the temperate rain forests of Southeast

Alaska (Pyare et al. 2002). Based on the diversity of spores

identified in fecal samples in past studies, G. sabrinus appears

to be primarily a mycophagist, specializing on the fruiting

bodies of hypogeous mycorrhizal fungi (hereafter, truffles) in

most parts of its range (Currah et al. 2000; Maser et al. 1986;

Pyare et al. 2002). However, the reliance of G. s. griseifrons
on fungi in Southeast Alaska may be lower than elsewhere

(Pyare et al. 2002). Truffles have low nutritional value

(Claridge et al. 1999; Cork and Kenagy 1989; Dubay et al.

2008), and by consuming a diversity of genera that differ in

nutritional contents, squirrels are able to obtain essential

nutrients (Claridge et al. 1999; Dubay et al. 2008). Because

species diversity of truffles is lower in Southeast Alaska,

flying squirrels may be unable to meet their nutritional needs

by concentrating on truffles as a food source (Pyare et al.

2002). G. sabrinus augments its diet by consuming epigeous

fungi (mushrooms); arboreal lichens such as Bryoria, Usnea,
and Alectoria spp. (Maser et al. 1985; Rosentreter et al. 1997);

berries; conifer seeds; new growth tips and buds from trees;

bird eggs and young; animal tissue; and invertebrates (Maser

et al. 1985; Thysell et al. 1997; Wells-Gosling and Heaney

1984).

Timber harvest changes the structure and microclimate of

old-growth forests (Colgan 1997), removes the energy sources

(trees) for fungi (Amaranthus et al. 1994; Colgan 1997), and

damages the hyphal mat during logging operations (Carey et

al. 2002). Thus, resulting clear-cuts, 2nd-growth, and thinned

stands exhibit significantly lower fungal biomass and diversity

than old-growth stands (Amaranthus et al. 1994; Carey et al.

2002; Waters et al. 1994), and little is known about the length

of time required before fungi will reestablish colonies and

begin to produce truffles (Amaranthus et al. 1994). The effects

of timber harvest on the availability of other potential diet

items of flying squirrels are even more obscure. Nonetheless,

these managed habitats may be depleted not only in the

preferred diet item, fungal fruiting bodies, but also in

alternative foods. Such lower availability of food items may

reduce the ability of dispersing flying squirrels to replenish

their energy stores. Therefore, the objectives of our study were

to estimate the relative importance of fungal fruiting bodies

and other potential food items in the diet of northern flying

squirrels in Southeast Alaska, determine if the abundance of

those diet items varies between old-growth and managed

forests, and evaluate whether dispersers would be expected to

encounter adequate food resources while traversing managed

landscapes of Southeast Alaska.

MATERIALS AND METHODS

Study area.—Study sites were located on northern POW,

Alaska, near the community of Naukati (55u529N, 133u129W;

Fig. 1). The old-growth habitat is composed of Sitka spruce

and western hemlock, with yellow cedar (Xanthocyparis

nootkatensis) and western red cedar (Thuja plicata) occurring

in more mesic areas. These old-growth stands contain many

down, decaying logs and snags. The understory includes

devil’s club (Oplopanax horridus) and dense areas of

Vaccinium spp. The 2nd-growth habitat is primarily ‘‘dog-

hair’’ stands of spruce and hemlock (i.e., densely stocked with

small-diameter trees that were on average no more than one-

half the diameter of trees in old-growth—Alaback 1982).

Second-growth rain forest in Southeast Alaska correspond

ecologically to substantially younger 2nd-growth forests at

lower latitudes because succession proceeds much slower

(�300 years to develop old-growth forest structure). The

remainder of the study area was composed of clear-cuts, which

are recently (,5 years) disturbed stands with no overstory and

a vegetation layer that includes skunk cabbage (Lysichitum
americanum) and Vaccinium spp., with some small pools of

standing water.

Livetrapping and sample collection.—Flying squirrels were

trapped in the autumn months (August–October) of 2003–

2005, a period that overlapped with juvenile dispersal, and the

spring months (March–April) of 2004–2005, which corre-

sponded with breeding dispersal. Trapping occurred on 3

different grids situated in old-growth forest stands within an

FIG. 1.—Map of core study area on Prince of Wales Island,

Southeast Alaska. Trapping area was located inside the box. Surveys

of food availability and trapping of northern flying squirrels

(Glaucomys sabrinus griseifrons) occurred during spring 2003,

2004, and 2005, and autumn 2004 and 2005.
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area of approximately 10 km2. Because radiotelemetry, fine-

scale movement, and perceptual range data all indicated that

flying squirrels were avoiding clear-cut and 2nd-growth

habitats (Flaherty et al. 2008; S. Pyare and W. P. Smith,

per. obs.), and because Smith and Person (2007) determined

that low-quality old-growth habitats (i.e., peatland–mixed

conifer stands) act as population sinks on POW, we did not

establish trapping grids in managed stands. Tomahawk

No. 201 (13 3 13 3 41-cm) live traps (Tomahawk Live Trap

Co., Tomahawk, Wisconsin) were placed approximately 1.5 m

above the forest floor on the bole of a tree and baited with a

mixture of rolled oats, peanut butter, and molasses (Smith and

Nichols 2003). Traps were checked at sunrise, and animals

captured for the 1st time were marked with a unique passive

integrated transponder tag (Biomark, Boise, Idaho); all

captured individuals were weighed and sexed. We collected

whole blood samples from each new captured adult for stable

isotope analysis. Animals were briefly exposed to halothane,

an inhalant anesthetic with a rapid induction rate and recovery

(McColl and Boonstra 1999; Menzel et al. 2004), and we

collected a small, triangular ear clipping from the medial edge

of the right ear using a pair of sharp tissue scissors. We used

microcapillary tubes to collect whole blood droplets from the

ear. The tubes were stored inside sterile Whirlpacks (Nasco,

Fort Atkinson, Wisconsin) and frozen. We collected blood

samples only from adults because of the increased risk of

mortality from cardiovascular depression associated with

halothane exposure (McColl and Boonstra 1999) that could

be exacerbated by the physiological stress from dispersal

activity in juveniles. We also collected fecal pellets from the

anus or from a clean, uncontaminated surface where they fell

during handling (Carey et al. 2002; Lehmkuhl et al. 2004;

Pyare et al. 2002). We excluded pellets that visibly included

bait. Feces were stored in Whirlpacks and frozen. Field

methods were approved by the University of Wyoming

Institutional Animal Care and Use Committee and followed

guidelines approved by the American Society of Mammalo-

gists (Gannon et al. 2007).

Estimating diet with stable isotope and fecal analyses.—We

estimated the diet of flying squirrels using both stable isotope

and fecal analyses. Stable isotope analysis determines the

relative contribution of assimilated diet items, whereas fecal

analysis yields information on the diversity of recently

digested food (Angerbjörn et al. 1994), in this case fungi,

through the identification of cells and spores. Stable isotope

analysis provides an index of the relative contribution of each

item in the diet (Ben-David and Schell 2001; Phillips and

Koch 2002) through measurement of isotopic values of the

heavy isotopes of carbon (C) and nitrogen (N) in the tissue of

an animal and those in the potential diet items. In this analysis

it is important to account for the difference between the

isotopic values of the consumer and its diet, or diet-consumer

discrimination, which stems from chemical or physiological

processes (Gannes et al. 1997). In addition, for reliable

estimates of diet contribution, all diet items should have

distinctive isotopic signatures, and the appropriate tissues

must be used because tissues differ in turnover rates, diet–

consumer discrimination, and assimilation of different diet

components (Gannes et al. 1997). For example, isotopic values

of blood serum correspond with diet during a relatively short

period of time, 1–2 weeks prior to sampling, whereas red

blood cells reflect diet during the previous 2–3 months

(Hilderbrand et al. 1996; Hobson and Clark 1993). Addition-

ally, isotopic discrimination and routing of the different

components from each food source (i.e., carbohydrates, lipids,

and proteins) to consumer body tissues can complicate the

interpretation of isotopic signatures (Gannes et al. 1998).

However, the use of stable isotope analysis in conjunction

with fecal analyses should provide more reliable estimates of

diet composition because fecal analysis may underestimate

use of some diet items and thus may not sufficiently describe

the importance of some foods (Thysell et al. 1997).

Furthermore, unless fecal samples are assigned to individuals,

it could provide a biased estimate of the population-level use

of a specific resource (Felicetti et al. 2003). The combination

of both stable isotope and fecal analyses has been used

successfully to estimate the diet of pygmy raccoons (Procyon
pygmaeus—McFadden et al. 2006), long-nosed bandicoots

(Perameles nasuta—Thums et al. 2005), mycophagous

marsupials (McIlwee and Johnson 1998), and frugivorous

bats (Herrera et al. 2001).

For stable isotope analysis we dried samples of potential

foods at 60uC for 48 h and then ground the samples into a fine

powder using a mixer mill (Retsch MM 200; Glen Mills Inc.,

Clinton, New Jersey). A subsample was placed into a

miniature tin weighing boat (4 3 6 mm) for combustion and

sent in duplicate to the University of Wyoming Stable Isotope

Facility. Data of d13C and d15N were generated with a Costech

ECS elemental analyzer (Costech Analytical Technologies,

Valencia, California) attached to a Finnigan DeltaplusXP mass

spectrometer (Thermo Fisher Scientific, Inc., Waltham,

Massachusetts) using PeeDee Belemnite (PDB) for the C

standard and atmospheric air for N. Sample results were

accepted if variance between the 2 subsamples did not exceed

0.15% and machine linearity did not deviate from 0.99 (Ben-

David et al. 1997). Blood samples collected from flying

squirrels were processed similarly. For those samples serum

was not separated from blood cells because of the small

amount of blood collected in capillary tubes. Consequently,

isotopic values for squirrels represent their diet over the 6–8

weeks prior to sampling.

We used multivariate analysis of variance (MANOVA—

Zar 1999) and post hoc Scheffé multiple comparisons to test

for significant differences in stable isotope values among the

various diet items and assessed differences in isotope

signatures using a K-nearest neighbor randomization test

(Rosing et al. 1998). We tested for differences in isotopic

values of whole blood between sexes using a Student’s t-test

assuming equal variance (Zar 1999). The isotope data for all

distinct diet items and those of flying squirrels were

incorporated into a dual-isotope linear mixing model to

determine the relative contribution of the various diet items

February 2010 FLAHERTY ET AL.—DIET OF FLYING SQUIRRELS IN SOUTHEAST ALASKA 81

D
ow

nloaded from
 https://academ

ic.oup.com
/jm

am
m

al/article-abstract/91/1/79/837006 by guest on 29 June 2020



to the overall squirrel diets in spring and autumn. For this

analysis, we used the program SISUS (SISUS: Stable Isotope

Sourcing Using Sampling—Erhardt 2007; Phillips and Gregg

2003) and analyzed data separately for spring and autumn. We

corrected for diet–consumer discrimination by using a change

of 1% for d13C and 3% for d15N (DeNiro and Epstein 1981;

Kelly 2000; McCutchan et al. 2003; Peterson and Fry 1987).

We ran the model as concentration-dependent by including

data on the composition of tissues of the different diet items

because of large differences in C:N ratios (Phillips and Koch

2002) in lichens (37.9:0.7), truffles, (47.2:4.3), conifer seeds

(53.5:1.6), and soil macroinvertebrates (48.2:12.4—M. Ben-

David, pers. obs.).

We thawed fecal samples and placed 2 small portions from

each pellet on a microscope slide. One drop of potassium

hydroxide (KOH) was added to 1 portion of the sample and

mixed vigorously using a razor blade. The other portion of the

sample was mixed similarly with a drop of Melzer’s solution.

KOH is a standard rehydrating medium for mounting fungal

spores, and Melzer’s can aid in identification of certain fungal

genera by reacting with the spore walls and ornamentation to

produce a color reaction (Castellano et al. 1989). We covered

the 2 samples with an 18 3 18-mm coverslip and examined the

slide using bright-field microscopy at 1003, 4003, and 1,0003.

We identified food items in the entire field of view for each

coverslip (Mitchell 2001). Fungal spores were identified to

genus using a spore key (Castellano et al. 1989). We calculated

frequency of occurrence of the fungal taxa as the percentage of

occurrence in the total number of fecal samples each season

(Mitchell 2001; Pyare et al. 2002). We compared the number of

genera per fecal sample to season and sex of squirrels using

analysis of variance (ANOVA—Zar 1999).

Surveys of food availability and sampling of potential
foods.—We used 20-m line transects, pitfall traps, and 1 3 1-m

plots to estimate food availability in the 3 habitat types. We

used preliminary data from initial surveys during the 1st field

season to determine the number of transects required to detect

differences in food availability among habitats with a

statistical power of 0.90. Using Cohen’s (1988:274) effect

size index F-test for analysis of variance and covariance

(Smith and Harke 2001) and a type I error rate equal to the

type II error rate (0.10—Smith and Harke 2001), we

established that 15 transects in each habitat would provide

sufficient power to detect differences among habitats. We

chose to measure 3 transects in each sampled stand to account

for within-stand heterogeneity and ensure that each stand was

properly represented in our sample. Accordingly, we conduct-

ed 135 line-transect surveys (3 surveys per stand 3 15 stands

per habitat 3 3 habitat types). We conducted 90 line-transect

surveys during the spring and 45 during the autumn. The

inequality in surveys between seasons was due to logistical

constraint and was not related to the power analysis.

Transect locations within each habitat and the azimuths of

transects were chosen randomly. At each site we established

transect lines with a compass. A field tape was used to

estimate presence and abundance and frequency of occurrence

of Vaccinium spp., arboreal lichens, and epigeous fungi by

walking along the line and estimating the length of

interception for each of the diet items considered. Following

the survey and along each transect, 5 pitfall traps were

installed to sample nonvolant soil macroinvertebrates. Pitfall

traps were 473-ml plastic cups buried in the earth with the lip

flush with the surface of the forest floor. A plastic plate was

placed over each cup to exclude rainwater and to mimic debris

that invertebrates seek for shelter. The traps remained in place

for approximately 3 days at which point the contents were

emptied into individual plastic bags and frozen until

identification and further analysis in the laboratory at the

University of Wyoming. A total of 225 traps was collected

from each of the 3 habitat types for a total of 675 traps. In the

laboratory, macroinvertebrates were identified at least to order

using a dissection microscope and guide books (Borror and

White 1970; Kaston et al. 1978; White 1983; White and

Borror 1998).

At each of the line-transect survey sites we conducted 2

truffle surveys (spring) during 2004 and 4 (spring and autumn)

during 2005. At each end of each transect (all seasons) and

10 m from the center of the line on each side (spring and

autumn 2005) we established a 1 3 1-m plot for estimating

availability of spruce and hemlock seeds and truffles. The

placement of the grid was initially selected at random but

subsequently modified to avoid trees, rocks, and densely

vegetated areas. We attempted to place the grids under logs

(10–70 cm in diameter) whenever possible to maximize

encounters with truffles. We recorded and removed downed

woody debris and counted spruce and hemlock cones on each

plot. We used methods similar to those reported by Clarkson

and Mills (1994) to estimate truffle biomass and chose

sampling periods that coincided with spring and autumn

truffle blooms (Colgan 1997). We used hand rakes and slowly

raked the soil, from the surface of the duff to the organic–

mineral soil interface. Unearthed truffles were identified to

genus and weighed for fresh biomass. In all, we surveyed 150

truffle plots. While digging, we also counted all uncovered

earthworms. We collected subsamples of the various potential

food items (i.e., lichens, truffles, mushrooms, berries, conifer

seeds, new conifer growth, and soil macroinvertebrates) and

froze them for use later in stable isotope analysis.

To determine whether food availability of all items, except

invertebrates, differed among habitat types and between

seasons, we used a nested 2-way ANOVA (Zar 1999), where

the main effects were stand (clear-cut, 2nd-growth, or old-

growth) and transect (nested within stand) and Scheffé

multiple comparison tests. To test for differences in the

abundance of soil macroinvertebrates among habitats and

seasons, we averaged the number of invertebrates in each trap

(5 traps/line-transect survey) along each line transect and

similarly used a 2-way ANOVA with stand, season (spring or

autumn), and transect (nested within stand) as main effects.

Because many of the invertebrates we collected were too small

to serve as food for flying squirrels, we categorized the

invertebrates as small (,2 mm in length excluding append-
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ages), medium (2–10 mm), and large (.10 mm). We then

repeated the analysis (with a 2-way ANOVA) only for large

macroinvertebrates.

RESULTS

We captured and processed a total of 36, 45, 30, 39, and 50

individual flying squirrels during spring 2003, 2004, and 2005,

and autumn 2004 and 2005, respectively. During autumn 2004

and 2005, we captured 15 and 23 juveniles, respectively. From

those individuals, we collected a total of 39 blood samples

with enough volume for stable isotope analysis: 15 during

spring 2004, 9 during spring 2005, and 15 during autumn

2005. These samples were collected from 12 adult females and

27 adult males. We also collected 23, 17, 11, 20, and 11 fecal

samples from unique individuals during spring 2003, 2004,

and 2005, and autumn 2004 and 2005, respectively, for a total

of 51 spring samples and 31 autumn samples. Fecal samples

collected during the spring field seasons were all from adult

squirrels. During autumn seasons of 2004 and 2005,

respectively, we collected 2 and 4 fecal samples from

juveniles. We collected both feces and blood samples from

20 individuals in quantities sufficient for both analyses.

Diet estimates from stable isotopic analyses.—We found

significant differences in the d13C and d15N of all diet items (P
, 0.05; Table 1), except among several invertebrates and

epigeous fungi (P . 0.05; Table 1). Also, we found

significant effects of habitat on the isotopic values of the

different macroinvertebrates (E. A. Flaherty and M. Ben-

David, pers. obs.). To ensure that we did not introduce bias to

our diet estimates because flying squirrels on POW rarely

venture into clear-cuts and 2nd-growth stands (S. Pyare and

W. P. Smith, pers. obs.), in subsequent analyses we used the

isotopic signatures of items collected in old-growth habitats

only. After pooling large-sized soil macroinvertebrates into a

single group, invertebrates and epigeous fungi differed

isotopically (Table 1). The isotopic signature of that soil

macroinvertebrate group was not significantly different (P .

0.05) from that of earthworms (Table 1). Although spruce and

hemlock seeds also differed (P , 0.05) isotopically (Table 1),

we used average d13C and d15N values of these 2 items to

create a category called conifer seeds to reduce the number of

food items relative to sample size of squirrels. Finally, we did

not include berries in the model because this food item was

never identified in our fecal analysis. Therefore, we

introduced the following diet categories into a dual-isotope,

concentration-dependent linear mixing model: epigeous fungi,

truffles, conifer seeds, lichens, and soil macroinvertebrates

(Tables 1 and 2; Fig. 2).

Isotopic values in whole blood of flying squirrels captured

during spring were more variable than those captured during

autumn (Fig. 2), suggesting greater variation in diet among

individuals. These differences were not related to the sex of

TABLE 1.—Mean (6 SE) d13C and d15N values (%) and elemental concentrations of potential food items for northern flying squirrels

(Glaucomys sabrinus griseifrons) on Prince of Wales Island, Alaska. Number of samples included in the global mean for calculating the d13C

and d15N is given by n. Letters represent significant differences (a 5 0.05) in both d13C and d15N as determined from MANOVA followed by

Scheffé post hoc multiple comparisons (Zar 1999) and K nearest-neighbors randomization tests (Rosing et al. 1998).

Diet item n d13C d15N

Significance all

items

Significance pooled

items

Elemental concentration

% d13C % d15N

Epigeous fungi 32 224.49 6 0.30 4.37 6 0.55 ag a 47.2 1.7

Truffles 35 227.32 6 0.18 4.48 6 0.29 b b 47.2 1.7

Hemlock seeds 20 225.26 6 0.25 21.70 6 0.67 c 53.5 1.6

Spruce seeds 14 226.82 6 0.30 21.25 6 0.57 d 53.5 1.6

Mean seeds 34 225.90 6 0.24 21.51 6 0.45 c 53.5 1.6

Lichens 23 221.26 6 0.28 23.87 6 0.25 e d 37.9 0.7

Berries 8 231.40 6 0.45 0.29 6 0.81 f e 49.3 1.7

Araneidae 28 225.45 6 0.17 5.67 6 0.24 g 48.2 12.4

Scaphinotus angusticollis 30 226.73 6 0.15 3.75 6 0.33 bg 48.2 12.4

Pterostichus spp. 28 226.49 6 0.26 4.76 6 0.25 g 48.2 12.4

Diplopoda 30 224.36 6 0.14 2.78 6 0.32 a 48.2 12.4

Harpaphe hadeniana 30 223.69 6 0.15 3.08 6 0.42 ag 48.2 12.4

Earthworms 17 226.61 6 0.15 4.24 6 0.22 a 48.2 12.4

Mean invertebrates 133 225.26 6 0.12 3.84 6 0.16 f 48.2 12.4

TABLE 2.—Relative contribution (6 SD) to the diet of northern

flying squirrels (Glaucomys sabrinus griseifrons) during spring 2003–

2005 and autumn 2004–2005 on Prince of Wales Island, Alaska, for

diet items. Proportions of diet item in overall squirrel diet were

estimated by a concentration-dependent, dual-isotope linear mixing

model. To account for trophic discrimination, we added 1% d13C and

3% d15N to each source value before incorporating into the model

(SISUS). We removed berries and invertebrates from the

concentration-dependent linear mixing model because berry seeds

were not observed in feces.

Diet item

Relative contribution

Spring Autumn

Epigeous fungi 0.04 6 0.03 0.10 6 0.07

Truffles 0.04 6 0.03 0.09 6 0.06

Conifer seeds 0.43 6 0.03 0.33 6 0.05

Lichens 0.47 6 0.02 0.43 6 0.04

Invertebrates 0.02 6 0.01 0.05 6 0.04
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the animals (d13C: t38 5 2.06, P 5 0.63; d15N: t38 5 2.06, P 5

0.54). During spring the d13C and d15N values of 4 of 24

individual squirrels fell out of the mixing space (Fig. 2), but

only 1 of 15 did so in autumn. Such deviations likely resulted

from our use of deterministic discrimination values rather than

from pooling diet items (Table 1; Fig. 2). Using the

population means, we estimated with the concentration-

dependent mixing model that lichens had the largest

contribution to the spring diets of northern flying squirrels

(47%) followed by conifer seeds (43%), truffles (4%), and

epigeous fungi (4%). During autumn, lichens again had the

largest overall contribution to the diet (43%), followed by

seeds (33%) and epigeous fungi (10%).

Fecal analysis.—We identified 10 different truffle genera

and 2 taxa of epigeous fungi, Boletales and Cortinarius spp.,

with the latter more frequently consumed in autumn (Table 3).

For truffles, Elaphomyces spp. were present in most samples

(35–91%) and consumed in both seasons, followed by

Octaviania (9–85%) and Gymnomyces (8–75%), which were

largely consumed in autumn (Table 3). Of the other truffle

genera, Hydnotrya was more prevalent in spring feces,

whereas Rhizopogon and Sarcosphaera were consumed more

frequently in autumn (Table 3). No significant difference

(F2,83 5 0.115, P 5 0.736) existed in the mean number of

fungi genera consumed between males and females. Overall,

truffles and lichens occurred most often in flying squirrel feces

in both spring and autumn; truffle spores were found in 82–

96% of the samples, whereas lichen material was found in

100% of the fecal samples during spring and �90% during

autumn (Table 4). The next most common food item was

FIG. 2.—Distribution of isotopic values (mean 6 SE) of potential foods and individual flying squirrels (Glaucomys sabrinus griseifrons) in

spring and autumn on northern Prince of Wales Island, Alaska, for a concentration-dependent mixing model. The lines connecting potential food

sources enclose the mixing space for the dual-isotope linear mixing models used to convert isotopic data to estimates of relative contribution.

Although d13C and d15N values of several individual squirrels fell out of the mixing space, mean values were well within it in both autumn (d13C

5 223.20% 6 0.069%; d15N 5 4.77% 6 0.46%) and spring (d13C 5 223.07% 6 0.26%; d15N 5 3.13% 6 0.39%). We removed values for

berries from the linear mixing model because berry seeds were not observed in feces.

TABLE 3.—Percent occurrence of fungal spores in feces of northern flying squirrels (Glaucomys sabrinus griseifrons) on northern Prince of

Wales Island, Alaska. Feces were collected from trapped individuals during spring 2003–2005 and autumn 2004–2005.

Fungus

% occurrence

Spring 2003 Spring 2004 Spring 2005 Spring X̄ (SE) Autumn 2004 Autumn 2005 Autumn X̄ (SE)

Boletalesa 0 0 0 0.0 (0.0) 50 29 39.5 (10.5)

Cortinariusa 0 0 8 2.7 (2.7) 75 24 49.5 (25.5)

Elaphomyces 91 77 83 83.7 (4.1) 35 53 44.0 (9.0)

Gautieria 13 0 0 4.3 (4.3) 0 0 0.0 (0.0)

Gymnomyces 26 0 8 11.3 (7.7) 75 53 64.0 (11.0)

Hydnotria 74 24 8 35.3 (19.9) 0 0 0.0 (0.0)

Hymenogaster 0 0 0 0.0 (0.0) 35 29 32.0 (3.0)

Hysterangium 0 12 0 4.0 (4.0) 5 0 2.5 (2.5)

Octavianina 30 6 17 17.7 (6.9) 85 59 72.0 (13.0)

Rhizopogon 0 6 0 2.0 (2.0) 15 29 22.0 (7.0)

Sarcosphaera 0 0 0 0.0 (0.0) 15 6 10.5 (4.5)

Tubers 9 0 0 3.0 (3.0) 0 0 0.0 (0.0)

a Epigeous fungi.
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vegetation, which was equally consumed in both seasons,

followed by epigeous fungi, which were largely consumed in

autumn (Table 4). Soil macroinvertebrates, specifically wing

parts, also were present, although infrequently, in feces from

both seasons (Table 4).

Food availability.—In general, availability of potential food

items for flying squirrels did not differ (P . 0.05) seasonally,

except for hemlock and spruce seeds and Vaccinium spp.

(Table 5), which were approximately 2.5 (X̄ 6 SE, 261 6 22

cones in spring versus 104 6 29 cones in autumn) and 2.9 (13

6 4 cones in spring versus 5 6 2 cones in autumn) times more

available during spring in old-growth for hemlock and spruce

cones, respectively, whereas Vaccinium was more available in

autumn (526.97 6 75.35 cm in spring versus 714.13 6

95.20 cm in autumn; Table 5). Transects in old-growth forest

stands had 30 times more spruce cones than managed habitats

(Table 5). Hemlock cones were 20 times more abundant in

old-growth compared with 2nd-growth stands and 9 times

more abundant than in clear-cuts (Table 5). Similarly,

Vaccinium spp. were 2–3 times more common in old-growth

(Table 5) than in managed habitats (Table 5). We found no

truffles in 2nd-growth stands; truffles were about 2.5 times

more abundant in old-growth plots than in clear-cuts (P 5

0.034). Similarly, there was twice as much lichen in old-

growth stands than in clear-cuts and 9 times more than in 2nd-

growth stands (Table 5; P 5 0.002). We found no difference

(P . 0.05) in the abundance of epigeous fungi among habitats

(Table 5). In all surveys of truffles we identified only the

genus Elaphomyces, which in some of the 1-m2 plots in old-

growth forest reached a total biomass of 32 g.

We collected .3,700 soil macroinvertebrate specimens,

which were identified to 13 taxa: Acari, Araneida, Coleoptera,

Collembola, Diplopoda, Diptera, Gastropoda, Hymenoptera,

Isopoda, Isoptera, Oligochaeta, Opiliones, and Scolopendro-

morpha. Acarina and Coleoptera were the most abundant

orders, comprising .33% and .23% of macroinvertebrates

sampled, respectively. Traps along transects in 2nd-growth

stands had significantly more soil macroinvertebrates than the

other 2 habitats; clear-cuts had the fewest invertebrates (F2,675

5 10.225, P 5 0.006; Fig. 3).

After excluding the small (Araneidae, Collembola, Acari,

Diptera, and Opiliones) and medium-sized (Buprestidae

[Coleoptera], Curculionidae, Isoptera, Gastropoda, and Hy-

menoptera) invertebrates, analyses revealed that of the large

invertebrates (Araneidae [spiders], Chilopoda [centipede],

Scaphinotus angusticollis and Pterostichus spp. [Coleoptera],

TABLE 4.—Percent occurrence of food items in feces of northern flying squirrels (Glaucomys sabrinus griseifrons) from old-growth Sitka

spruce (Picea sitchensis)–western hemlock (Tsuga heterophylla) stands on northern Prince of Wales Island (POW), Alaska. These data are

compared with diet estimates from fecal analysis of flying squirrels from other portions of Prince of Wales Island from Pyare et al. (2002). n 5

sample size of unique squirrels.

Season

% occurrence
No. truffle

generan Truffles Lichens Vegetation Epigeous fungi Invertebrates

Northern POW Spring 2003 23 96 100 91 0 0 7

Spring 2004 17 82 100 77 0 12 5

Spring 2005 12 83 100 92 8 0 5

Spring X̄ (SE) 87.0 (4.5) 100.0 (0.0) 86.7 (4.8) 2.7 (2.7) 4.0 (4.0) 5.7 (0.7)

Autumn 2004 20 95 90 70 70 0 8

Autumn 2005 17 82 94 82 53 12 7

Autumn X̄ (SE) 88.5 (6.5) 92.0 (2.0) 76.0 (6.0) 61.5 (8.5) 6.0 (6.0) 7.5 (0.5)

Pyare et al. 2002 Summer–autumn 150 50.4 27.0 55.2 36.1 4.4 3.0

TABLE 5.—Abundance, measured as biomass (g), count (no.), or length of transect intersected (cm) of potential food items from spring (2004–

2005) and autumn (2005) surveys on Prince of Wales Island, Southeast Alaska. In each of 15 stands per habitat we conducted 3 surveys for a

total of 135 line-transects. We report P-values (statistically significant in bold) from a nested ANOVA for comparing availability of food

between stands and differences in availability between spring and autumn.

Food item

Habitat (X̄ 6 SE)

Clear-cut Second-growth Old-growth
Comparison

Spring Autumn Spring Autumn Spring Autumn

Between-stands

P-value

Between-sea-

sons P-value

Epigeous fungi (cm) 0.83 6 0.46 0.33 6 0.23 0.20 6 0.20 1.13 6 0.81 0.23 6 0.18 2.53 6 1.43 0.46 0.42

Truffles (g) 0.77 6 0.57 0.55 6 0.36 0 0 1.95 6 0.61 1.03 6 0.77 0.00 0.28

Hemlock cones (no.) 21.55 6 13.70 11.57 6 4.32 3.21 6 1.73 20.55 6 11.87 261.25 6 22.07 103.98 6 28.94 0.01 0.00

Spruce cones (no.) 0.35 6 0.13 0.12 6 0.06 0.27 6 0.12 0.32 6 0.12 12.93 6 3.84 4.47 6 2.15 0.03 0.046

Lichens (cm) 1.10 6 0.68 2.47 6 1.55 0.50 6 0.50 0 3.83 6 1.53 1.13 6 0.84 0.03 0.38

Vaccinium (cm) 198.50 6 42.60 249.87 6 59.57 511.50 6 18.63 72.2 6 18.63 526.97 6 75.97 714.13 6 95.20 0.00 0.04

New spruce

growth (cm) 15.80 6 8.92 0 7.67 6 5.46 0 13.33 6 13.33 0 0.85 0.07
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Diplopoda [e.g., a small, black millipede and Harpaphe
hadeniana], and Oligochaeta [earthworms]), only S. angusti-
collis and Pterostichus spp. were more abundant in 2nd-

growth stands than in other habitats (F2,673 5 9.539, P 5

0.008, and F2,673 5 9.446, P 5 0.008, respectively; Fig. 4).

Oligochaetes were more available in clear-cuts (F2,673 5

9.266, P 5 0.008; Fig. 4). No consistent seasonal differences

in the number of large soil macroinvertebrates were found

among the 3 habitat types (Fig. 4).

DISCUSSION

Both stable isotope and fecal analyses revealed that arboreal

lichens, conifer seeds, and fungal sporocarps were the main

dietary items consumed and assimilated by G. sabrinus on

POW. Both analyses also highlighted the increased impor-

tance of fungi, especially epigeous fungi, during autumn, and

lichens during spring. Similarly, both methods revealed that

vegetation, likely in the form of conifer seeds, and soil

macroinvertebrates were consumed by squirrels, whereas

berries were not. Finally, using both methods we did not

detect any differences in diet between the sexes. The main

disagreement between the 2 methods was the contribution and

importance of truffles. Although examination of stable isotope

data suggested that squirrels assimilated few nutrients from

truffles (especially N), truffle spores were among the most

frequent diet items in feces. It is possible that squirrels

frequently consumed truffles but little N was assimilated from

this food source.

The discrepancy between results from stable isotopes and

fecal analyses potentially could be explained by our use of

data only for Elaphomyces spp. to represent the isotopic values

of all truffles. It is possible that other truffles consumed by G.
s. griseifrons have different isotopic signatures and that their

inclusion would have changed our results. Several animals

during both spring and autumn had values that were not

included in the isotopic mixing space. Although such

misalignment of consumer and diet items could result from

effects of habitat use (E. A. Flaherty and M. Ben-David, pers.

obs.), diet quality, elemental routing, tissue-turnover rates, and

variation in the length of the assimilation period (Karasov and

Martinez del Rio 2007), this misalignment most commonly

occurs when potential foods are excluded (Newsome et al.

2007). Nonetheless, because relatively few animals were

misaligned with the mixing space, and overall the isotopic

signatures of both mushrooms and truffles were similar

(especially in 15N), it is not likely that our results would have

changed dramatically had we sampled other truffles. It is

important to note here that we did not analyze other truffle

species for stable isotopes because we encountered none

during our surveys.

Alternatively, it is possible that although G. sabrinus
consumes large quantities of truffles, when these squirrels

are limited to Elaphomyces spp. they may assimilate little of

this resource. Past research indicates that movements,

population density (Gomez et al. 2005; Pyare and Longland

2002; Waters and Zabel 1995), survival, and recruitment

(Lehmkuhl et al. 2006) of G. sabrinus are correlated directly

FIG. 3.—Mean (6 SE) number of soil macroinvertebrates captured

in pitfall traps along 135 transects on Prince of Wales Island, Alaska,

in the 3 habitat types: clear-cut, 2nd-growth, and old-growth. The 6

major groups of invertebrates (.5 individual invertebrates were

sampled) are shown.

FIG. 4.—Mean (6 SE) number of 6 large (.10 mm in body length)

soil macroinvertebrates sampled in pitfall traps on Prince of Wales

Island, Alaska, in the 3 habitat types clear-cut, 2nd-growth, and old-

growth, in the spring (black bars) and the autumn (gray bars). These

represent the most likely invertebrates consumed by northern flying

squirrels (Glaucomys sabrinus griseifrons).
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with availability of truffles. However, when consumed as the

sole food source, Elaphomyces has minimal nutritional value

for G. sabrinus (Cork and Kenagy 1989), other small

mammals are unable to maintain body mass when consuming

this resource (Cork and Kenagy 1989; Dubay et al. 2008), and

in areas and seasons with high species richness, G. sabrinus
will not consume Elaphomyces (Meyer et al. 2005). Thus, the

dominance of Elaphomyces in our sampling plots and in the

feces suggests that flying squirrels on POW likely assimilated

few nutrients from the majority of truffles they consumed.

Moreover, past work indicates that most of the N found in

truffles is indigestible by flying squirrels and other small

mammals (Claridge and Cork 1994; Claridge et al. 1999; Cork

and Kenagy 1989); other nutrients, such as potassium,

phosphorous, and vitamin D, that occur in Elaphomyces may

explain the preference for this diet item (Dubay et al. 2008).

Similarly, although low in N, fiber, lipids, and other important

nutrients (Dubay et al. 2008), arboreal lichens are high in

calcium (Ca) and have high digestibility (Robbins 1987). It is

possible that flying squirrels consume high amounts of lichen

to maintain Ca uptake and include other diet item such as

conifer seeds, invertebrates, and epigeous fungi to mitigate the

low availability of N and other nutrients in truffles and

lichens; mixed diets are common among mycophagist

mammals (McIlwee and Johnson 1998; Orrock and Pagels

2002).

Our dietary estimates from both fecal and isotope analyses

contrast with some findings of previous research in Southeast

Alaska (Pyare et al. 2002) and are more similar to diets

reported for G. sabrinus in other parts of its range (Smith

2007), where typically 100% of fecal samples contained

fungal spores (Rosentreter et al. 1997; Wheatley 2007). Pyare

et al. (2002) identified truffle spores in 50.4% of their autumn

samples compared to �82% in this study. Furthermore, our

analysis indicated that flying squirrel diets in the northern part

of POW contained a greater diversity of truffle genera than

reported by Pyare et al. (2002). They identified only 3 genera

(mostly Elaphomyces, and some Hymenogaster and Scleroga-
ster), whereas we identified a minimum of 5–8 genera.

Similarly, whereas both stable isotopes and fecal analyses

identified lichens as an important food source, Pyare et al.

(2002) reported that only 27% of their samples contained

lichens. In addition, Pyare et al. (2002) encountered relatively

few epigeous fungal spores in their sample of squirrel feces,

whereas we estimated this to be an important resource for

flying squirrels in autumn. It is possible that the differences in

dietary estimates between the 2 studies on POW stem from

timing of sampling; Pyare et al. (2002) collected their samples

mainly during summer, whereas we sampled squirrels during

spring and autumn. Future studies that include all seasons may

better elucidate the factors responsible for the divergent

dietary estimates of these 2 studies.

The higher variation in diet among individual squirrels

during spring corresponded with higher consumption of

conifer seeds. In conifers a new crop of cones is produced

in summer (Koenig and Knops 2000), and although flying

squirrels rarely harvest and cache cones in middens like red

squirrels (Tamiasciurus hudsonicus—Mowery and Zasada

1984), they likely are able to reach these newly developing

cones in autumn. Therefore, it is surprising that conifer seeds

were more prominent in spring than autumn diets. We suspect

that the higher consumption of conifer seeds during spring is a

function of lower availability of truffles, other than Elapho-
myces, during this time of year. Although we did not encounter

any such truffles in our plots in either spring or autumn, the

higher occurrence of Gymnomyces, Hymenogaster, Octavia-
nina, Rhizopogon, and Sarcosphaera in feces during autumn

suggests that they were more abundant at that time of year.

Given this observation and equal abundance of mushrooms

during spring and autumn, it is surprising that squirrels

consumed more mushrooms during autumn. Whether autumn

mushrooms provide better nutritional value for flying squirrels

than those developing in spring is unknown and merits further

investigation.

Our dietary data are based on samples collected from

animals captured in old-growth stands only. It is possible that

we would have drawn different conclusions had we sampled

flying squirrels in 2nd-growth stands. Past work has indicated

that 2nd-growth habitats can support populations of flying

squirrels in other parts of their range (Ransome et al. 2004;

Ransome and Sullivan 2003; Wheatley et al. 2005). Nonethe-

less, Smith (2007) cautioned that population density may not

be a reliable indicator of habitat quality. Results from a study

on POW comparing flying squirrel use of peatland–mixed

conifer to old-growth habitats initially indicated that the

number of reproductive females was greater in peatland–

mixed conifer stands than in old-growth stands and that

recruitment was only slightly lower in the former (Smith and

Nichols 2003). However, later population modeling indicated

that peatland-mixed conifer stands actually functioned as

population sinks (Smith and Person 2007). Moreover,

perceptual range and fine-scale movement data (Flaherty et

al. 2008), energetics measurements related to the costs of

running versus gliding (E. A. Flaherty, pers. obs.), telemetry

data, and dispersal modeling (S. Pyare and W. P. Smith, pers.

obs.) indicate that northern flying squirrels on POW actively

avoid 2nd-growth stands.

Our results suggest low availability of potentially critical

food items in managed habitats, which may constrain dispersal

of G. sabrinus across clear-cut and 2nd-growth habitats.

Conifer seeds, truffles, and Vaccinium spp. were all signifi-

cantly more abundant in old-growth habitat. Furthermore, the

hemlock and spruce cones we sampled in clear-cuts were

likely remnants of the once present old-growth stand and

consequently are likely only available for a short time

postlogging. Similarly, although we encountered truffles in

clear-cut plots, it is unclear how available this resource is in

young regenerating stands, because we found truffles only

where the roots of tree stumps had not completely died; we

recorded no truffles in clear-cuts older than 2–3 years

postharvest. Except for 1 sporocarp uncovered while digging

a pitfall trap in a .40-year-old stand, we found no truffles in
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2nd-growth habitat. Carey et al. (2002) suggested that harvest

plans that leave legacy (i.e., old-growth trees) in managed

stands will increase the persistence of truffles. This has not

been the prescribed management practice in more than 4

decades of logging POW (United States Department of

Agriculture Forest Service 1997), nor is it clear if legacy

retention will achieve this objective because of the vulnera-

bility of leave trees to windthrow (Concannon 1995). We do

acknowledge that our truffle survey technique likely was

inadequate to detect the majority of genera because we were

only able to uncover 1 of 8 consumed by the squirrels.

Nonetheless, the low occurrence of 5 of these genera in the

feces of squirrels (especially in spring) suggests that they were

rare even in old-growth habitats. Future work should consider

using a trained, truffle-detecting dog for line-transect surveys

or increasing survey intensity.

Availability of mushrooms and lichens, both important diet

items during autumn, was similar in old-growth and clear-cut

stands. Nonetheless, both were lower in 2nd-growth habitats

that comprise the majority of the managed landscape on POW

because of declining frequency of timber harvest in recent

years. That lichens were less available in 2nd-growth stands

suggests that the lichens found in clear-cuts likely remained

from felled trees during the harvest rather than having been

blown in from adjacent old-growth stands. Lichens surveyed

in clear-cuts were desiccated and appeared older than those

surveyed in old growth. Consequently, this resource (like

conifer cones) will be available only during a brief period after

logging.

Conversely, soil macroinvertebrates, especially those larger

than 10 mm, were more abundant in managed habitats than in

old-growth stands. Soil moisture is presumably lower in clear-

cuts and some 2nd-growth habitats because of the absence of a

developed canopy, which affects decomposition, evaporation,

and other soil characteristics that influence habitat use by soil

invertebrates (Niemelä 1997). Given our relatively high

estimates of proportion of soil macroinvertebrates from stable

isotope analyses during both spring and autumn, it appears as

though flying squirrels dispersing through the managed matrix

potentially could replenish depleted energy stores by consum-

ing invertebrates. However, examination of feces indicated

that none of the most abundant invertebrates actually were

consumed by flying squirrels. Rather, invertebrate remains in

feces were small wing parts likely from flies that were

consumed coincidentally when flying squirrels fed on

mushrooms. Thus, the high abundance of soil macroinverte-

brates in managed habitats likely would not improve the

foraging success of dispersing flying squirrels.

The high proportion of 2nd-growth stands in the managed

matrix on POW, the lack of truffles in those stands and their

limited temporal availability in clear-cuts, and the relatively

low availability of other alternative foods likely will result in

low encounter rates by dispersing squirrels. Low encounter

rates with food resources will cause squirrels to commit

additional time to foraging in this high-cost environment. The

extent to which increased foraging time directly influences

dispersal success is unclear, but increasing search time will

presumably increase predation risk because flying squirrels

could not launch into evasive glides in clear-cut and 2nd-

growth stands that lack tall trees while increasing energy

expenditure in unfamiliar and structurally deficient habitats

(E. A. Flaherty, pers. obs.). Further work is needed to explore

the relationship between predation risk and stand age in

managed forests.

In conclusion, despite the varied diet of G. sabrinus in

Southeast Alaska, availability of potential foods is low in

managed habitats compared to old-growth forest. Therefore,

continued loss of such stands from timber harvest might cause

further decline in overall food availability across managed

landscapes. Food resources, which were significantly lower in

managed stands on POW, are among the most significant

factors limiting populations of G. sabrinus (Lehmkuhl et al.

2006; Ransome and Sullivan 1997; Smith 2007) and affect

reproduction, survival, recruitment, space use, habitat core-use

areas, and home-range size (Holloway 2006; Menzel et al.

2004). Because natal and adult breeding dispersal in managed

rain forests on POW require that flying squirrels move long

distances (Smith et al., in press), these animals likely will

encounter clear-cut and 2nd-growth stands. Although these

high-cost habitats might not completely eliminate flying

squirrel dispersal, the substantially lower permeability of

managed stands (Smith et al., in press) could significantly

reduce survival and dispersal success (Ransome and Sullivan

2003).

Low use of early seral habitats by flying squirrels could

reduce the dissemination of fungal spores into managed stands

(Pyare and Longland 2001). Although low soil moisture

(Harvey et al. 1979; Luoma et al. 1991) and decreased

abundance of coarse woody debris are responsible for the low

production of truffles in the managed stands (Amaranthus et

al. 1994; Clarkson and Mills 1994), lower inoculation rates of

tree roots (Pyare and Longland 2001) could add to the slower

rates of fungal establishment in early seral forests. Because the

small mammal fauna of Southeast Alaska is depauperate

(MacDonald and Cook 1996), few alternative mycophagists

are available to serve as spore vectors. Thus, the persistence of

flying squirrels in managed landscapes may be necessary to

ensure the timely inoculation and reestablishment of colonies

of ectomycorrhizal fungi that promote forest development

(Carey et al. 1999). Arguably, ensuring the proliferation of

mycorrhizal fungi in managed landscapes is important for

regenerating timber resources. Nevertheless, without adequate

food resources, the ability of flying squirrels to replenish

energy stores while dispersing across 2nd-growth and clear-

cut habitats may be limited, and populations in managed

landscapes are at risk of becoming isolated. Without dispersal,

the persistence of G. sabrinus in managed landscapes is

uncertain (Smith and Person 2007).
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Abstract 

We surveyed cove hardwood stands aged 15, 25, 50, and 285 years following clearcutting in the southern Appalachian 
Mountains of northem Georgia to assess the effects of stand age and stand habitat characteristics on salamander communities 
using drift-fence array and pitfall methodologies from May 1994 to April 1995. Over a 60,060 pitfall trapnight effort, we 
collected 3937 salamanders represented by Desmognathus aeneus, Desmognathus mtznticola, Desmognathus ocoee, 
Ilesmognathus quadramaculatus, Eurycea bislineata, Gyrinophilus porphyriticus, Pseudotriton ruber, Pkthodon glutinosus, 
Plethodon serratus, and Notophtlaalmus viridescens. Analysis of covariance with pitfall array to stream distance as the 
covariate showed that salamander species richness and diversity measures and numbers of Desmognathus aeneus and 
Desmognathus ocoee were highest in stands 285 years. Eutyeea bislineata and Plethodon glutinosus were more abundant in 
stands 250 years old than in stands 285 years. Within cove hardwood stands, species richness and diversity measures and 
relative abundances of Desmogmthus spp. and Gyrinophilus porphyriticus were negatively correlated with distance to stream. 
Species richness and diversity were positively correlated to mounts of emergent rock. Species richness, diversity and relative 
abundances of Desmognathus spp. were correlated with basal area within stands and extent of connected mesic, cove 
hardwood habitat and amount of cove habitat within 1 km radius among stands. Eurycea bislineata was negatively correlated 
with landfom index, a measure of surrounding landfom sheltering, and Plethodon glutinasus was positively correlated with 
elevation in cove hardwood stands. Our research indicates stand age is an important factor in explaining the abundance and 
community composition of salamanders in southern Appalachian cove hardwood communities. Because southern Appalachian 
woodland salamander communities are slow to recover and are substantially changed following disturbances such as 
clearcutting, populations in small, isolated cove hardwood stands might be more vulnerable to extirpation or may require 
longer recovery times than those in larger coves. Managers may need to assess habilat features such as cove extent and habitat 
connectivity to minimize impacts on these taxa by forest management activities in southern Appalachian cove hardwood 
communities. Published by Elsevier Science B.V. 

Ke3words: Clearcutting; Cove hardwoods; Habitat connectivity; Salamanders; Southern Appalachians 

* Corresponding author. TeI.: + 1-304-478-2000; 
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1. Introduction 

Salamander communities constitute an important 
ecological component of Appalachian ecosystems, 
often exceeding the combined biomass of other 
te~estriaf vertebrates (Burlon and Likens, 1975; 

0378-1 127/0U$ - see front matter. Published by Elsevier Science B.V. 
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Hairston, 1987). In the southeastern United Slates, 
species diversity of wodland salamanders (family: 
Plethodontidae) reaches its zenith in the southern 
Appalachians (Martof et al., 1980, Wilson, 1995). 
Accordingly, recent attention has fwused on the 
negative impact of clearcutting on woodland sala- 
manders within the region (Ash, 1988, 1997; Petrmka 
et al,, 1993, 1994; Harpole and Haas, 1999). In the 
sho~- tem,  clearcutting in the southern Appalachians 
prduces habitat conditions unfavorable for salaman- 
ders by increasing forest floor temprtllures (Johnson 
et at., 1985) and reducing leaf litter depth and 
microsite moisture (Ash, 1995). Recovery times for 
salamander communities following clearcutting may 
vary depending upon salamander community compo- 
sition prior to timber harvest (Ash, 1988) and upon site 
characteristics such as elevation, aspect, and plant 
community (Diller and Wallace, 1994; Ford et a]., 
1999; Harper and Guynn, 1999). Petranka et al. (1 993, 
1994) suggest that salamander communities require 
50-80 years for full recovery to pre-harvest conditions 
following clearcutting in the southern Appalachians. 
Conversely, others believe that recovery times might 
be much less in the southern Appalachians (Ash, 1997; 
Harper and Guynn, 1999). Central to the issue of 
salamander recovery following timber harvest are both 
the short-term and long-term fate of on-site salaman- 
ders, and if salamanders on-site or in nearby 
surrounding forests provide the recolonizing source 
as clearcuts mature. 

Questions regarding sampling methodologies and 
study site selection have plagued researchers studying 
salamander response to timber harvest in the southern 
Appalachians (Ash and Bruce, 1994; DeMaynadier 
and Hunter, 1995; Ash and Pollock, 1999; Petranka, 
1999). For example, proximity to water is an important 
factor explaining salammder community assemblages 
in the southern Appalachians (Bruce, 1996) and may 
serve as a strong confounding factor in examining 
stand age to salamander community relationships, 
pmicularly fbr those in the genus L>esmogmthus. 
Also, timing of sampling effort throughout the year 
can have profound influences on study results, as 
above-ground tenestrial activity patterns vary from 
species to species (Petranka, 1998). 

To better assess the relationship of clearcutting 
to salamanders in the southern Appalachims, we 
initiated a study of salamander abundance among a 

well-matched, ckano-sequence of cove hiudwood 
sands that were similar in most characteristics except 
stand age. Additionally, we sought to examine rnicro- 
and stand-level habitat factors both dependent and 
independent of stand age that might be important to 
salamanders in the southem Appalachians. 

2. Methods 

In the winter of 1994, we selected 13 cove 
hardwood stands for study in the Brasstown Ranger 
District (BRD) of the Chattahooch~ National Forest, 
Stands were located in the Cooper Creek watershed 
(seven stands), the Miller Cove watershed (two stands) 
and the Wolf Creek watershed (three stands) in Union 
County, Georgia and the Hiwassee River headwaters 
(one stand) in Towns County, Georgia using US Forest 
Service Continuous Inventory and Stand Condition 
(CISC) data followed by site visits and assessments. 
To control for variables other than stand age that might 
influence salamander communities, criteria used for 
site selection included: forest cover type recorded as 
yellow-poplar (Liricldendron tulipgera L.) or yellow 
poplar-nortbern red oak (Quercus rubra L.)-white oak 
(Q. alba L.), elevations between 700 and 1200 m, 
northerly site exposure, presence of a concave cove 
landfom, and absence of a dense ericaceous shrub 
layer. We also chose to wholly contain our study 
within the BRD for logistic reasons and to minimize 
potential differences in woodland salamander assem- 
blages that can occur within small geographic areas in 
the southern Appalachians. Actual study site eleva- 
tions ranged from 730 to 1030 m, 

In addition to yellow-poplar and northern red oak, 
other common overstory species were yellow buckeye 
(Aesculus octandra Marshall), basswood (Tilia amer- 
ieana L.), and white ash (Frainus amekana L.). A 
rich herbaceous understory was present at each site 
(Ford et al., 2000). Soils at each site were deep, well 
drained stony loams with a deep humus layer in the 
Porter and Saunook Series fUrhmon, 1989; Cabe, 
1 995). 

We constructed five drift-fence mays with pitfall 
traps in h e  each of these stands aged approximately 
15, 25, and 50 years and in the four stands 285 years 
old. Stands 525 years were regenerated following 
clearcutting under US Forest Service stewardship. 
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Exact history of older stands is unknown, but the 
dominance of yellow-poplar, a shade-intolerant spe- 
cies, in an even-aged stmcture with little or no large 
downed woody debfis, suggests the 50-year-old sands 
originated following clearcutting or heavy selection 
harvests. Stands 285 years originated after the 
widespread logging of the southern Appalachians 
that occurred at the turn of the century (Smith and 
Linnartz, 1980; Johnson et al., 1993). Portions of two 
of the older stands in our study, on the Cooper Creek 
Scenic Area and the Sosebee Cove Scenic area were 
never logged (Wentworth, personal communication; 
Duffy and Meier, 1992). Although cove hardwood 
communities are abundant in the southern Appala- 
chians and the BRD, it is importmt to note that three 
factors limited our cove hardwood stand choices. 
Potential cove hardwood study areas identified in 
CISC data that were within designated wilderness 
areas were administratively excluded frorn this study. 
Site visits and assessments often revealed errors in 
CISC overstory type coding or the presence of dense 
ericaceous shrub growth usually indicating a lower 
slope position and a more ripasian-influenced wood- 
land. Lastly, 50-year-old cove hardwood stands that 
originated in the 1940s were relatively uncommon on 
the BRD, as were cove hardwood stands < 15 years of 
age. 

In each of 13 stands, we installed five drift-fence 
arrays. Drift-fence mays with pitfalls are effective 
methodologies for sampling herpetofauna (Gibbons 
and Semlitsch, 1982; Mitchell et al., 1997) and shrews 
(Gruand and Sheppard, 1994), another facet of this 
study reported elsewhere (Ford et al., 1997). Array 1 
was placed in the center or ravine of the cove, with 
mays 2, 3, 4, and 5 installed 50 m away in SE, SW, 

and NEZ directions, respectively, frorn the center 
t of array 1 (Fig. 1). Because the distance between 

mays was large relative to the limited movements and 
small home ranges of many woodland salamanders 
(Madison, 1969; Holomuzki, 1982; Mathis, 199 1 ; 
Petranka et al., 1993, 1994; Petranka, 1998), we 
considered each array to be an independent sampling 
unit. Individual mays consisted of four, 3 m 
long x 61 crn high aluminum flashing 
in an X (Fig. 1). The bottom of the flashing was buried 
approximately 20 crn below the soil surface. One 
pitfall was placed on either side of the flashing near 

end, and one in each of the four intersections 

Fig. 1 .  Typical pitfall drift-fence may design for salamander 
collection in cove hardwood stands on the Chattahooehee National 
Forest, Georgia, 1994-1995. Inset depicts pitfall placement at 
individual drift-fence may (see text for complete description). 

at the center of the array (Fig. 1). Pitfall traps were 
plastic 946 cm3 drink cups buried flush with the 
ground and against the sides of the flashing. Each 
pitfall cup was filled one-third its volume with 10% 
formalin to preserve specimens. Trapping was con- 
ducted for 7 days at the beginning of each monthly 
lunar cycle from May 1994 to April 1995, except 
Febmary 1995 when harsh winter weather unchar- 
acteristic of north Georgia precluded access to the 
study sites. All collection periods experienced at least 
one precipitation event over their duration. Following 
each collection period, salamanders were identified to 
species and reposited at the University of Georgia 
Museum of Natural History. Nomenclature follows 
Petranka (1 998). 

Because factors that influence salamander distribu- 
tion and abundance vary among stands imespeetive of 
overstory age, we measured nine micro-habitat vari- 
ables at drift-fence mays and calculated seven stand- 
level variables and topographic metrics for each study 
site. Within 10 m circular plots around each drift- 
fence array, we measured litter depth ((LITTER), loose 
soil depth (SOZL), percent canopy cover (CANOPY), 
amount and types of coarse woody debris, and amount 
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of emergent rock (ROCK). LITTER and SOIL were 
measured at one randomly chosen point in each 
quadrant of each circular plot. L m E R  was record& 
by bmshing away leaves in a small area and measur- 
ing the height of the litter to a discernible O layer. 
SOIL was measured as the dishnce a piece of con- 
stmction rebar could be driven in the soil until rock 
was encountered. CANOPY was calculated using a 
spherical densiometer. Over each plot, total coarse 
woody debris area (CWD) was calculated by tallying 
length and pros&ate height at midpoint of all down 
woody debris >10cm diameter. Coarse woody 
debris 260 cm prosmte height was considered large 
and a separate tally of that class was made as well 
(LCCVlrD). Each piece of coarse woody debris coun- 
ted was assessed for decay class (DECAY) follow- 
ing criteria set by Hardt (1993) for the southern 
Appalachians. Area of emergent rock (ROCK) per plot 
was calculated by measuring emergent rock length 
and width above the soil surface. The distance from 
each array to the nearest seep, spring, creek, or other 
water source (DISTANCE) was measured to the 
nearest meter. 

Parameters measured across each stand included 
elevation (ELEV), landfom index (LFI), plot surface 
shape (PSS), aspect (ASPECT), cove area surrounding 
each study site (COVIEm), total cove area within 
1 km of each study site (COVEm), and stand basal 
area (BASAL). With the exception of BASAL, these 
variables were computed from digital terrain models 
using analytical procedures in ARC/INFO G R L D ~  
geographic information software. LFI indicates the 
degree to which a site is sheltered by smounding 
landforms; lower values (50.15) reflect a less-sheltered 
position (McN;db, 1993). The PSS characterizes the 
degree of convexity or concavity by comparing the 
elevation at the center of each study site to elevations 
of the immediate surrounding landscape (approxi- 
mately 1 ha). Values typically range from - 1.0 (highly 
concave) to 1.0 (highly convex). Aspect values were 
linearized using the fomula (1 - cosine (aspect in 
degrees)) $- (1 - sine (aspect in degrees)) so that 
nort;heasterly aspects had the lowest values and south- 
wested y aspects the highest. COVEHA was defined as 
the area with an LFI > 0.24 (bighly sheltered sites), or 
0.25 > LFI > 0.15 and PSS < -0.025 (less sheller&, 
but concave sites) at each study stand. meshold values 
for LFI and PSS were d e t e ~ n e d  based on prior 

experience of one of the authors (Odom, 1996) and 
others (McNab, 1993, 1996) in using these indices to 
quantify topogfapby in the southern Appalachians. To 
compuk COVE=, the total area defined as "cove" 
within 1 km of each study site was summed using 
proximity and overlay functions in ~ r c ~ i e w ~  spatial 
Analyst, BASAL was calculated using a 10-factor 
handheld prism (mZ ha-') at each drift-fence may 
and averaged across each stand (Grosenbaugh, 1952), 
as it is not a pmicularly meaningful fine-scaled, micro- 
habiitat variable. 

Salmander collections were summed by species 
across all months. Species richness and Shannon's 
diversity (H  [log,]) was calculated for each drift-fence 
array (Pielou, 1966). Although Shannon's diversity 
calculations often are biased conservatively with 
actual H" less than observed If (Kempton, 1979), 
these measures are used widely in terrestrial ecology 
research (Magurran, 1988). To test for differences 
among stand age and to account for the influence of the 
proximity of water to drift-fence arrays, we analyzed 
salamander collection data by species richness and 
diversity, and by species abundance values using 
analysis of covariance (ANCOVA) (Steel and Torrie, 
1980). The experiment-wide error rate was set at 
P = 0.05 and, using Bonferroni's correction method, 
P -- 0.003 was used for individual tests (Sokal and 
Rohlf, 1995). Mean values of species richness and 
diversity and species abundance values were reported 
using treatment means adjusted for the covariate 
DISTANCE (SAS, 1991). To address questions of 
salamander recovery following timber harvest, we 
used orthogonal contrasts of treatment means to test 
for differences between young-aged stands (1 5- and 
25-year-old stands) that originated following modern 
clemcutting versus the oldest stands (285 years), 
between young-aged stands and 50-year-old stands, 
and between 50- and 285-year-old stands (Montgom- 
ery, 1991 ; SAS, 199 1). To assess the importance of 
micro-habitat variables on salamanders, Spe 
rank correlations were performed between richness 
and diversity values and species colteetion values 
with drift-fence micro-habitat variables. To assess the 
impmnce of stand-level landscape variables on 
salamander relative abundance, Speaman" rank 
correlations were perfomed between richness, diver- 
sity, and species collection values averaged across 
each stand with topographic metrics. 
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3. Results viridescens (Raf.). Stand age effects were significant 
and distance from drift-fence mays to water was a 
significant covariate for species richness and diversity 
measures (Table 1). Species richness and diversity 
measures were greater in 485-yeas-old stands than in 
young-aged stands or 50-year-old stands (Table 2). 
Desmgnathus gudramculatus, Pseudotriton ruber, 
Plethdon serrakus, and Notoplzthalmus viridescens 
collections were excluded from individual ANCOVA 
tests due to low overall collection nurnbers. Stand age 
effects were significant for all other species except 

During the (SO,OfjO pitfall trapnight effort, we 
collected 3937 salamanders. 'This included 184 Des- 
mognathus aeneus (Brown and Bishop), 59 Desmg- 
tzathus monticola (Dunn), 392 Desmgmtlzus ocoee 
(Nicholls), 2 1 Desnaognathus quadra 
brook), 626 Euryeea bislineata (Green), 45 Gyrino- 
philcls porphyriticus (Green), 17 Psedotn'ton ruber 
(Latreille), 2,556 Plethodon glutinosus (Green), 30 
Plethodon serratw Grobman, and 7 Notopfathalmus 

Table 1 
Analysis of covariance table for salamander species richness, Shannon's diversity, and s p i e s  relative abundance among cove hardwood 
stands 15, 25, 50, and 285 years of age for 60,060 pitfall trapnights on the Chattahoochee National Forest, Georgia, 1994-1995" 

Source d.f. SS MS F P 

Species richness 
AGE 
DISTANCE 
Error 

Shannon's diversity 
AGE 
DISTANCE 
Error 

Destmgnathus aeneus 
AGE 
DISTANCE 
Error 

Desmognathus monticola 
AGE 
DISTANCE 
Error 

Desmognathus ocoee 
AGE 
DISTANCE 
Error 

Eurycea bislineata 
AGE 
DISTANCE 
Error 

Gyrirzophilur. pophy~ticus 
AGE 
DISrnNCE 
Error 

Plethodon glutinosus 
AGE 
DISTANCE 
Error 

" Stand age = ACE and disunce from drift-fence array to water = DISTANCE. 
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Table 2 
Mean salamander species richness, Shannon's diversity, and s p i e s  reladve abunhce, and contrasls adjusted for disrance from drift-fence 
array to water covariate mong cove h a r d w d  stands 15, 25, 50, and 285 years of age for 60,M pitfall mpnights on the Chattahoochee 
National Forest, Georgia, 1994- 1 995a 

Stand age (years) 

S p i e s  richnessh 
Mem 
S.E. 

Shannon" diversityc 
Mean 
S.E. 

Desmgmtftus aalteusd 
Mean 
S.E. 

Desmgmthus mnticotae 
Mean 
S.E. 

Desmgnuthus ocoeef 
Mean 
S.E. 

Desmc?gnathus guadramaculahss& 
Mean 
S.E. 

Eurycea bistineatuh 
Mean 
S.E. 

(;yrinophilus porphyriticus" 
Mean 
S.E. 

Pseudotriton rube9 
Mean 
S.E. 

Piethodon glutinosufi 
Mean 
S.E. 

Pletftodon serratuse 
Mean 
S.E. 

Notophthalmus viridescen9 
Mean 
S.E. 

" Means are reported by total trapnights per individual array (924 pitfall trapnights) across individual stand ages (n .= 15 arrays each in 
stands aged 15, 25, and 50 years and n = 20). For contrasts, YG represents sands aged 15 and 25 years. 

Contrasts: YG < 85 ( P  == 0.00031, YG = 50 ( P  = 0.48921, 50 < 85 (P =; 0.0149). 
Conrrmsts: VC < 85 ( P  =; 0.000f), YG -- 50 ( P  = 0.2387), 50 < 85 (P  = 0.0001). 

* Conbasts: YG < 85 ( P  = 0.W7j, YG = 50 (P  = 0.0798), 50 < 85 ( P  =t 0.0001). 
" Contrasts: YG =. 85 ( P  = 0.55131, YG = 50 (P = 0.96221, 50 = 85 IP =. 0.5894). 
' Conlrasts: YG < 85 ( P  = 0.001 1 j, YG 3 50 (P =f 0.01961, 50 < 85 ( P  -. 0.0001). 

Excluded from ANCOVA (see text). 
Contrasts: VG > 85 ( P  = 0.0011, YG > 50 (P = O.W2), 50 = 85 ( P  = 0.3797). 

' Conbsts: YG = 85 (P = 0.17691, YG = 50 (P  =r 0.6902), 50 = 85 ( P  = 0.1344). 
Contrasts: YC > 85 ( P  = 0,038), YG < 50 (P  =r 0.0001), 50 = 85 (P = 0.0551). 
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Desmognathus mnticola and Gyrinoplailm pol-phyr- 
iticus (Table 1) .  Distance from drifi-fence mays to 
water was a significant covasiate for all s p i e s  tested 
except Plethodort glutirzosus (Table 1).  Relative 
abundances of flesmgrsathus aeneuf and Desmg- 
nathus ocoee were gfeater in 285-year-old stands than 
in either young-aged or 50-year-old shnds (Table 2). 
Relative abundances of Eu~ycea bislineata and Pletb- 
don glutinosus were greater in young-aged stands than 
in 285-yeas-old stands (Table 2). 

Species richness, species diversity, and the relative 
abundances of salmanders were not significantly 
correlated with most micro-habitat variables measured, 
notably LITTER, SOIL, 0 ,  LGCW, and DECAY. 
Abundances of Plethodora glutinosus and Plethodon 
sewatus were negatively correlated with CANOPY 
(Table 3). Species richness, species diversity and 
abundance of Desmgnathus ocoee were positively 
correlated with ROCK (Table 3). Species richness 
and diversity measures and collections of Desmgna- 
thus mnticola and Gyrinophilus porphyriticus were 
negatively correlated with DISTANCE (Table 3). 

Among stand-level habitat variables, ASPECT and 
PSS were not correlated with species richness and 
diversity or with the relative abundances of any indi- 
vidual species. Plethodon glutinosus was positively 
correlated with ELEV (Table 4). llesmognathus 

Table 3 
Spearman's correlation coefficients between micro-habitat vari- 
ables and species richness, Shannon's diversity, and total 
abundances of salamanders per pitfall drift-fence array (n f= 651, 
in cove hardwood stands 15, 25, 50, and 285 years of age on the 
Chattahoochee National Forest, Georgia, 1994-1995 (see text for 
variable descriptions) 

rs P 

CANOPY 
Plethodon glutinosm 
Plethodon senatus 

DISTMCE 
Species richness 
Shmnon's diversity 
Desmognathus mtzticola 
Gj~rinopkilus porphyriticus 

ROCK 
Species richness 
Shannon's diversity 
Desmgnathus ocoee 

Table 4 
Speman's correlation coefficients between stand-Ievel variables 
and s p i e s  richness, Shannon" diversity, and total abundanees of 
sdamanders in cove hardwood stands (pr = 131, 15, 25, 50, and 
285 years of age on the ChaLtahoochee Narjonal Forest, Georgia, 
1994-1 995 (see text for variable descriptions) 

BASAL 
Species richness 
Shannon" diversity 
Desmgmthas ocoee 
Desmogmthus q1~dramculatus 
Eu~ycea bislineata 

COVEHA 
Species richness 
Shannon" diversity 
Desmogmthus ocoee 
Desmognalhus quadramculatus 
Euqcea bixlineata 
Gyrinophilus porphyriticus 

COVEKM 
Species richness 
Shannon's diversity 
Desmogmthus monticola 
Desmognathus ocoee 
Desmognathus quadramculatus 
Gyrinophilus polphyriticus 

ELEV 
Plethodon glutinosrcs 

LFI 
Desmogreathus quadramaculatus 
Eurycea bislineata 

quadramaculatus was positively correlated with LFI 
and Eurycea bislineata was negatively correlated with 
Lm (Table 4). Species richness, species diversity, and 
abundances of Desmognathus ocoee, Desmognathus 
quadramaculatus, and Gyrinophilus porphyriticus 
were positively correlated with COVEHA (Table 4). 
Eurycea bislineata was negatively correlated with 
COVEHA (Table 4). Species richness, species diver- 
sity and abunhnces of Desmognathus mmticota, 
Desmogptathus ocoee, Desmgnathus quadramcub- 
tus, and Gyn'nophilus porphyrt'ticus were positively 
correlated with COYEM (Table 4). Species richness, 
species diversity, and collections of Desmognathus 
ocoee and Desmognathus quadr22mculatus were 
positively correlated with BASAL (Table 4). Eurycen 
bislineata was negatively correlated with BASAL 
(Table 4). 
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Our findings that salamander species nlchness and 
diversity measures and the relative abundance of 
salamander species, notably Desmognathus spp,, were 
lower in young-aged cove hardwood stands relative to 
those 285 years-old is consistent with other research 
in the southern Appalachians (Ash, 1988; Petranka 
et al., 1993, 1994; Harpole and Haas, 1999). Similar 
trends have been reported in other environments 
(Blymer and McGinnes, 1977; Enge and Marion, 
1986; Pough et al., 1987; Dupuis et al., 1995). 
Although stand age impacts to Desmognathus spp. 
could be a result of stream degradation and siltation 
rather than changed overstory conditions (Petrmka 
et al., 1994), we assume that stream siltation in the 15 
and 25-year-old stands we studied following timber 
harvest under US Forest Service stewardship was 
minimal. With some precautions, sediment load 
increases in aquatic systems from logging are 
generally short-lived in the Appalachians (Kochen- 
derfer et al., 199'7). Frrlt-ahermore, species such as 
Desmognathus aeneus and Desmognathas ocoee often 
occur far from water. We believe that our year-round 
sampling effort and closely matched study areas 
provide strong evidence that clearcutting in southern 
Appalachians cove hardwood forests similar to those 
we surveyed on the BRD does negatively impact 
several salamander species. Assuming our older 
stands represent intact salamander communities in 
terns of richness and abundance, it appears from our 
analysis that recovery following clearcutting exceeds 
50 years in these cove hardwood stands. We agree with 
the assertions of Petranka et al. (1994) that lower 
salamander numbers found in the initial years 
following timber harvest might not represent a threat 
in terms of overall species viability. However, the 
duration of these lowered numbers or altered com- 
munity assemblages could represent a loss of 
biodiversity and or diminished ecosystem function. 
Accordingly, this would be in conflict with the charge 
of biodiversity maintenance and preservation of 
ecological processes that has been given to public 
land managers in the Southeast (Sharitz et al., 1992). 

The relative abundmces of some species were 
either unaffected by stand age or showed a negabve 
relationship between increasing stand age and relative 
abundance. Desmogmthus monticola, Gyrinophilus 

porphyritieus, and Pselldotritotz ncber, collected in 
small numbers, were closely tied to seeps and streams 
found on our study sites, rather than in the su~ounding 
forest, so stand age may have had little impact. All 
seven Motophghalmus viridescens collected were the 
terrestrial juvenile red eft stage. Plethodon glutinosus 
and Eurycea bislineata were more common in young- 
aged stands than in older cove hardwood stands in our 
study. Peemka et a1. (1993) detected no difference in 
numbers of Plethodon glutinosus in high elevation 
forests in the southem Appalachians of western North 
Carolina between mature forest stands and stands > 10 
years of age. Although more xeric compared to the 
cove hardwood stands we studied, Ash (1988) noted 
that Plethodon glutinosus disappeared in recently 
clearcut o&-hickory (Carya sp.) stands in western 
North Carolina. Although E'urycea bislineata is 
aquatic in its breeding ecology, the species is 
distributed throughout mesic forests in the southern 
Appalachians (Wilson, 1 995; Petranka, 1998). Pletho- 
don serratus occurred in only two of the 50-year-old 
stands we surveyed, We selected study sites within a 
confined geographic area to reduce the possibility of 
sampling areas with dissimilar salamander comrnu- 
nities, however, these two sites with Plethodon 
serratus occur at the species' easternmost distribu- 
tional limit in north Georgia. All Plethodon serratus 
were collected in the fall and would not have been 
detected had we limited sampling to the spring or 
summer months. 

Correlations of richness and diversity measures and 
relative salamander abundances with habitat variable 
correlates such as CANOPY or BASAL are not 
unusual. These variables are related to stand age that 
our data indicate is highly related to salamander 
abundance, The correlation between L R  and the 
relative abundance of Desmognathus guadramcula- 
tus probably reflects the association with high LFI 
values and the presence of larger streams in the most 
concave cove sites. Species richness and diversity 
measures and abundance of Desmognathus ocoee 
correlates with ROCK may show the significance that 
emergent rock has for microsite moisture retention, 
refugia and feeding substrate important to woodland 
salamanders (DeMaynadier and Hunter, 1995). 
Indeed, emergent rock may have served as one of 
the primary long-tern refugia and colonization 
sources for Plethodontids throughout the central and 
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southern Appalachians following the widespread and 
destmctive timber harvests in the early 7900% (7'. 
Pauley, personal communication). Conversely, other 
variables such as L R, SOIL, CWD, LCCWD, 
and DECAY that varied across stands (see Ford et al., 
1997, 2000), may have been well within upper or 
lower thresholds that would show significant correla- 
tions with salmander abundance. Although leaf litter 
does decline following cfemutting (Ash, 1995) and 
may take many years to return to pre-harvest depths 
(Likens et al., 1978), tree growth and stand develop- 
ment on cove hadwood sites in the southern 
Appalachians are rapid (Beck and Hooper, 1986) 
such that litter inputs and leaf litter cover may be 
relatively high within a few years following regenera- 
tion. Stands 285 years old contained the largest 
amounts of CWD and LGCWD, however, all of the 
young-aged stands we surveyed still contained con- 
siderable amounts of residual debris from the previous 
stand, much of which was at an advanced level of 
DECAY. 

Our data clearly demonstrate that cove hardwood 
habitat area and the amount of nearby cove hardwood 
habitat as measured in the variables COVEHA and 
COVEKJM are important factors influencing salaman- 
der abundance and species richness and diversity. 
Salamander abundance might decline due to changes 
in micro-habitat following clearcutting or from the 
effects of changed intsa-specific or inter-specific 
competition or increased predation (IKramer et al., 
1993; Petranka et al., 1993; Ash and Bruce, 1994). 
Regardless, the surrounding forest and connecting 
riparian areas might serve as the most important 
"source" for salamander recolonization (Dupuis et af . , 
1995). The salamander communities in our cove 
hardwood study sites that were imbedded in larger 
malrices of connected cove habitat or nearby cove 
habitat had the ability to recover more quickly from 
clearcutting than those that are more isolated from 
similar habitat (Fig. 2). In addition to stand-level 
management considerations for salamanders, such 
as leaving uncut patches within harvested stands, 
riparian area protection, and coarse woody debris 
retention throughout (Dupuis et al., 1995), landscape 
connectivity should be considered because it poten- 
tially aids recolonization of altered or fragmented 
habitats (Deltlaynadier and Hunter, 1995) and helps 
maintain genetic integ~ty (Gibbs, 1998). Maintaining 

Fig. 2. Illustration of cove hardwood patch sizes surrounding 
pitfall drift-fence arrays in the Wolf Creek Watershed (GS, OCS, 
SOC) and the Miller Cove Watershed (BC2) on the Ghattahoochee 
National Forest, Georgia, 1994-1995. Dark gray areas signify 
rnesic, cove hardwood habitat, light gray areas signify drier 
sideslopes, and white areas signify xeric ridges as determined by 
CIS analysis. Salamander species richness and diversity is 
positively correlated to area of connected cove hardwood habitat 
(see text for complete discussion). 

landscape connectivity and minimizing habitat frag- 
mentation is a well-accepted tenet of conservation 
biology (Burkey, 1995) that has direct application in 
the conservation of the salamander communities we 
studied. Although current trends show a drastic dec- 
line in timber harvest on public lands in the southern 
Appalachians (Ford et al., 1997), forest managers may 
need to address salamander conservation at landscape 
scales, rather than solely at the stand-level, Additional 
experimental research linking landscape connectivity, 
forest management, and salamander conservation in 
the southem Appalachians in cove hardwood and 
other forest types seems wmanted. 
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Cavity trees and coarse woody debris in

old-growth and managed northern hardwood

forests in Wisconsin and Michigan

John M. Goodburn and Craig G. Lorimer

Abstract: The effects of uneven-aged management on the availability of coarse woody debris habitat were examined in

northern hardwood forests (with and without a hemlock component) in north-central Wisconsin and adjacent western Upper

Michigan. Snags, cavity trees, fallen wood, and recent tip-up mounds in 15 managed uneven-aged (selection) stands were

compared with levels in 10 old-growth stands and six unmanaged even-aged second-growth stands. Amounts of coarse woody

debris in selection stands were generally intermediate between old-growth and even-aged stands. Density of snags >30 cm

DBH in northern hardwood selection stands averaged 12/ha, approximately double that found in even-aged northern

hardwoods, but only 54% of the level in old-growth northern hardwoods. Highest densities of snags >30 cm DBH occurred in

old-growth hemlock–hardwood stands, averaging over 40 snags/ha. For combined forest types, the volume of fallen wood

(>10 cm in diameter) was significantly lower in selection stands (60 m3/ha) and even-aged stands (25 m3/ha) than in

old-growth stands (99 m3/ha). Volume differences were even more pronounced for large-diameter debris (>40 cm). Cavity

tree density in selection stands averaged 11 trees/ha, 65% of the mean number in old-growth stands. Densities of snags

(>30 cm DBH) and large-diameter cavity trees (>45 cm) present in selection stands exceeded current guidelines for wildlife

tree retention on public forests.

Résumé: Les effets d’un aménagement inéquienne sur la disponibilité des habitats que procurent les gros débris ligneux ont

été étudiés dans les forêts de feuillus nordiques, accompagnés ou non de pruche, du Centre-Nord du Wisconsin et de l’Ouest

de la péninsule Nord du Michigan qui est adjacente. Les quantités de chicots, d’arbres avec des cavités, de débris ligneux au

sol et de tas récents de houppiers présents dans 15 peuplements aménagés de façon inéquienne ont été comparées à celles qui

étaient présentes dans 10 vieux peuplements et six peuplements équiennes de seconde venue et non aménagés. La quantité de

débris ligneux grossiers dans les peuplements inéquiennes se situait généralement à mi-chemin entre les quantités retrouvées

dans les vieux peuplements et dans les peuplements équiennes. La densité des chicots de plus de 30 cm au DHP atteignait en

moyenne 12/ha dans les peuplements inéquiennes de feuillus nordiques, soit approximativement le double de ce qu’on

retrouve dans les peuplements équiennes de feuillus nordiques, mais seulement 54% de la quantité présente dans les vieilles

forêts de feuillus nordiques. Les plus fortes densités de chicots de plus de 30 cm au DHP ont été observées dans les

peuplements de feuillus et de pruche, atteignant en moyenne plus de 40 chicots/ha. Pour tous les types de forêts combinés, le

volume de débris ligneux au sol (>10 cm de diamètre) était significativement plus faible dans les peuplements inéquiennes

(60 m3/ha) et dans les peuplements équiennes (25 m3/ha) que dans les vieux peuplements (99 m3/ha). Les différences de

volume étaient encore plus prononcées pour les débris de fort diamètre (>40 cm). La densité des arbres avec des cavités

atteignait en moyenne 11 arbres/ha dans les peuplements inéquiennes, soit 65% du nombre moyen dans les vieux

peuplements. La densité des chicots (>30 cm au DHP) et des arbres de fort diamètre (>45 cm) avec des cavités présents dans

les peuplements inéquiennes excédait les normes actuelles concernant le maintien d’arbres pour la faune sur les terres

publiques.

[Traduit par la Rédaction]

Introduction

Coarse woody debris, including snags and fallen wood, pro-
vides important habitat elements for a wide array of biota, in
addition to its role in nutrient cycling, carbon storage, and
other ecosystem functions. Organisms that use coarse woody
debris for food and cover range from arthropods, herptiles,
birds, and small mammals to a host of fungi and microorgan-
isms (Jaeger 1980; Harmon et al. 1986). In the northern hard-

wood forest, over 40 species of birds and mammals use cavities
in snags and dead portions of live trees for nest sites, dens,
escape cover, and winter shelter (Evans and Conner 1979; De-
Graaf and Shigo 1985). Fallen trees often create tip-up
mounds, which can enhance establishment of some plants, pro-
vide nesting sites for certain bird species, and offer moist ref-
uge for amphibians in pits during dry periods (Heatwole 1962;
Beatty 1984; Peterson et al. 1990). In unmanaged old-growth
forests, the death of large trees and subsequent gap formation
result in structurally complex habitat (Franklin et al. 1981;
Hunter 1990). In managed forests, efficient harvest and re-
moval of tree boles from the stand can limit development of such
features and possibly reduce populations of organisms that de-
pend upon these structures (Haapanen 1965; Cline et al. 1980).

Wildlife population studies suggest that large size and ad-
vanced wood decay are two key attributes in vertebrate
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preferences for coarse woody debris (Raphael and White 1984;
Swallow et al. 1986). While small woody debris has habitat
value for some organisms, large snags and fallen boles persist
for a longer time before fragmenting, provide greater forage
area, and meet minimum size requirements of a wider range
of potential vertebrate users than do smaller elements (Conner
et al. 1975; Cline et al. 1980; DeGraaf and Shigo 1985). For
certain taxa such as plethodontid salamanders, the availability
of cool, moist microclimate under loose bark and within the
interior of fallen boles with advanced decay is even more criti-
cal to habitat suitability than bole diameter (Aubry et al. 1988;
Petranka et al. 1994).

Studies in the eastern United States comparing habitat
structure of old-growth forests and younger stands have been
limited by the scarcity of old-growth stands. Available studies
of coarse woody debris in eastern deciduous forests have fo-
cused primarily on second-growth stands originating after
heavy logging in the early twentieth century, but that have
received little or no silvicultural treatment since the time of
stand initiation (e.g., Tritton 1980; Carey 1983; McCarthy and
Bailey 1994). Less is known regarding the effects of various
management strategies such as intermediate thinning, timber
stand improvement, or uneven-aged management on the dis-
tribution of cavity trees and coarse woody debris.

Uneven-aged management is the predominant silvicultural
system for managing mature northern hardwoods in the upper
Midwest on both public and private lands (Jacobs 1987). On
public lands, harvests removing 20–30% of the trees in each
size class are made at 12- to 15-year intervals. Normally the
maximum tree size retained in the stands is 60 cm diameter at
breast height (DBH) (Arbogast 1957; Tubbs 1977). It has been
suggested that by discriminating against large-diameter, low-
vigor, and defective trees, uneven-aged management could re-
strict the development of cavity trees and coarse woody debris
(Zeedyk and Evans 1975; McComb and Noble 1980). Partially
in response to these concerns, management guidelines were
introduced on some Wisconsin and Michigan national forests

in the early 1980s calling for the retention of all active cavity
trees and approximately 5–10 snags (>30 cm DBH)/ha
(U.S. Department of Agriculture 1980). However, information
regarding the actual levels of snags, cavity trees, and fallen
wood present in managed uneven-aged northern hardwood
forests appears to be limited to two stands in Connecticut and
New Hampshire examined by McComb and Noble (1980) and
by Gore and Patterson (1986).

The present study is part of a larger interdisciplinary re-
search project investigating differences in forest structure, eco-
system processes, and biological diversity between old-growth
and managed hemlock–hardwood forests. Our objective was
to examine the effects of uneven-aged management on forest
habitat structure in northern hardwood stands (with and with-
out a hemlock component). Snags, cavity trees, fallen wood,
and tree-fall mounds in managed uneven-aged stands (hereaf-
ter termed selection stands) were compared with base-line lev-
els in unmanaged uneven-aged old-growth stands and in
unmanaged even-aged second-growth stands. Unmanaged
even-aged second-growth stands (hereafter referred to as even-
aged) were included in the study because of their current
prevalence on Wisconsin’s public lands and because questions
regarding their future management remain unresolved (Alver-
son et al. 1994).

Methods

Study areas
This study was conducted in mesic northern hardwood and hemlock–
hardwood stands in north-central Wisconsin and adjacent western
upper Michigan (Fig. 1). Most research sites are located on the
Winegar terminal moraine complex, within sub-subsection IX.3.2 in
Albert’s (1995) regional landscape classification. The region is char-
acterized by a thick layer of sandy glacial drift underlain by iron-rich
Precambrian bedrock. Rolling irregular topography formed by disin-
tegrating glacial ice includes many kettle lakes and steep sandy ridges
(Albert 1995). Elevations range from approximately 500 to 550 m.
The upland soils are predominantly sandy loams and loamy sands
classified as either well-drained coarse–loamy Typic Haplorthods or
moderately well-drained Alfic Fragiorthods. In the Fragiorthods a
moderately developed fragipan is found at a depth of 50–100 cm
(Hole 1976; Spies and Barnes 1985). The remainder of research sites
(those outside the Winegar moraine) were located on similar upland
loam and sandy loam spodosols that formed in ground moraines and
areas of pitted outwash (i.e., within sub-subsections IX.3.1, IX.3.3,
and IX.5; Albert 1995). The climate of the entire region is continental
with heavy snows, extremely cold winters, and a frost-free period of
less than 100 days (Albert et al. 1986). Mean monthly temperatures
range from –12.2°C in January to 18.6°C in July. Annual precipitation
averages 850 mm, with 60% of that amount falling between May and
September (Lac Vieux Desert weather station, National Climatic Data
Center, Asheville, N.C., 1993).

All old-growth stands were located in the Sylvania Wilderness
Area on the Ottawa National Forest, Mich. This tract has had only
localized past cutting and includes over 6000 ha of old-growth forest
(U.S. Department of Agriculture 1964). Trees range in age up to a
maximum of about 350 years (Dahir 1994). Ten old-growth stands
larger than 20 ha in size were selected, including six stands dominated
by sugar maple (Acer saccharum Marsh.) and four dominated by a
mixture of eastern hemlock (Tsuga canadensis (L.) Carrière), sugar
maple, and yellow birch (Betula alleghaniensis Britt.). Hemlock–
hardwood stands were defined as those in which hemlock composed
>30% of the basal area for trees ≥2 cm DBH.

Ecological classification systems developed for the Sylvania

Fig. 1. Map of the study area. All old-growth stands were located

within the Sylvania Wilderness Area, Ottawa National Forest

(represented by the solid polygon). Locations of individual

even-aged and selection stands are indicated with open triangles

and solid circles, respectively.
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Wilderness Area (Spies and Barnes 1985), the Ottawa National For-
est, and for the forest habitat types in Michigan (Coffman et al. 1983)
and Wisconsin (Kotar et al. 1988) were used to select old-growth,
selection, and even-aged stands with similar soil and site charac-
teristics. All northern hardwood and hemlock–hardwood study stands
had been classified as forest habitat type Acer–Tsuga–Dryopteris
(ATD) (Coffman et al. 1983; Kotar et al. 1988), although a few plots
were transitional between the ATD habitat type and the Acer–

Viola–Osmorhiza (AViO) or the Acer–Tsuga–Maianthemum (ATM)
type.

The primary criteria for managed uneven-aged (selection) study
sites were previous management by the selection system on a cutting
cycle of 8–15 years, a minimum residual basal area of 16.1 m2/ha
(70 ft2/acre), and a maximum residual tree diameter >45 cm
DBH. These selection stands typically have a range of tree ages, with
some individuals more than 200 years old (Cole and Lorimer 1994).
Although stands were managed under wildlife tree retention guide-
lines, they were not managed using a prescription to restore old-
growth characteristics, a more recent treatment being introduced on
some public forests (e.g., Rominske and Busch 1991).

We also located study areas in six even-aged second-growth
northern hardwood stands with a predominant age of 65–75 years.
These stands had not been previously thinned and were essentially
unmanaged since stand initiation. They contain only scattered larger
trees from the former stand and no significant biological legacy of
snags and fallen wood. Even-aged hemlock–hardwood stands were
not included in the comparison because they are uncommon in the
region. The final 31 stands selected included 22 northern hardwood
stands (six old-growth, 10 selection, and six even-aged) and nine
hemlock–hardwood stands (four old-growth, five selection).

Field procedures
A single large 30 × 100 m rectangular plot was established in each
stand. This design accommodated our measurement of forest struc-
tural features as well as the sampling needs of various research team
members using the same sites for related studies (e.g., soils, fungi,
invertebrates, birds, small mammals). Plot center was randomly lo-
cated within the stand after allowing a 200-m buffer from stand
boundaries. The long axis of the plot was oriented east–west and
divided into three contiguous 10 × 100 m transects.

The species, DBH, and total height were recorded for all dead trees
≥10 cm DBH and >1.5 m tall within the 30 × 100 m plot. Heights
were measured with a clinometer or telescoping height pole. Snags
were examined for presence of loose bark plates larger than 25 ×
25 cm (i.e., bark cavities), which might serve as bat roosts or brown
creeper (Certhia americana) nests (Evans and Conner 1979; Brady
1983). Additional information was collected on decay class (see clas-
sification for fallen wood below), fragmentation status (1, crown in-
tact; 2, only large branches remaining; 3, bole only; 4, broken bole),
and the percentage of bark remaining on snag. Snag size diversity
(Raphael and White 1984) was calculated with Shannon’s diversity
index (H′) using four diameter classes (10–30, 30–45, 45–60,
>60 cm) and four height classes (<6, 6–12, 12–18, >18 m).

Within a 20 × 100 m area (the center transect plus one randomly
selected outer transect), all trees >10 cm DBH were searched for dens
and nesting cavities using 8× binoculars (Healy et al. 1989). Follow-
ing the criteria of Carey (1983), a nesting cavity was considered a hole
in any live or dead tree more than 1 m above the ground that provides
overhead shelter from precipitation and has no cracks or openings
except the entrance. For all cavity trees, data were collected on tree
species, live–dead status, and DBH, along with cavity height, location
(bole, branch, dead top), opening size (2–5, 5–10, 10–20, >20 cm),
and cavity origin (bird excavated or natural wound). Cavities were
checked during the winter for better visibility, but no attempt was
made to monitor nesting species or verify use during the survey year.
Holes were examined for tooth marks, nesting material, rubbing
marks, and debris near the entrance to judge the certainty of use.

Cavity use certainty was tallied as (i) definite, (ii) fairly certain, or
(iii) uncertain. To avoid counting cavities of questionable value to
wildlife, only cavities classified as “definite” or “fairly certain” were
included in calculations of cavity tree density. Hollow trees and cavi-
ties with a second or overhead opening were not considered as nesting
cavities, but were recorded as dens or escape structures.

Fallen wood (fallen boles, branches, natural and cut stumps, or
harvest tops) was measured within the center 10 × 100 m transect,
which was divided into ten 10 × 10 m quadrats. The smallest size class
(10.0–19.9 cm in diameter) was subsampled only in the northwest
5 × 5 m quarter of each 10 × 10 m quadrat. For each piece, species,
decay class, and origin were recorded. Decay status was recorded
using a system of five classes based upon bark slippage and degree of
decay into the sapwood and heartwood, modified from Sollins (1982)
and Lambert et al. (1980), and similar to that used by Muller and Liu
(1991) for deciduous forests in Kentucky. Extent of decay was in-
spected with a 0.5-cm-diameter pointed metal rod. Decay classes
were defined as class I (tight bark and no visual decay), class II (some
bark slippage with incipient decay in the sapwood), class III (decay
obvious in the outer layers, pointed metal rod penetrates more than
half the radius), class IV (some of the outer xylem layers missing,
decay extending well towards the core, metal rod penetrates clear
through the bole), or class V (organic debris collapsed to ground level
and mixing with soil, little structural integrity).

Volume of each piece of fallen wood was calculated from piece
length and the cross-sectional area of each end with Smalian’s for-
mula for cubic volume (Wenger 1984). Using metal tree calipers,
stem diameter was measured at each end, or where the piece either
extended beyond the transect boundary or dropped below the mini-
mum measurable diameter. Diameter measurements at additional
points along the axis were taken if total length exceeded 5 m. The
volumes of any hollow portions of logs or stumps were similarly
calculated and subtracted from the total. “Large” fallen wood in-
cluded all pieces within the sample area that had a midpoint diameter
>40 cm, calculated as the quadratic mean of the end diameters. The
volume of coarse woody debris in snags was calculated using species-
specific regression equations from Hahn (1984), which allow compu-
tation of cubic volume from our measures of snag DBH and height.

Sample wood disks (n = 167) were collected for estimates of
coarse woody debris mass. Disks were cut into rectangular cubes with
a band saw or knife and the dimensions of the subsample measured
with vernier calipers. Subsamples were oven-dried to a constant mass
at 70°C and then weighed. Wood density for the various species and
decay combinations was determined from mass and volume of sub-
samples, in grams of dry mass per cubic centimetre of “green” vol-
ume. Density for decay class I debris was obtained from published
tables (U.S. Department of Agriculture Forest Products Laboratory
1976). Stand-level estimates for the biomass of coarse woody debris
(>10 cm in diameter) were calculated from these density estimates
and from the debris volume in each species and decay class combina-
tion sampled in each plot.

Because of the great longevity of tree-fall microtopography and
the difficulty in distinguishing mounds from mechanical disturbances
in managed landscapes, only recent tip-ups were considered in which
woody debris of at least decay class V was still evident from the fallen
tree. For all such tip-up mounds and pits within the 10 × 100 m center
strip, perpendicular length and width of both pit and mound were
measured to the nearest decimetre with a fiberglass tape and treated
as ellipse diameters in area calculations.

Statistical analyses
The single large plot in each stand was considered to be the experi-
mental unit. The five stand types included two different forest types
(northern hardwood and hemlock–hardwood) and three management
histories (even-aged, selection, and old-growth). Of primary interest,
a priori, were four comparisons among these five forest type – man-
agement history combinations. Two of these involved comparing
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Two-way ANOVA for old-growth and

managed uneven-aged stands

One-way ANOVA for northern

hardwood stands

Source of variation df

Mean

squares F value P >F df

Mean

squares F value P >F

Cavity tree density
Management history 1 3.568 3.44 0.079 2 2.062 1.23 0.318

Forest type 1 2.387 2.30 0.146

Management history × forest type 1 0.118 0.11 0.740

Error 19 1.038 17 1.679

Density of snags >10 cm DBH
Management history 1 19.826 10.77 0.004* 2 23.633 8.47 0.002*

Forest type 1 2.902 1.58 0.223

Management history × forest type 1 14.920 8.10 0.010*

Error 21 1.841 19 2.791

Density of snags >30 cm DBH
Management history 1 35.697 37.72 0.001* 2 11.247 7.60 0.004*

Forest type 1 2.261 2.39 0.137

Management history × forest type 1 7.275 7.69 0.011*

Error 21 0.947 19 1.479

Density of snags >45 cm DBH
Management history 1 49.118 29.98 0.001* 2 17.746 11.34 0.001*

Forest type 1 1.295 0.79 0.384

Management history × forest type 1 1.571 0.96 0.339

Error 21 1.638 19 1.564

Density of snags with loose bark plates
Management history 1 2.045 0.87 0.362 2 0.472 0.19 0.827

Forest type 1 1.943 0.82 0.374

Management history × forest type 1 5.553 2.36 0.140

Error 21 2.358 19 2.501

Snag coarse woody debris volume
Management history 1 64.587 32.78 0.001* 2 4.483 2.16 0.142

Forest type 1 3.333 1.69 0.208

Management history × forest type 1 19.469 9.88 0.005*

Error 21 1.970 19 2.071

Fallen coarse woody debris volume
Management history 1 29.240 23.03 0.001* 2 40.731 34.4 0.001*

Forest type 1 0.807 0.64 0.434

Management history × forest type 1 0.021 0.02 0.900

Error 21 1.270 19 1.184

Large fallen coarse woody debris volume (>40 cm in diameter)
Management history 1 18.627 5.47 0.029* 2 38.474 16.63 0.001*

Forest type 1 0.164 0.05 0.829

Management history × forest type 1 1.010 0.30 0.592

Error 21 3.404 19 2.313

Total coarse woody debris volume (snag plus fallen)
Management history 1 72.326 36.03 0.001* 2 38.153 19.09 0.001*

Forest type 1 0.127 0.06 0.804

Management history × forest type 1 4.330 2.16 0.157

Error 21 2.007 19 1.999

Table 1.Summary of two-way and one-way ANOVA tests for the effects of management history and forest type on coarse woody debris

characteristics.
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old-growth stands and selection stands within each forest type. The
other two comparisons involved even-aged versus selection northern
hardwood stands and even-aged versus old-growth northern hard-
wood stands. Because there were no even-aged hemlock–hardwood
stands, the four selection and old-growth combinations were com-
pared in a two-way analysis of variance (ANOVA) testing for the
effects of both forest type and management history (fixed effects
model). This was followed by a comparison of the three northern
hardwood management histories in an one-way ANOVA (Table 1).
The four planned pairwise comparisons between means of different
stand types were made only if the overall ANOVA indicated signifi-
cant differences (P < 0.05). The individual pairwise comparisons
were tested using Fisher’s least significant difference method with a
common estimate of experimental error (MSE). Statistical analyses
were performed using the general linear models procedure in SAS
(SAS Institute Inc. 1990). Some variables were transformed prior to
ANOVA testing to correct for unequal variance among types and
nonnormality. Density and volume values were square root trans-
formed, while values for the percent area in pit and mound micro-
topography were arcsine square root transformed.

Prior to testing differences in means among the five forest type –
management history combinations, two-way ANOVA was used to
determine if the means are influenced by two site characteristics
found to vary between study stands on the same forest habitat type:
(i) fragipan (presence or absence) and (ii) location on the Winegar
moraine (yes or no). Fragipan presence–absence was evenly split for
all treatments except selection hemlock–hardwoods, in which no plots
had a fragipan. Neither of these factors nor factor × stand type inter-
actions were found to have a significant effect. For all coarse woody
debris volume and density variables, the effect of blocking on these
two factors resulted in P values that exceeded 0.44 in all cases except
one (i.e., for fragipan effect on large fallen wood, P = 0.13). Conse-
quently, all stands were grouped by the five forest type – management
history combinations (i.e., no further blocking on fragipan or loca-
tion) and analysis conducted as described above.

Results

Snag density and diameter distribution
For northern hardwoods, total snag density (>10 cm DBH) in
selection stands was similar to the density measured in old-
growth (Fig. 2). Snag density was significantly higher in even-
aged stands, but composed primarily of small stems. Nearly
three quarters of the snags in even-aged stands were from size
classes smaller than the mean live tree diameter. In selection
stands, snags were rather evenly distributed above and below
the mean live tree diameter (Table 2). Snags in old-growth
northern hardwoods had a wide diameter range, but 42% of the
dead trees were >45 cm DBH, well above the mean live tree
diameter. Combined medium (30–45 cm DBH) and large

(>45 cm DBH) snags were significantly more numerous in
old-growth than in selection or even-aged northern hardwood
stands (Table 1). Selection stands averaged 12 medium and
large snags/ha, just over half the level found in old-growth and
approximately twice the number in even-aged stands (Fig. 2).

For hemlock–hardwoods, snag densities in old-growth
were significantly higher than in selection stands for all size
comparisons shown in Fig. 2. The density of large snags was
more than five times greater in old-growth than in selection
stands. Total snag density in old-growth hemlock–hardwood
was higher than in old-growth northern hardwood, although
the proportions of medium and large snags were similar in
both. Yellow birch composed 65% of the large snags, nearly
half of which were in recent decay classes (I and II). A majority
of the large yellow birch trees present in the old-growth
hemlock–hardwood stands were snags, possibly casualties of
the 1988 drought (cf. Prey et al. 1988).

In old-growth stands of both forest types, dead trees >60 cm
DBH constituted 20% of snag density. Snags of this size were
absent from all even-aged plots and had low densities in the
selection stands (Table 2). In 10 of the 15 selection stands
sampled across both forest types, no snags >60 cm DBH

Two-way ANOVA for old-growth and

managed uneven-aged stands

One-way ANOVA for northern

hardwood stands

Source of variation df

Mean

squares F value P >F df

Mean

squares F value P >F

Area covered by recent tip-up (pit plus mound)
Management history 1 0.052 0.01 0.935 2 21.719 2.98 0.075

Forest type 1 15.428 2.01 0.171

Management history × forest type 1 4.931 0.64 0.432

Error 21 7.679 19 7.283

*Statistically significant difference (P < 0.05).

Table 1 (concluded).

Fig. 2. Density of snags by size class. Top error bars show 1 SE for

all snags (>10 cm) and bottom error bars are for snags >30 cm

DBH. Treatment means with the same letter are not significantly

different at P = 0.05.
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occurred in the 0.3-ha study plot whereas at least one was
present in all of the old-growth plots.

Snag height distribution and size diversity
Snag heights are reduced over time by progressive fragmenta-
tion (Tyrrell and Crow 1994b), altering the suitability of snags
for nesting sites and perches. More than half of all snags in
both selection and old-growth northern hardwoods had broken
boles (fragmentation stage 4), skewing the height distribution
toward the shorter height classes. Medium and large snags in
these stands were likewise concentrated in shorter height
classes (Fig. 3). While absolute densities of medium and large
snags were significantly different in selection and old-growth
northern hardwoods, these stands had similar proportions of
shorter snags (1.5–4.5 m height class), 33 and 35%, respec-
tively, and similar proportions throughout the height profile
(Fig. 3). The frequency distributions of snags >30 cm among
four 6-m height classes were not significantly different for
selection and old-growth stands (χ2 = 0.862, P = 0.834, df = 3).
In even-aged northern hardwoods, medium and large snags
were more evenly distributed through the height profile, but no

snags reached above the 18-m class. Snag size diversity (H′),
based on four diameter classes and four height classes, was
highest in old-growth (H′ = 1.049), intermediate in managed
uneven-aged (H′ = 0.830), and lowest in even-aged (H′ =
0.704).

In hemlock–hardwood selection stands, most snags were
relatively short (<7.6 m tall; Fig. 3B). Height distribution in
old-growth hemlock–hardwood was distinctly bimodal. Be-
sides a concentration in the two shortest height classes, there
was a second grouping in the 19.5- to 22.5-m height class. One
third of all large snags, mostly yellow birch in early fragmen-
tation stages, were >18 m tall. Snag size diversity was 30%
lower in selection stands (H′ = 0.749) than in old-growth (H′ =
1.071). Index values were similar to those for snags in corre-
sponding treatments in northern hardwoods.

Snag fragmentation stage and decay class distributions
Fragmentation and decay class categories were not inde-
pendent (e.g., almost all fragmentation stage 1 snags were de-
cay class I). The large proportion of broken bole snags
(fragmentation stage 4) in both selection and old-growth

Northern hardwood Hemlock–hardwood

Characteristic* Even-aged Selection Old-growth Selection Old-growth

Total no. of snags sampled 162 115 71 39 88

No. of stands 6 10 6 5 4

Mean DBH (cm)

Snags† 17.6 (12.3, 22.4) 26.8 (16.5, 32.0) 38.9 (18.7, 55.0) 26.0 (12.3, 36.8) 38.8 (21.9, 55.0)

Live trees 20.7 24.2 31.4 24.3 30.8

Density (stems/ha)

Snags 90 38 39 26 73

Live trees 828 446 313 469 388

% dead trees of total 9.8 7.9 11.2 5.2 15.9

Large snags

>45 cm DBH 1.7 4.3 16.7 4.0 25.8

>60 cm DBH 0 1.0 7.8 2.0 15.0

Basal area (m2/ha)

Snags 2.8 2.8 6.0 2.0 10.9

Live trees 32.3 25.5 34.4 28.0 37.5

% snag basal area of total 7.8 9.9 14.9 6.7 22.5

% of total snag density in each stage

Snag fragmentation stage

1. Crown intact 12 6 6 3 8

2. Large branches and bole 37 15 10 21 28

3. Bole only 23 28 27 23 14

4. Broken bole 28 51 58 54 50

% of total snag density in each decay class

Snag decay class

I. Sound 17 6 4 5 8

II. Slight decay 55 37 34 36 36

III. Moderate decay 25 52 58 56 53

IV. Advanced decay 2 4 4 3 2

Snags with loose bark plates

Loose-barked snags/ha‡ 3.3 (±2.1) 5.3 (±2.4) 3.3 (±1.7) 2.7 (±1.2) 10.0 (±5.6)

% snags with bark plates 3.7 13.9 8.5 10.3 13.6

*Includes trees >10 cm DBH only for both live tree and dead tree characteristics.
†First and third quartiles of the snag diameter range presented in parentheses.
‡Mean value followed by SE in parentheses.

Table 2.Structural characteristics of live trees and snags by forest type and management history.
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stands resulted primarily from advancing decay in older snags,
as opposed to wind or mechanical breakage of recently formed
snags. In every stand type, >75% of these broken bole snags
were in advanced decay class III or IV.

In northern hardwood selection stands, approximately 43%
of all snags were recent (i.e., decay classes I or II), while 56%
of snags were in advanced decay class III or IV. Similar decay
class distributions were found in old-growth northern hard-
woods, as well as in both selection and old-growth hemlock–
hardwoods (Table 2). Even-aged stands, in contrast, had a con-
siderably greater percentage of snags (73%) in early decay
classes I and II.

Mean density of snags with loose bark plates ranged from 3
to 10/ha for the five forest type – management history combi-
nations, with highest values in old-growth hemlock–hardwood
(Table 2). The proportion of snags with loose bark plates was
<15% in all stand types. No significant effects were detected
for either management history or forest type (Table 1). Density
of loose-barked snags appeared related to tree size and species
composition in that they were more common on medium and
large snags (22%) than on small snags (4%). Thirty-eight per-
cent of yellow birch snags >30 cm had loose bark plates, and
these accounted for over half the total loose-barked snags of
this size.

Cavity tree density
Of the 2791 live trees and snags (>10 cm DBH) examined in
all stands, 67 contained cavities. Although only 15% of these
cavities were in snags, the proportion of stems with cavities
was nearly twice as high for snags (3.9%) as for live trees
(2.2%). That is, cavities were more common in live trees only
because live trees themselves are so much more abundant than
snags. More than 70% of the bird-excavated cavities in north-
ern hardwood stands were located in snags or dead portions of
live trees. Cavities resulting from natural wounds were more
common than those excavated by birds (Table 3).

Estimated cavity tree density in selection stands of both
forest types was 50–70% of the density in old-growth (Table 3).

These differences were not statistically significant, however,
because of great variability among plots (Table 1). Large trees
(>45 cm DBH) containing cavities were present at a mean
density of 11/ha in old-growth stands (both forest types com-
bined) compared with 5/ha in selection stands (Table 3).

Cavity presence was clearly related to tree size. Mean di-
ameters for live cavity trees were 73–104% larger than the
overall mean live diameter for the stand type. The proportion
of live trees with cavities was consistently greater for larger
trees across all five forest type – management history combi-
nations (Table 3). Old-growth stands had the highest propor-
tion of all live trees (>10 cm) with cavities, but in
large-diameter live trees the proportion with cavities was simi-
lar among selection and old-growth stands.

Snag volume
Mean snag volume in northern hardwood selection stands was
very similar to levels in even-aged stands, but just over half the
snag volume in old-growth stands (Table 4). More than 75%
of standing snag volume in even-aged northern hardwoods was
concentrated in trees <30 cm DBH. In contrast, over half of the
snag volume in selection stands and over three quarters of the
snag volume in old growth were from snags >45 cm DBH,
which will eventually contribute to the pool of large-diameter
fallen wood.

In old-growth hemlock–hardwoods, mean snag volume was
greater than twice the level in northern hardwood old-growth,
and standing snags accounted for 38% of total coarse woody
debris volume (Table 4). Most of the snag volume in old-
growth was yellow birch in early decay classes.

Volume and size distribution of fallen wood
Mean total volume of fallen wood (i.e., fallen boles, branches,
stumps, or tops) in northern hardwood selection stands was
about double the volume measured in even-aged, but only
60% of volume in old-growth (Fig. 4). These differences were

h

Fig. 3. Height distribution of medium and large snags for

uneven-aged and old-growth stands. Numbers on the y-axis refer to

the midpoint of 3-m height classes.

Fig. 4. Size distribution of fallen coarse woody debris volume

showing a positive trend for both total volume of fallen debris and

volume of large-diameter (>40 cm) fallen debris. Error bars show

1 SE for mean volume of large-diameter debris. Treatment means

with the same letter are not significantly different at P = 0.05.
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statistically significant (Table 1). Large-diameter fragments
(>40 cm) made up approximately 25% of total fallen wood
volume in selection stands, averaging 16 m3/ha. The volume of
large-diameter material was significantly higher in old-growth
northern hardwoods and contributed over 35% of the total
fallen wood volume in these stands (Fig. 4). In the even-aged
stands, large-diameter debris made up only 5% of the total fallen
wood volume. Similar trends in total and large-diameter fallen
wood volumes were found in hemlock–hardwood stands.

Decay class distribution of fallen wood
In addition to greater total volumes of fallen wood, old-growth
stands generally had greater volumes across all decay classes
relative to selection stands. In northern hardwood selection

stands, volume of large-diameter (>40 cm), advanced decay
(classes III–V) fallen wood was 11 m3/ha, half the volume
present in old-growth stands, but substantially higher than the
2 m3/ha in even-aged stands. In hemlock–hardwoods, volume
of large, advanced decay fallen wood in selection stands was
13 m3/ha compared to 29 m3/ha in old-growth.

Despite large volume differences among northern hard-
wood stand types, distributions of fallen wood among decay
classes were similar (Table 4). Using three separate ANOVA
tests, no significant differences were detected among stand
types in the proportion of volume in each of three decay class
groupings (I and II: P = 0.57, MSE = 179.9, df = 4, 26; III: P =
0.83, MSE = 59.8, df = 4, 26; IV and V: P = 0.63, MSE = 147.1,
df = 4, 26).

Northern hardwood Hemlock–hardwood

Characteristic Even-aged Selection Old-growth Selection Old-growth

No. of trees searched 633 800 512 467 379

No. of cavities found 7 20 22 7 11

Cavity tree density (no./ha)

Total (>10 cm DBH)* 10.8 (±3.3) 12.5 (±2.5) 18.1 (±4.9) 7.0 (±1.2) 13.8 (±4.3)

>45 cm DBH 0.0 5.2 11.4 5.0 8.8

>60 cm DBH 0.0 0.6 3.1 1.0 2.5

Mean DBH (cm)

Live cavity trees 27.6 44.8 54.3 49.5 56.2

Snag cavity trees 23.1 50.7 31.2 25.0 36.2

% of total trees searched containing cavities

Cavities in live trees

Live >10 cm DBH 0.9 2.1 4.5 1.3 3.0

Live >30 cm DBH 3.6 5.5 9.0 4.8 6.7

Live >45 cm DBH 0.0 13.0 12.3 14.7 11.5

Cavities in dead snags

Snags >10 cm DBH 3.8 6.5 3.4 3.9 2.1

Snags >30 cm DBH 0.0 16.7 3.1 0.0 4.4

Distribution of located cavities (% of total cavities)

Live–dead status

Live trees 71 79 91 86 91

Dead snags 29 21 9 14 9

Cavity opening size class

0–5 cm 71 70 50 43 46

5–10 cm 29 30 36 43 46

10–25 cm 0 0 14 14 9

Origin of cavity opening

Natural wound 57 70 77 86 64

Bird excavated 43 30 23 14 36

Cavity location in tree

Lower bole 43 65 36 29 45

Upper bole 14 5 36 29 45

Live branch 0 5 9 29 0

Dead branch 43 15 18 14 9

Dead top 0 10 0 0 0

Additional habitat features

Density (no./ha)

Escape cavities† 24.3 15.6 23.6 8.0 18.7

Den trees (>45 cm DBH) 0.0 1.3 5.0 0.0 3.8

*Mean value for treatment followed by SE in parentheses.
†Includes cavities not meeting the criteria for nesting cavities as outlined in the Methods section.

Table 3.Density and characteristics of trees with nesting cavities in stands of different forest type and management history.
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Origin of fallen wood
Harvest tops and discarded (unmerchantable) portions of boles
contributed much of the fallen wood volume in northern
hardwood selection stands, with additional amounts from
fallen trees and cut stumps (Table 4). In old-growth and even-
aged northern hardwood stands, fallen boles accounted for
more than 80% of the fallen volume.

Cut stumps constituted a larger proportion of the total fallen
debris volume in hemlock–hardwood selection stands com-
pared with northern hardwood selection stands. This differ-
ence was even more dramatic for large-diameter fallen wood,
which in northern hardwood selection stands came primarily
from logs. In hemlock–hardwood selection stands, 72% of
large-diameter fallen wood volume was from cut stumps,
nearly half of which was hemlock.

Recent tip-up mounds and pits
There were no statistically significant differences detected
among treatments for percentage of stand area in recent pit and
mound microtopography. Values were <1% of plot area in all
five forest type – management history combinations. Among
northern hardwood stand types, the percent area in pits and
mounds was highest in selection stands, averaging 0.8% area
from a density of 28 tree falls/ha. Some of the tip-ups in selec-
tion stands were caused by the felling of neighboring trees.
Even-aged stands had the least area in pits and mounds (0.1%)

from an average of 7 tree falls/ha. Recent tip-up mounds and
pits in old-growth covered 0.6% of the area in northern hard-
wood and 0.4% in hemlock–hardwood stands.

Discussion

Since the early 1980s, efforts have been made to incorporate
retention of snags and cavity trees into silvicultural treatments
on many public forests. Selection (i.e., managed uneven-aged)
stands in the present study exceeded the minimum target den-
sity (5–10/ha) for snags >30 cm recommended in local
U.S. Forest Service guidelines (Evans and Conner 1979; De-
Graaf and Shigo 1985). The mean levels of large snags, fallen
wood, and cavity trees in these selection stands were generally
intermediate between those measured in unmanaged even-
aged and in old-growth stands. Snag densities (>10 cm DBH)
in our selection stands were more than double those found by
McComb and Noble (1980) in a managed uneven-aged hemlock–
hardwood stand in Connecticut. Likewise, large-diameter
fallen wood (>40 cm) was much more abundant in our selec-
tion stands than in the managed uneven-aged northern hard-
wood stand in New Hampshire sampled by Gore and Patterson
(1986), which had no fallen stems >38 cm. The volume of
debris >40 cm in diameter constituted over 28% of total fallen
wood volume in our selection stands, owing to input from
discarded portions of the lower bole, fallen snags, and stumps.
Total and large-diameter fallen wood volumes in selection

Northern hardwood Hemlock–hardwood

Even-aged Selection Old-growth Selection Old-growth

Decay class of fallen wood (% of volume)

I 1 2 7 0.4 1

II 19 17 20 24 10

III 52 56 55 49 54

IV 25 21 16 24 19

V 3 4 2 3 16

Origin of fallen wood (% of volume)

Fallen logs 82 41 81 22 73

Stumps (natural) 3 2 2 1 10

Stumps (cut) 3 11 0 28 0

Fallen branches 9 8 17 4 17

Harvest tops 3 38 0 45 0

Fallen wood volume (m3/ha)*

Mean 24.6c 61.3b 102.2a 56.0b 93.9a

SE ±4.1 ±6.3 ±6.4 ±7.1 ±10.6

Snag volume (m3/ha)*

Mean 14.6bc 13.1bc 25.4b 5.2c 57.5a

SE ±3.0 ±3.7 ±7.1 ±1.1 ±11.5

Total coarse woody debris volume

(m3/ha)*

Mean 39.2c 74.4b 126.9a 61.1b 151.4a

SE ±5.8 ±8.6 ±12.3 ±7.2 ±18.1

Mass of coarse woody debris (Mg/ha)

Fallen wood mass 6.0 14.9 28.7 13.9 20.3

Snag mass 5.5 3.8 7.7 1.5 19.8

Total mass coarse woody debris 11.5 18.7 36.4 15.4 40.1

No. of stands sampled 6 10 6 5 4

*Treatment means followed by the same letter are not significantly different at P = 0.05 (protected least significant difference).

Table 4.Distribution of fallen wood volume by size class, decay class, and origin for different stand types, and

contribution of fallen wood and snags to the total coarse woody debris.
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stands were significantly greater than those accumulated in the
unmanaged second-growth stands of this study, and also ex-
ceeded levels reported for unmanaged mature (65–89 years
old) and old (>100 years old) mixed mesophytic stands in
Maryland (McCarthy and Bailey 1994).

Our estimates of fallen wood volume and mass for even-
aged and old-growth northern hardwoods were within the
range reported elsewhere for northern hardwood stands of
comparable age (Tritton 1980; Gore and Patterson 1986;
McCarthy and Bailey 1994). Likewise, the total coarse woody
debris volume (i.e., snags and fallen wood) measured in our
old-growth hemlock–hardwood stands approximated levels re-
ported by Tyrrell and Crow (1994a) for their older hemlock
stands containing trees >300 years old. Differences in coarse
woody debris attributable to increasing stand age in our un-
managed stands matched trends reported for other eastern for-
ests, including an increase in mean snag diameter and large
snag density (Rosenberg et al. 1988; Tyrrell and Crow 1994a),
an increase in the diameter and total amount of fallen debris
(Tritton 1980; Gore and Patterson 1986; McCarthy and Bailey
1994), and a decrease in total snag density (McComb and
Muller 1983; Carey 1983; Rosenberg et al. 1988). And as has
been reported in other eastern deciduous forests, we found that
nesting cavities were positively correlated with increasing tree
diameter and that a large percentage of all cavities found were in
live trees (Carey 1983; Healy et al. 1989; Welsh and Capen 1992).

Differences in coarse woody debris levels between selec-
tion and old-growth stands were most pronounced for large
stems. Large-diameter snags and fallen boles have received
particular attention in wildlife management guidelines
(Thomas et al. 1979; DeGraaf and Shigo 1985; Tubbs et al.
1987) because they are preferentially selected by large-bodied
species such as raccoon (Procyon lotor), fisher (Martes pen-
nanti), marten (Martes americana), and pileated woodpecker
(Dryocopus pileatus). For instance, all marten dens (natal and
maternal) observed by Wynne and Sherburne (1984) in north-
western Maine were in large logs or trees >40 cm DBH, and
the average size of nest trees selected by pileated woodpeckers
is approximately 55 cm DBH (Evans and Conner 1979). Rec-
ommended densities of large-diameter (>45 cm DBH) cavity
or den trees required to meet the needs of all cavity nesting
species range from 0.35 to 2.5 trees/ha (summarized in Table 2
of Tubbs et al. 1987). Densities of large-diameter snags and
cavity trees both exceeded 4/ha in our managed uneven-aged
stands, although these values were only 21 and 50%, respec-
tively, of the large snag and cavity tree densities that we mea-
sured in old-growth.

While low amounts of coarse woody debris can be limiting
to wildlife populations (Haapanen 1965; Newton 1994; Carey
and Johnson 1995), it is presently unclear whether population
densities continue to increase along with coarse woody debris
abundance beyond some moderate level of coarse woody de-
bris availability (Raphael and White 1984). Certainly, other
factors besides available habitat structure can influence popu-
lation densities (e.g., territory size requirements, winter habi-
tat, predator population levels). Raphael and White (1984)
found that the density of all cavity nesting birds in the Sierra
Nevada increased with the density of large snags (>38 cm
DBH) until reaching a snag density of about 7.5/ha. Above this
snag density level, bird densities were evidently limited by
other factors. Maximum density of large snags reached similar

levels of 6.7 snags/ha (>38 cm DBH) in our selection stands.
However, bird survey data collected by other research project
members in our study sites suggest that at these snag levels in
the Lake States, population densities of cavity nesting birds
may still be limited by available coarse woody debris habitat
(Howe and Mossman 1996). Pileated woodpeckers and chim-
ney swifts (Chaetura pelagica), two species that prefer snags
>50 cm DBH (Evans and Conner 1979), were both signifi-
cantly more abundant in old-growth than in selection stands
(R.W. Howe and M. Mossman, Avian Productivity Study Pro-
gress Report, 1997). For eight other bird species generally as-
sociated with coarse woody debris (including woodpeckers,
brown creeper, and others), trends in the average number of
breeding pairs observed appear to be positively correlated with
coarse woody debris availability. For instance, the average
number of winter wren pairs (Troglodytes troglodytes) in old-
growth northern hardwood stands was over two times greater
than in selection stands and eight times greater than in even-
aged stands (Howe and Mossman 1996). For six of the eight
species, the number of breeding pairs was at least 30% higher
in old-growth northern hardwood than in selection stands. For
five of these species, breeding pair numbers were at least 25%
higher in selection than in even-aged stands (>85% higher for
four of eight species).

The reason for fewer large snags in selection stands com-
pared with old-growth is not simply that trees are not allowed
to reach large size. Dahir and Lorimer (1996) found that the
average size of canopy trees at the time of death in old-growth
northern hardwoods was 51 cm DBH, which is somewhat
smaller than the maximum tree size of 60 cm DBH retained in
most managed uneven-aged stands. However, active manage-
ment generally attempts to reduce senescence-related mortal-
ity of large canopy trees through the selective retention of
vigorous trees. Short intervals between harvests enable effi-
cient salvage of any low-vigor trees from a variety of size
classes before or shortly after death. In addition, mortality of
30–50 cm DBH trees is lower in unmanaged mature stands
than for the same size classes in old-growth stands (Dahir
1994), partly because of less competition from larger trees.
Thus, among large trees, the rate of snag formation appears to
be lower in mature stands even without the intervention of
management practices.

Because of the short time interval between cutting cycles
in uneven-aged stands, managers have the opportunity to re-
assess and modify the dead wood structure each time the stand
is marked for selection harvest. It appears that efforts to iden-
tify and retain wildlife trees during timber marking in managed
uneven-aged stands may lead to snag and cavity tree abun-
dances above the target levels currently recommended by re-
gional U.S. Forest Service biologists. If it becomes a management
objective to increase the density of large-diameter coarse
woody debris in uneven-aged stands, this could be similarly
accomplished by allowing designated reserve trees to live out
their natural life-spans. This approach would provide addi-
tional cavity trees, future snags, and subsequent large fallen logs
without requiring longer rotation ages for all trees in the stand.
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Effects of roads in forested ecosystems span direct physical and ecological ones (such
as geomorphic and hydrologic effects), indirect and landscape level ones (such as
effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and
socioeconomic ones (such as passive-use value, economic effects on development
and range management). Road effects take place in the contexts of environmental
settings, their history, and the state of engineering practices, and must be evaluated in
those contexts for best management approaches.

Keywords: Roads, roadless areas, forest ecosystems, geomorphology, hydrology,
habitat fragmentation, biodiversity, nonmarket values, heritage values, economic
development, grazing, mineral resources, fire.

Abstract



Roads are a vital component of civilization. They provide access for people to study,
enjoy, and commune with forested wildlands and to extract an array of resources from
natural and modified ecosystems. Roads have well-documented, short- and long-term
effects on the environment that have become highly controversial, because of the value
society now places on unroaded wildlands and because of wilderness conflicts with
resource extraction.

The approach taken in this report is to identify known and hypothesized road-related
issues and to summarize the scientific information available about them. The report
identifies links among processes and effects that suggest both potential compatible
uses and potential problems and risks. Generalizations are made where appropriate,
but roads issues and road science usually cannot be effectively separated from the
specific ecologic, economic, social, and public lands management contexts in which
roads exist or are proposed.

Across a forest or river basin, the access needs, economic dependencies, landscape
sensitivities, downstream beneficial uses of water, and so on can be reasonably well
defined, but these relations tend to differ greatly from place to place. An effective
synthesis of road issues draws local experts together to thoroughly evaluate road and
access benefits, problems and risks, and to inform managers about what roads may be
needed, for how long, for what purposes, and at what benefits and costs to the agency
and society.

Road effects and uses may be somewhat arbitrarily divided into beneficial and detri-
mental. The largest group of beneficial variables relates to access. We identified
access-related benefits as harvest of timber and special forest products, grazing,
mining, recreation, fire control, land management, research and monitoring, access
to private inholdings, restoration, local community critical needs, subsistence, and
the cultural value of the roads themselves. Nonaccess-related benefits include edge
habitat, fire breaks, absence of economic alternatives for land management, and
jobs associated with building and maintaining the roads.

Undesirable consequences include adverse effects on hydrology and geomorphic fea-
tures (such as debris slides and sedimentation), habitat fragmentation, predation, road
kill, invasion by exotic species, dispersal of pathogens, degraded water quality and
chemical contamination, degraded aquatic habitat, use conflicts, destructive human
actions (for example, trash dumping, illegal hunting, fires), lost solitude, depressed local
economies, loss of soil productivity, and decline in biodiversity.

For each variable, we sought expert assistance from scientists actively engaged in re-
search related to roads and asked them for information, with emphases on results and
conciseness rather than exhaustive descriptions, in the following categories: issues rele-
vant to their topic; science findings; an assessment of reliability, confidence, and limita-
tions inherent in the data; the degree to which the information could be generalized to
larger geographic scales than in the original research; secondary links for each topic
to other topics; and the ability of the existing knowledge to address the issues raised.

Road development histories crucial to understanding their effects—All roads
were not created equal and do not behave the same. Road networks differ greatly in
how they developed through time and how they were laid out over terrain; they carry this
history into their present performance. The geographic patterns of roads in forest
landscapes differ substantially from place to place, with commensurate differences in
environmental effects. For example, ridgetop, midslope, and valley floor roads all behave
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differently, based on the topography they cross, the degree and type of interaction with
stream networks, their stability in and response to storms, and their effects on wildfire,
wildlife, and vegetation. Distinguishing among the effects of building, maintaining, using,
decommissioning, or abandoning roads is crucial because each of these actions affects
the environment in many ways.

Knowledge of the state of road systems in national forests is inadequate—We
currently lack sufficient information to develop a comprehensive history of the building
and maintaining of national forest roads or their current condition. The inventories of the
roads differ widely, in both content and status, and frequently lack sufficient information
to define benefits, problems, and risks.

Roads create interfaces and ecotones—Roads are long, which creates large
amounts of interface within the landscapes traversed. The strength of the interactions
at these interfaces differs with time and space; it is controlled by the contrast between
adjacent resource patches or ecological units. These interfaces may regulate the flow
of energy and materials between adjacent systems. Such sites are sensitive. They have
relatively high biodiversity, affect critical habitat for rare and endangered species, and
serve as refuges and source areas for pests and predators.

Road management involves important tradeoffs—Almost all roads present benefits,
problems, and risks, though these effects differ greatly in degree. Roads provide motor-
ized access, which creates a broad spectrum of options for management but forecloses
other options, such as nonmotorized recreation or wildlife refugia. Even a well-designed
road system inevitably creates a set of changes to the local landscape, and some values
are lost as others are gained; for example, road density and fish populations correlate
negatively over a large area in the interior Columbia basin. The basin’s environmental
assessment shows that subbasins with the highest forest-integrity index were largely
unroaded, and subbasins with the lowest integrity had relatively high proportions of
moderate or greater road density. In general, greater short- and long-term watershed
and ecological risks are associated with building roads into unroaded areas than with
upgrading, maintaining, closing, or obliterating existing roads.

Confounding variables are difficult to separate from road-related ones—Changes
in the habitat of terrestrial vertebrates, frequency of road kill, and transmission of for-
est diseases result from road use, not from the presence of the road itself. Separating
effects of roads from other landscape and ecological modifications that result from
changes in land use that roads enable is often impossible.

Geomorphic effects of roads range from chronic and long-term contributions of fine
sediment into streams to catastrophic mass failures of road cuts and fills during large
storms. Roads may alter channel morphology directly or may modify channel flow and
extend the drainage network into previously unchanneled portions of the hillslope. The
magnitude of road-related geomorphic effects differs with climate, geology, road age,
construction practices, and storm history. Improvements in designing, constructing,
and maintaining roads can reduce road-related erosion at the scale of individual road
segments, but few studies have evaluated long-term and watershed-scale changes to
sediment yields when roads are abandoned or obliterated.

Roads have three primary effects on hydrologic processes: (1) they intercept rainfall
directly on the road surface and road cutbanks and affect subsurface water moving
down the hillslope; (2) they concentrate flow, either on the surface or in an adjacent
ditch or channel; and (3) they divert or reroute water from paths it otherwise would take

Direct Physical and
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were the road not present. Problems of road drainage and transport of water and
debris—especially during floods—are primary reasons roads fail, often with major
structural, ecologic, economic, or other social consequences. The effect of roads on
peak streamflow depends strongly on the size of the watershed; for example, capture
and rerouting of water can remove water from one small stream while causing major
channel adjustments in another stream receiving the additional water. In large water-
sheds, roads constitute a small proportion of the land surface and have relatively insig-
nificant effects on peak flow. Roads do not seem to change annual water yields, and no
studies have evaluated their effect on low flows.

Forest roads can significantly affect site productivity by removing and displacing top-
soil, altering soil properties, changing microclimate, and accelerating erosion. The dir-
ect effect of roads on soil productivity is estimated to range from 1 to 30 percent of the
landscape area in managed forest lands. Losses of productivity associated with road-
caused accelerated erosion are site specific and highly variable in extent.

Natural populations of animal species are affected by habitat fragmentation caused
by the presence of roads and by avoidance of areas near roads by some species and
attractiveness to those areas by other species. Fragmented populations can produce
increased demographic fluctuation, inbreeding, loss of genetic variability, and local
extinctions. Roads fragment habitat by changing landscape structure, dissecting vege-
tation patches, increasing the amount of edge, decreasing interior area, and increasing
the uniformity of patch characteristics. Road-avoidance behavior is characteristic of
large mammals such as elk, bighorn sheep, grizzly bear, caribou, and wolf. Some
studies have shown that the existence of a few large areas of low road density, even in a
landscape of high average road density, may be the best indicator of suitable habitat for
large vertebrates.

On the other hand, roads and their adjacent environment qualify as a distinct habitat
and result in changes at the species, population, and landscape scales. Some species
are associated with edges, including those that use roads as corridors to find food.
Roads facilitate biological invasion in that disturbed roadside habitats are invaded by
exotic (non-native) plant and animal species dispersed by wind, water, vehicles, and
other human activities. Roads may be the first points of entry for exotic species into a
new landscape, and the road can serve as a corridor for plants and animals moving
farther into the landscape. Invasion by exotic species may have significant biological
and ecological effects if those species are able to displace natives or disrupt the struc-
ture and function of an ecosystem.

The effects of roads on aquatic habitat are believed to be widespread, although direct,
quantitative cause-effect links are difficult to document. At the landscape scale, correl-
ative evidence suggests that roads are likely to influence the frequency, timing, and
magnitude of disturbance to aquatic habitat. Increased fine-sediment composition in
stream gravel—a common consequence of road-derived sediments entering streams—
has been linked to decreased fry emergence, decreased juvenile densities, loss of
winter carrying capacity, and increased predation of fishes and can reduce benthic
organism populations and algal production. Roads can act as barriers to migration,
lead to water temperature changes, and alter streamflow regimes. Improper culvert
placement where roads and streams cross can limit or eliminate fish passage. Roads
greatly increase the frequency of landslides, debris flow, and other mass movement.
At the landscape scale, increasing road densities and their attendant effects are
correlated with declines in the status of some non-anadromous salmonid species.

Indirect and
Landscape-Scale
Effects



Roads can cause a wide variety of effects to terrestrial wildlife. Some species, such
as gray wolf and grizzly bear, are adversely affected by repeated encounters with peo-
ple. Roads can increase harassment, poaching, collisions with vehicles, and displace-
ment of terrestrial vertebrates, which affect many large mammals such as caribou,
bighorn sheep, mountain goat, pronghorn antelope, grizzly bear, and gray wolf. It is
estimated that 1 million vertebrates are killed annually on roads in the United States.
Direct mortality of large mammals on forest roads is usually low, except for those with
a home range straddling a road. Forest roads pose a greater hazard to slow-moving
migratory amphibians than to mammals. Nearly all species of reptiles seek roads for
cooling and heating. Vehicles kill many of them, making well-used roads a population
sink.

Chemicals applied to and adjacent to roads can enter streams by various pathways. The
effect on water quality depends on how much chemical is applied, the proximity of the
road to a stream, and the weather and runoff events that move chemicals and ediments.
Dust produced by vehicles moving on unpaved roads reduces visibility and generates
airborne particulates that can pose health hazards, such as in areas with soils contain-
ing asbestiform minerals.

A variety of products harvested from forests are being transformed into medicinals,
botanicals, decoratives, natural foods, and other products, called nontimber or special
forest products. The harvest of these products usually depends on road access. The
Forest Service is required by law to permit access to private inholdings but can re-
quire the owners to comply with standards that apply to building roads on or through
national forest land.

Economic pressures affect roads and road use, and roads have multiple economic con-
sequences. Both benefits and costs are associated with building, maintaining, and
using forest roads. The economic effects relate to forest access and user-communities,
including loggers, silviculturists, fuels managers, and recreationists. The network of
roads on national forest lands has both positive and negative effects on most Forest
Service land management programs. Reducing road densities could result in increased
timber-harvesting costs, for example. Roads have replaced stock drives for transporting
sheep and cattle to and from mountain grazing allotments. Road-related issues asso-
ciated with energy and mineral resources are access rights, property rights, and
benefits and detrimental effects. Public recreational users of national forests depend
on roads for access. Altering the road networks will affect such uses differently across
the landscape.

The increasing density of roads in and adjacent to many forest, shrub, and rangeland
areas is an important factor in the changing patterns of disturbance by fire on the
landscape. Roads provide access that increases the scale and efficiency of fire
suppression, and roads create linear firebreaks that affect fire spread. The benefits
roads provide for fire prevention and fire management carries an associated cost:
increased access has increased the role of human-caused ignitions. And road net-
works have resulted in changes in fuel patterns and fire regimes at the broad scale.

Roads also affect many less measurable attributes of the national forests, including
passive-use values: those values that people hold for things they may not expect to
use themselves but that they believe should exist for future generations. For example,
building roads in roadless areas may reduce passive-use value significantly; decom-
missioning of roads may increase such value. But decommissioning of roads also is
likely to reduce active-use values. Roads themselves sometimes have heritage value
because of historical or cultural significance.

Direct Socioeconomic
Effects

Indirect Socioeconomic
Effects



The aim of this synthesis is to focus on the scientific information about the benefits,
uses, and physical and biological effects of forest roads. Because all aspects of roads in
forests have become of great interest to the American public, research is underway in
many domains. This document represents the information available as of the date of
publication.
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Roads have become vital components of the human use of forested systems. Without
roads, development of the economic activity critical to the quality of modern life would
have been difficult, and roads remain central to many forest uses today. Roads provide
access for people to study, enjoy, contemplate, or extract resources from natural and
modified ecosystems. Building and maintaining roads is controversial, however, be-
cause of the kinds of uses they enable, concerns about their short- and long-term
effects on the environment, and the value that society now places on unroaded wilder-
ness (Cole and Landres 1996, Williams 1998).

Decisions about roads—locating, building, maintaining, and decommissioning them—
are complex because of the many tradeoffs required. The statement by Chomitz and
Gray (1996) that “rural roads promote economic development, but they also facilitate
deforestation” exemplifies recent experiences. And a tradeoff exists between access by
roads for recreation and resource extraction with the potential effects of that access on
biodiversity. Roads have been evaluated from physical, biological, and socioeconomic
points of view, often under only one perspective in isolation from the others. Such an
approach is useful for identifying issues, but it can lead to conflict and poorly informed
policy choices because it may unnecessarily play one set of values against another. For
example, a road justified only by economic criteria at the expense of ecological ones—
or vice versa—is likely to be questioned by advocates of the missing criteria. A unified
approach to analyze building, maintaining, or decommissioning roads is needed to
allocate resources wisely. This report represents our attempt to summarize the known
desirable properties of roads and their known effects on the landscape, based on the
scientific information currently available.

The approach taken was to enumerate the known or hypothesized issues and then pro-
vide a summary of the scientific information available about those issues. We provide a
synthesis that attempts to reveal where links between processes and effects suggest
both potential compatible uses and potential problems and risks.

We find that roads cannot be separated from the ecologic, economic, social, or public
land management context in which they exist or are proposed. A virtually limitless variety
of context factors renders any single, generalized synthesis to be of limited applicability
and value. An effective synthesis of all the interactions of roads, the environment, and
people can best be attempted by looking at road systems in actual places where the
myriad effects of roads are not hypothesized or generalized. For example, across a
national forest or river basin, the array of access needs, economic dependencies,
landscape sensitivities, downstream beneficial uses of waters, and so on can be rea-
sonably well defined and will tend to differ greatly from any other place.  A synthesis of
the effects of roads in a specific context can be attempted by drawing local experts
together to thoroughly evaluate road and access benefits, problems, and risks, to inform
managers about what roads may be needed, for how long, for what purposes, and at
what costs to the agency and society.

The Forest Service recently published a document Roads Analysis: Informing Deci-
sions About Managing the National Forest Transportation System (USDA FS 1999),
which can be considered a specific application of watershed analysis or a cumulative
effects analysis, wherein the principal objective is to focus on road effects. For ex-
ample, roads analysis and watershed analysis have common steps that include:

• Setting up the analysis

• Describing the situation

Introduction and
Objectives
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• Identifying issues

• Assessing benefits, problems, and risks

• Describing opportunities and setting priorities

• Reporting results and conclusions

Similar approaches to watershed analysis or cumulative effects analysis are being
adopted widely by federal (for example, Regional Ecosystem Office [REO] 1995), state
(for example, Washington Forest Practices Board 1995), and private (for example,
NCASI 1992) agencies and organizations. The exact steps and organization of the
analysis are somewhat modified by each application, but the conceptual framework is
similar. The focus of each analysis can change, depending on the principal reason for
doing it (such as timber production, wildlife, or ecosystem integrity); for example, an
analysis focused on timber production in a watershed or region would look at effects on
and of road development, water quality, wildlife, recreation, and economics. Exactly the
same set of issues would emerge if the focus were on water quality, wildlife, or recrea-
tion. The perspective and conclusions might be different, but the issues and approach
would be the same.

The roads analysis (USDA FS 1999) is intended to be an integrated, ecological, social,
and economic approach to transportation planning. It uses a multiscale approach to
ensure that the identified issues are examined in context, and it is based on science.
Analysts are expected to locate, correctly interpret, and use relevant existing scientific
literature in the analysis, disclose any assumptions made during the analysis, and reveal
the limitations of the information on which the analysis is based. The analysis methods
and the report are to be subjected to critical technical review.

This science synthesis complements the roads analysis by summarizing some of the
available scientific information on how roads affect an array of ecological, social, and
economic resources. The approach used in this document is mostly reductionist; it is
not intended to be a comprehensive encyclopedia of all available knowledge about road
effects; but this information, together with the extensive list of questions posed in the
roads analysis, should assist interdisciplinary teams in understanding and applying the
best available science appropriately to existing and potential road systems in specific
geographic contexts, across the national forest system. Commonly used definitions for
Forest Service roads are listed in figure 1.

In this section, we consider what the body of scientific work on roads allows us to
understand about how roads function in the landscape. This paper details specific posi-
tive and negative consequences of roads; here, we attempt to distill this information into
key observations relevant to road policy considerations. The work is a synthesis of a
large body of information from many sources. Inevitably, the synthesis creates potential
for interpretations beyond the more generally accepted facts about roads contained in
the rest of the document. Nevertheless, we believe they represent a reasonable set of
principles consistent with the best scientific knowledge.

Road effects and uses may—somewhat artificially—be divided into beneficial and
deleterious effects. In the former category, most variables relate to access, with a
second group of beneficial uses not related to access. We identified the following
access-related benefits or needs: timber acquisition, grazing, mining, recreation, fire
control, land management, research and monitoring, access to private inholdings,
restoration, community critical needs, subsistence, and the cultural value of the roads
themselves. Non-access-related benefits or needs included edge habitat, fire breaks,

General Considerations
of Roads Networks
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Figure 1—Legal basis and definitions for roads in the national forests.

1 Forest roads: Roads wholly or partially within, or next to, and serving a national forest and needed to protect, administer, and use the
national forest and to use and develop its resources.
2 Public roads: Roads under the jurisdiction of, and maintained by, a public authority that are open to public travel
3 Forest development roads: Forest roads under the jurisdiction of the Forest Service.
4 Uninventoried roads: Short-term roads associated with fire suppression; oil, gas, or mineral exploration or development; or timber
harvest not intended for forest-development transportation and not necessary for resource management. Regulations require
revegetation within 10 years.
5 Maintained for public use: Forest development roads open to unrestricted use by the general public in standard passenger cars,
including those roads closed seasonally or for emergencies.
6 Public lands highways, forest highways: A coordinated Federal Lands Highway Program includes forest highways, public lands
highways, park roads, parkways, and Native American reservation roads under the jurisdiction of and maintenance by a public road
authority other than the Forest Service and open to public travel.
7 Maintenance level 5: Roads that provide a high degree of user comfort and convenience. Normally double lane, paved facilities, or
aggregate surface with dust abatement; the highest standard of maintenance.
Maintenance level 4: Roads that provide moderate user comfort and convenience at moderate speeds. Most are double lane, and
aggregate surfaced. Some may be single lane. Some may be dust abated.
Maintenance level 3: Roads open and maintained for travel by a prudent driver in a standard passenger car. User comfort and
convenience are not considered priorities. Typically low speed, single lane with turnouts and native or aggregate surfacing.
Maintenance level 2: Roads open for use by high-clearance vehicles. Passenger car traffic is discouraged. Traffic is minor
administrative, permitted, or dispersed recreation. Nontraffic-generated maintenance is minimal.
Maintenance level 1: These roads are closed. Some intermittent use may be authorized. When closed, they must have barricades, berms,
gates, or other closure devices. Closures must exceed 1 year. When open, a road may be maintained at any other level. When closed to
vehicular traffic, they may be suitable and used for nonmotorized uses, with custodial maintenance.
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the absence of economic alternatives for land management, some positive effects on
water quality, and the jobs associated with building and maintaining these systems.
This analysis uncovered factors that could lessen negative effects of roads by better
integrating engineering approaches with knowledge of road effects.

Negative consequences include effects on hydrology, geomorphic features such as
debris slides, sedimentation, habitat fragmentation, predation, road kill, invasion by
exotic species, dispersal of pathogens, water quality such as chemical contamination,
aquatic habitat, use conflicts, human actions (for example, trash dumping, illegal hunt-
ing, fires), the cost of lost solitude, local economies, soil productivity, communities, and
biodiversity.

For each variable, we sought expert assistance from scientists actively engaged in re-
search related to roads and asked for information in the following categories, with
emphases on results and conciseness rather than exhaustive descriptions: issues re-
levant to the topic variable; science findings; an assessment of the reliability, confi-
dence, and limitations inherent in the data; the degree to which the information could be
generalized to larger geographic scales than those of the original research; the second-
ary links from this topic to other topics; and the ability of the existing knowledge to
address the issues raised.

We note that the limitations of science set the bounds for subsequent interpretations,
we offer a synthesis of the available scientific information, and we consider how these
science-based observations might be used in developing future road policy.

Despite the shortcomings described, we believe that the available science on road
effects can provide considerable guidance in evaluating benefits and costs associ-
ated with roads. Our interpretation of the scientific literature leads to the following
observations.

Roads differ greatly—All roads are not created equal and do not behave the same.
Road networks differ greatly in development through time and layout over terrain, and
they carry this history into present performance. In many parts of the National Forest
System, the major roads were built in the 1950s and 1960s, with secondary and tertiary
feeder roads following as the road networks expanded into watersheds. In other areas,
logging roads developed from previous road systems used for mining in the Rocky
Mountain and Southwestern states or agriculture in the southern Appalachians, Ozarks,
and New England. Thus, changes in road standards through time (for example, width,
construction methods, position in the landscape) have affected different parts of road
networks. Consequently, each road network commonly contains a collection of old and
new types and standards of roads designed for various purposes that cross terrain of
differing sensitivities. This mosaic of road segments has implications for how roads will
be managed in the future (Gullison and Hardner 1993).

The geographic patterns of roads in forest landscapes differ substantially from place to
place, with commensurate differences in environmental effects. In the glaciated terrain
of southeastern Alaska, for example, main roads were built on the broad, major valley
floors, and the high-value timber that grew on lower hillslopes was brought downhill to
them. In forests along the west side of the Sierra Nevada in California, on the other
hand, major roads were built along broad ridges, with secondary roads leading down
into headwater areas. The main roads into western Oregon forests entered watersheds
along narrow stream bottoms and then climbed the adjacent steep, unstable hillslopes to
access timber extending from ridge to valley floor. These configurations, combined
with local geology and climate, resulted in very different effects of roads on watershed,
wildlife, vegetation, recreation, and disturbance processes.
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Even in the same region, road effects differ by landscape position. Ridgetop, midslope,
and valley floor roads all produce different effects, based on the topography they cross,
the degree and type of interaction with stream networks, the stability and response to
storms, and the effects on fire, wildlife, and vegetation.

Different phases of road development have different effects on the landscape. Distin-
guishing among the effects of building, maintaining, usage, decommissioning, or aban-
doning of roads is crucial because they usually affect the environment in several ways.

Road development history crucial to understanding effects—The effects of roads
differ over time. Some effects are immediately apparent (such as loss of solitude or
creation of edge), but others may require an external event, such as a large storm, to
become visible (such as road-related erosion or mass movement). Still other effects
may be subtle, such as increased susceptibility to invasion by exotics, pathogens
noticed only when they become widespread in the landscape, or increased road use
as recreation styles and motor vehicles change.

With time, roads often adjust to the ecosystems they are embedded in. Some segments
blend with the landscape and reach a new ecological and hydrological balance, or
better, a metastable state. Such a state will be different for a road transecting old-growth
forest than for a road in an otherwise highly disturbed landscape. A critical issue in the
decommissioning of a road is whether disrupting the new environmental balance created
by the presence and aging of the road is desirable. As other segments of the road age,
however, some features (such as culverts and disrupted subsurface drainage paths)
become increasingly unstable; the probability of failure increases with road age. Some-
times, decommissioning a road can have significant environmental effects because the
road has become part of the evolving landscape.

Decommissioning also can avert significant future environmental effects of the road.
One last precaution in generalizing about the environmental effects of roads is to deter-
mine the age and condition of the road and evaluate the degree of landscape adjustment
to the road and vice versa. Roads produce long-term legacies on the landscape. Many
roads built by the Roman Empire centuries ago have disappeared from the landscape,
but their legacies remain in the sediment layers of Italian lakes (Hutchinson 1973) and
in strips of unique vegetation growing on limestone soils (derived from the limestone
slabs used to build the road) in landscapes of acid podzolic soils (Detwyler 1971). In
Lago di Montesori, Italy, the building and use of Via Cassia resulted in a pulse of
eutrophication that lasted 2,000 years before it abated when the road was abandoned
(Hutchinson 1973). Strips of fern populations in the Caribbean National and Luquillo
Experimental Forests in Puerto Rico, serve as indicators of the skid trails abandoned
more than six decades ago in these wet forests (Garcia-Montiel and Scatena 1994).
These legacies are useful in historical reconstruction of landscapes because they help
to explain the relevance of yesterday’s activities to today’s landscapes (Burel and
Baudry 1990). In the process, more is learned about ecosystem resilience and how
ecosystems continuously adjust to change.

We do not currently have sufficient information to develop a comprehensive picture of
the construction or maintenance history or the current condition of the roads comprising
our national forest road networks. Although much information on roads exists at a var-
iety of scales (district, forest, region), and some national forests have invested in inven-
torying and developing road databases, no common framework or database exists for
accessing road development information. For environmental consequences, little infor-
mation exists on old, abandoned roads that still pose risks of failure. Other data
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important to defining effects, such as the location and configurations of road-stream
crossings, are not available for most places. Without such a database, developing a
comprehensive picture of where the road system currently stands, what parts of it need
work, and where restoration activities should be focused will be difficult and analyses
may be limited at best.

Road inventories for the national forests are highly variable, frequently incomplete or
inaccurate, and lack information needed to define benefits, problems, and risks. For
most national forests, the inventory contains very limited, transportation-related data,
such as road maintenance level and surface type. These data, though useful for some
purposes, may be wholly inadequate to address such considerations as sedimentation
hazards, migration barriers, landslide potential, road-stream connectivity, or other im-
portant aspects of the environmental effects of roads. Other useful data may exist in
various forms, but because they are not systematically collected or maintained, they are
nearly impossible to access for analysis. Without suitable data, some important aspects
of the analysis of roads cannot proceed.

Roads create interfaces and ecotones—Because roads have great length, the inter-
face surface between roads and the ecosystems of the landscape traversed is maxi-
mized. Naiman and Décamps (1997) recognized that the strength of the interactions at
these interfaces differs with time and space, and it is controlled by the contrast between
adjacent resource patches or ecological units. They compare these interfaces to semi-
permeable membranes regulating the flow of energy and materials between adjacent
systems. They note that interfaces “have resources, control energy and material flux,
are potentially sensitive sites for interactions between biological populations and their
controlling variables, have relatively high biodiversity, maintain critical habitat for rare
and endangered species, and are refuge and source area for pests and predators.” The
road interface may be split into two zones (roadside and ecotone) to highlight the dif-
ference between vegetation along the roadside and vegetation in the zone at the inter-
face of the road. That interface can be sharp or gradual and form an ecotone that
differs from both the roadside and the adjacent natural ecosystem.

The width of the surface of a road differs from the width of its ecological influence
(Auerbach and others 1997; Forman, in press; Forman and others 1997; Larsen and
Parks 1997; Reck and Kaule 1993). For example, a road may be 30 feet wide, but it
may influence an additional 80 feet of adjacent land because of disturbance during
construction and the buffer zone for the pavement, making the road effectively 110
feet wide. That same road has an ecological influence that can extend an additional
unknown distance from storm water runoff—influence over the home range of wildlife,
geomorphic alterations upstream and downstream, distance its noise and dust carry,
and views it provides.

Road management usually involves important tradeoffs—Almost all roads present
benefits, problems, and risks, though these effects differ greatly in degree. Roads per-
mit motorized access, which creates a broad spectrum of options for management but
forecloses other options, such as wilderness, nonmotorized recreation, or some types
of wildlife refugia. Even a well-designed and well-built road system inevitably creates a
set of changes to the local landscape, and some values are lost as others are gained.

Tradeoffs accompany specific decisions about roads, such as construction method.
Full-bench road construction, for example, may decrease the risk of fill slope failure,
but it also may increase the potential for groundwater interception with attendant water
quality risks.

Knowledge of the State
of Road Systems in
National Forests Is
Inadequate
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In public wildlands management, road systems are the largest human investment and
the feature most damaging to the environment. Thus the choices about what roads are
needed, for what purposes, for how long, and at what cost—to public ecological re-
sources as well as financial—are critical decisions in managing public lands.

Roads can be thought of as ecosystems—Synthesis of the effects of roads on ter-
restrial ecosystems may be facilitated by viewing roads as “techno-ecosystems,” as
recently described by Lugo and Gucinski (2000). Roads occupy ecological space (Hall
and others 1992), have structure, support a specialized biota, exchange matter and
energy with other ecosystems, and experience temporal change. Road “ecosystems”
are built and maintained by people (techno-ecosystems; Haber 1990) and are charac-
terized by open fluxes of energy and matter and a predominance of respiration over
photosynthesis; that is, they are heterotrophic and highly subsidized systems. To appre-
ciate that features associated with roads function as an ecosystem and interact with the
surrounding forests requires thinking about the flow of materials, energy, and organisms
along road corridors, vegetation zonation, the interaction with the human economy and
human activity, and the external forces that converge on the road corridor (Donovan and
others 1997; Forman 1995a, 1995b). (See fig. 2).

Roads connect and disconnect—Roads are corridors that can connect contrasting
ecosystem types. Because roads provide a somewhat homogeneous condition through
the length of the corridor, they provide opportunity for organisms and materials to move
along the corridor, thereby increasing the connectivity (Merriam 1984) among those
ecosystems interfacing with the road.

The degree of connectivity between roads and streams (that is, the number of stream
crossings and areas where roads and streams are near enough to strongly interact) is
recognized as a good general indicator of the interactions between the two and of
potential effects roads can exert (Wemple 1994). Where both stream and road densi-
ties are high, the incidence of connections between roads and streams can be expected
to also be high, resulting in more common and pronounced effects of roads on streams
than in areas where road-stream connections are less common and dense. (fig. 3).

The economic benefits of roads could be seen as a function of connecting commod-
ities, such as timber, minerals, recreational opportunities, and so on, with potential
users.

Roads also can function to disconnect important features of ecosystems. Many roads
built next to streams isolate or disconnect streams from their flood plains, with adverse
effects to stream dynamics and associated aquatic biota. Roads can block the move-
ment of some animals, such as wolves crossing wide roads or fish being blocked from
their upstream movement by perched culverts.

Road density and fish populations correlate across a large area in the interior
Columbia basin—One of the few examples of landscape-scale analysis of road in-
fluences has been the interior Columbia River basin environmental assessment (Quigley
and others 1997). The evaluation of road density and forest and range integrity in that
study may serve to illustrate landscape-scale interaction of roads with their surround-
ings. Forest and range indices of integrity were developed that showed sub-basins
having the highest forest-integrity index were largely unroaded and comprised cold
forest “potential vegetation groups,” or a mixture of moist and cold forest groups. Of the
five indicator variables used, the proportion of a subbasin composed of wilderness or
roadless areas seemed most closely associated with subbasins having high integrity
indices; 81 percent of the subbasins classified as having the highest integrity had

Recent Efforts at
Describing Roads in the
Landscape May Be
Helpful
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relatively large proportions of wilderness and roadless areas (>50 percent). Conversely,
of subbasins with the lowest integrity, 89 percent had low proportions of roadless and
wilderness areas, 83 percent had relatively high proportions of at least moderate road
density (0.27 miles/square mile). None of the seven subbasins having high rangeland
integrity had areas of moderate or high road densities. The correlation of basin or sub-
basin integrity is not total, thereby suggesting that other variables and mechanisms are
complex and nonuniform (but see text below for additional caveats).

Recreation surveys suggested the three most highly ranked uses of land administered
by the Forest Service and Bureau of Land Management in the interior Columbia basin
today are timber, fishing, and hunting. Projected major uses by 2045 will be a shift to
motor viewing and day and trail use, even though this area has 70 percent of the un-
roaded areas of  >200,000 acres remaining in the conterminous 48 states.

Strong fish populations were more frequently found in areas with low rather than high
road densities. Supplemental analyses “clearly shows that increasing road densities and
their attendant effects are associated with declines in the status of four non-anadro-
mous salmonid species.... They are less likely to use highly roaded areas for spawning
and rearing, and, where found, are less likely to be at strong populations levels” (Lee
and others 1997).

These findings are a “consistent and unmistakable pattern based on empirical analysis
of 3,327 combinations of known species status and sub-watershed conditions, limited
primarily to forested lands administered by BLM/FS” (Lee and others 1997). Although
unroaded areas are significantly more likely than roaded areas to support strong popu-
lations, strong populations are not excluded from roaded watersheds. Possible reasons
for this coexistence are that the inherent productivity of some areas allows fish popu-
lations to persist despite disturbances linked to roads; real or detectable effects on fish
populations may lag behind the initial physical effects in watersheds where roads have
been added in the last several years; and the scale of the subwatershed (18,000 acres

Figure 2—The volume of geographical space occupied by a road, whereby the distance of the road effect is
used to define its width and height. The volume changes given the ecological conditions in the area the
road traverses (from Lugo and Gucinski 2000).
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on average) at which strong populations are identified may mask a potential disconnect
between the real locations of fish strongholds and roads (identified at resolution of 0.38
square mile). In general, greater short- or long-term watershed and ecological risks are
associated with entering an unroaded area than with proceeding continuously with man-
agement activities in roaded areas to upgrade, maintain drainage, or close or obliterate
existing roads.

Limitations of science—The existing science about roads goes far in establishing what
and where problems are likely to arise. More than half a century of research and ex-
perience supports designing, building, and maintaining forest roads. Most of the major
engineering problems associated with roads have been solved, and a wealth of informa-
tion exists on many of the physical effects of roads, particularly on hydrologic and geo-
morphic watershed processes. Information on the biologic effects of roads is improving.
Getting this knowledge into practice is more an economic, social, and political issue
than a technical one. Less well understood but increasingly studied are the ways that
the social and cultural settings of roads influence the benefits, problems, and risks that
roads present.

Despite this extensive base of literature and understanding, a striking conclusion from
our assessment of the current state of scientific understanding of roads is that virtually
no attempt has been made to integrate this information into a comprehensive picture of
how roads function in the landscape—physically, biologically, and socially. Despite the
ubiquity of roads, no “science of roads” exists. Instead, many disciplines offer their
perspectives: engineers study road design and performance, hydrologists evaluate
effects of roads on water and sediment, ecologists consider effects on vegetation and

Figure 3—The incidence of road-stream connections, such as stream
crossings (the black dots) is related to the density of both roads and
streams in the landscape (Swanson and others 2000).
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wildlife, and transportation planners focus on road layout in relation to other forest re-
sources and uses. Few efforts have been directed toward viewing the gamut of road
benefits and effects systematically and simultaneously, or to developing general meth-
ods for evaluating risks posed by roads in individual watersheds. Further, the inventory
and evaluation of roads is usually limited by ownership: The Forest Service focuses on
roads in national forests and generally ignores roads within adjacent ownerships; states
evaluate state highways; and the U.S. Department of Transportation evaluates federal
highways.

We expect that implementing systematic analyses of road systems in national forests
(as part of forest planning and other project planning; USDA 1999) will soon produce
abundant examples of intermediate- and large-scale analyses. We hope that those
analyses will look beyond ownership to produce a comprehensive evaluation of roads
as a system. We have noted that the science information on the benefits of roads is
not well developed. The form of scientific approaches for measuring benefits is largely
based on economic analyses, which tend to focus on monetary cost differentials pro-
duced by the presence or absence of roads. Even in that arena, the data are not rigor-
ously developed. Approaches from the social sciences are based on measurements of
public perceptions and public desires, but the total data set does not comprise a highly
developed scientific base.

Past studies (with the single, large exception of the interior Columbia River basin en-
vironmental assessment) have shed little light on the effects of roads across the whole
landscape. Deciphering road effects at large spatial scales is difficult because past
studies either focused on the performance of individual road segments, or else road
effects were confounded by other simultaneous treatments. Most engineering studies,
for example, look at the performance of specific road types (such as arterial, collector),
features (road surfaces, cutslopes), or engineered structures (culverts) without examin-
ing how the road network functions in relation to adjacent hillslopes and an intersecting
stream network. Where roads have been looked at in a watershed context, as in small
watershed experiments, effects of roads often have not been distinguished from those of
other treatments, such as logging or site preparation, that typically accompany roads.
Treatments only of roads are rare and may continue for just a few years before other
treatments are applied.

Despite the size of the forest road network, road effects have been examined in only
a few places. Much of what we know about forest roads comes from studies in the
Appalachians, Pacific Northwest, and Rocky Mountains—areas with known road prob-
lems. Given the wide variability in road history, age, construction methods, and use
patterns in relation to topography, climate, and social setting, the narrow geographical
scope of these studies limits their extrapolation to other regions or their usefulness in
addressing more subtle effects.

Research has not typically considered an array of major effects and their interactions.
We found only one study (either by way of case study or conceptual framework)
addressing the broad range of major road effects. A recent report from the Transpor-
tation Research Board that addresses effects of motor vehicles—and by extension,
roads—on climate and ecology focuses on the effects of vehicle emissions; only eight
pages are devoted to a discussion of the effects of vehicle infrastructure (that is, roads),
and the discussion of conserving biodiversity is limited to selected variables. Another
recent paper focuses almost exclusively on the ecological damage posed by roads with
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scant attention to their potential benefits (Forman and others 1997). We know of no
studies that provide a systematic way of evaluating risks and benefits from building,
using, and removing roads. Such studies are needed to assess tradeoffs among the
exceptionally diverse roles of roads in forest landscapes.

This overview of scientific information leads us to conclude that the emerging science of
the effects of roads as networks in the landscape requires considerable new research.
Because of the high degree of variability of roads from place to place and region to re-
gion, a framework for evaluating benefits, problems, risks, and tradeoffs among them
would provide a powerful decisionmaking tool. We believe such a framework is now in
place (USDA FS 1999). Conducting these analyses is well within the grasp of capable
specialists, planners, and managers who can bring their expertise to the problem of
reducing risks from past, current, or planned roads and targeting future road-restoration
activities. The science pieces are already developed to analyze and integrate road
systems and their effects.

Valid and useful analyses of road systems cannot proceed in the face of outdated,
incomplete inventories lacking data needed to address important questions. Accurate
and current road inventories that include information relevant to environmental effects
analyses are needed.

Long-term and ongoing science initiatives would yield valuable information on how the
effects of roads develop and change over time. Areas of research should include the
effects of progressive road development and how road effects diminish or increase
through time, even under constant road configuration. Some observations suggest, for
example, that roads systems increasingly connect surface water flow paths to streams
over decades, via gullies and landslides in steep terrain. Effects of road restoration
practices also need to be evaluated in long-term studies, because both effects and
practices are likely to evolve over time. Research on social and cultural perspectives
on road use and presence is a key area for future work.

Several possible models might be used to organize a discussion of the ecological and
physical effects of roads in forested landscapes. The most logical organization might
start from the smallest scale of measurable effects and proceed to the landscape scales.
At present, however, our knowledge is too imperfect and too fragmented to fully appre-
ciate and integrate landscape-scale effects. Thus, we have used an approach that goes
from the most direct effects to the secondary and indirect effects of forest roads. To a
large degree, this model implies we will proceed from understanding effects of road
segments to understanding effects of a road network.

We list physical effects first, stressing geomorphic and hydrologic processes, followed
by effects on site productivity. Then we move to effects of habitat fragmentation, bio-
logical invasion, and other habitat changes that roads introduce. The direct effects—
especially the physical ones, such as increased sedimentation and increased risk of
slides and debris flows—are much affected by road design and placement on the land-
scape. Thus, when consequences of roads are aggregated at the landscape scale, the
proportion of old roads to new ones that incorporate improved engineering design must
be taken into account.

Indirect physical, biological, and landscape-scale effects, sometimes known only from
empirical relations, constitute the next set, and include aquatic habitat effects both
observed in instream consequences and broad-scale potential effects. Changes in the
habitat of terrestrial vertebrates, road kill, and transmission of forest diseases by road
traffic are even more complicated, in that they introduce effects not from the road itself,
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Direct Physical and
Ecological Effects

Geomorphic Effects,
Including Sedimentation
and Landslides

but from road use. Such effects clearly can be stopped by closing a road, but they also
can be reduced or altered by changing patterns of road use, allowing for a range of
options different from the options roads introduce just by their presence. Lastly, con-
serving biodiversity is such a broad and unexplained topic that we can sketch only a few
of its aspects; we cannot state unequivocally what specific roles roads have in the inter-
play of populations, modified habitat, the new techno-ecosystem, road kill, and the com-
plex ecological results when alien species modify forest landscapes. We also cannot
separate the effects of roads from land-use changes on adjacent lands made accessible
by roads; all modify species composition and survival of their populations.

We have addressed socioeconomic effects of roads in forest systems in a manner
that follows the pattern introduced in the discussion of physical and biological effects:
namely, we examine direct effects first, followed by a discussion of indirect effects or
effects at a larger, landscape scale.

Some studies have separated road effects from land-use effects, including timber har-
vest on adjacent lands; other studies have not. Thus, this synthesis may have allowed
these effects to be combined. Although we have made every effort to remove these con-
founding factors, the reader must carefully evaluate the data presented and consider to
what degree we have succeeded.

The following sections are summary discussions of the interaction of roads with adja-
cent landscape components. They also briefly summarize the available information
about the effects of roads on the environment and deliberately have been kept short with
references provided for further study.

Issues—More than 50 years of research and many case examples place the effects
of forest roads on geomorphic processes squarely at the heart of the debate prompting
reexamination of existing and future road networks on public lands. Geomorphic effects
of forest roads range from chronic and long-term contributions of fine sediment into
streams to catastrophic effects associated with mass failures of road fill material during
large storms. The interactions of roads and land surfaces are often complex; for ex-
ample, on one part of the hillslope, roads may trigger mass failures, and roads down-
slope from them may trap material derived from these failures. Roads and road building
may alter channel morphology directly or may modify channel flow paths and extend the
drainage network into previously unchannelized portions of the hillslope. Economic ef-
fects of road failures during storms has been discussed; less clearly understood are the
cumulative or downstream consequences of road-related changes to geomorphic proc-
esses. Major issues motivating concern about road-related erosion include potential
degradation of aquatic habitat and water quality and risks to public safety and structures
downstream.

Findings—Roads affect geomorphic processes by four primary mechanisms: acceler-
ating erosion from the road surface and prism itself by both mass and surface erosion
processes; directly affecting channel structure and geometry; altering surface flow
paths, leading to diversion or extension of channels onto previously unchannelized por-
tions of the landscape; and causing interactions among water, sediment, and woody
debris at engineered road-stream crossings. These mechanisms involve different phy-
sical processes, have various effects on erosion rates, and are not uniformly distri-
buted either within or among landscapes. In steep forest lands prone to landsliding, the
greatest effect of roads on erosion rates is from increased rates of mass soil movement
after road building. Mass soil movements affected by roads include shallow (three to
several feet deep) debris slides, deep-seated (depths of tens of yards) slumps and earth
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flows, and debris flows (rapid channelized and fluidized movements of water, sediment,
and wood). Of these, effects of roads on debris slides and flows have been the most ex-
tensively studied, typically by landslide inventories using some combination of sequen-
tial aerial photography and ground verification. Accelerated erosion rates from roads
because of debris slides range from 30 to 300 times the forest rate, but differ with
terrain in the Pacific Northwest, based on a unit area in forest lands ranging from the
U.S. Pacific Northwest to New Zealand (Sidle and others 1985). After the 1964 flood in
the Pacific Northwest, Swanson and Dyrness (1975) documented increased rates of
landslide frequency up to 30 times the rates in unmanaged forested areas. Similar in-
ventories have been conducted elsewhere in the Western United States including Idaho
(Megahan and others 1978), Washington (Reid 1981), and northern California, each
documenting increased rates of landsliding in road areas relative to unmanaged for-
ested areas. The magnitude of road-related mass erosion differs with climate, geology,
road age, construction practices, and storm history. Several studies in the Eastern
United States show that landslides are driven more by storm magnitude and geology
than by land use. A threshold of 5 inches of rain per day (Eschner and Patric 1982)
and metasedimentary geology are associated with large debris slides in the Appalach-
ians. Road drainage can cause small slides in road fills; nevertheless, some major
landslides originate in undisturbed forest land (Neary and Swift 1987, Neary and others
1986).

Road-related mass failure results from various causes. Typical causes include improper
placement and construction of road fills and stream crossings; inadequate culvert sizes
for water, sediment, and wood during floods; poor road siting; modification of surface or
subsurface drainage by the road surface or prism; and diversion of water into unstable
parts of the landscape (Burroughs and others 1976, Clayton 1983, Furniss and others
1991, Hammond and others 1988, Larsen and Parks 1997, Larsen and Simon 1993).
Effects of roads on deep-seated mass movements have been much less extensively
studied, although cases are documented of road building apparently accelerating earth-
flow movement. This can occur by destabilizing the toe area or diverting water onto the
earth-flow complex (Hicks 1982). Little is documented about the potential for increased
mass failures from roads resulting from decay of buried organic material that has been
incorporated into road fills or landings during road building. Anecdotal evidence is
abundant that failures occur predictably after decay of the organic material.

Although mass erosion rates from roads typically are one to several orders of magni-
tude higher than from other land uses based on unit area, roads usually occupy a
relatively small fraction of the landscape, so their combined effect on erosion may be
more comparable to other activities, such as logging. Studies by Swanson and others
(1981) in the Oregon Coast Range, for example, showed that although unit-area erosion
from roads was 30 times greater than the increase from clearcutting alone, road-related
landslide erosion accounted for just three times as much accelerated slide erosion in
the watershed when the area in roads and clearcuts was taken into account. Road and
clearcut erosion were nearly equal in a study in the west side of the Cascade Range in
Oregon (Swanson and Dyrness 1975). In the Klamath Mountains of southwest Oregon,
erosion rates on roads and landings were 100 times those on undisturbed areas, but
erosion on harvested areas was 7 times that of undisturbed areas (Amaranthus and
others 1985).

A related point is that only a few sites can be responsible for a large percentage of the
total erosion. For example, major erosional features occupied only 0.6 percent of the
length of roads studied by Rice and Lewis (1986).
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Although road location, design, construction, and engineering practices have improved
markedly in the past three decades, few studies have systematically and quantitatively
evaluated whether these newer practices result in lower mass erosion rates (McCashion
and Rice 1983). Retrospective analysis of road-related landslides in the Oregon Coast
Range suggests some reduction in slide frequencies because of improved road siting
and building (Sessions and others 1987). No large storms occurred during the study
period, however, so these practices remain largely untested. Currently, several studies
are ongoing to evaluate road-related mass movements and the influence of road design
after several large floods in 1996 in the Pacific Northwest and 1997 in California. These
studies are likely to substantially improve understanding of whether “best management
practices” are effective in reducing mass erosion from roads, and which specific
practices influence mass failure response.

Surface erosion from road surfaces, cut banks, and ditches represents a significant
and, in some landscapes, the dominant source of road-related sediment input to
streams. Increased sediment delivery to streams after road building has been well
documented in the research literature for the Pacific Northwest and Idaho (Bilby and
others 1989, Donald and others 1996, Megahan and Kidd 1972, Reid and Dunne 1984,
Rothacher 1971, Sullivan and Duncan 1981) and in the Eastern United States
(Kochenderfer and others 1997; Swift 1985, 1988). Rates of sediment delivery from
unpaved roads are highest in the first years after building (Megahan and Kidd 1972)
and are closely correlated to traffic volume on unpaved roads (Reid and Dunne 1984,
Sullivan and Duncan 1981). Surface-erosion problems are worst in highly erodible
terrain, particularly landscapes underlain by granite or highly fractured rocks (Megahan
1974b, Megahan and Ketcheson 1996). In the Eastern United States, poorly designed
and managed forest access and county roads are major sources for higher sediment
input rates to streams (Hansen 1971, Patric 1976, Van Lear and others 1995). Roads
were identified as the major source of sediment in the Chattooga River basin, where 80
percent of the road sources are unpaved, multipurpose roads (forest and county) paral-
leling or crossing tributary streams (Van Lear and others 1995). The largest sediment
losses were during road building and before exposed soils were protected by revege-
tation, surfacing, or erosion control materials (Swift 1985, 1988; Thompson and others
1996; Vowell 1985). Soil loss from skid roads in West Virginia ranged from 40 tons/acre
during logging, to 4 tons/acre the first year after logging, to 0.1 ton/acre 1 year after
logging was completed (Hornbeck and Reinhart 1964). Raw ditch lines and roadbeds
are continuing sources of sediment (Miller and others 1985), usually because of lack of
maintenance, inadequate maintenance for the amount of road use, excessive ditch line
disturbance, or poorly timed maintenance relative to storm patterns (Swift 1984, 1988).

Extensive research has demonstrated that improved design, building, and maintenance
of roads can reduce road-related surface erosion at the scale of individual road seg-
ments. Key factors are road location, particularly layout relative to stream systems
(Swift 1988, USDA FS 1999), road drainage (Haupt 1959), surfacing (Burroughs and
King 1989, Kochenderfer and Helvey 1987, Swift 1984), and cut slope and fill slope
treatments (Burroughs and King 1989, Swift 1988). Many studies show that surfacing
materials and vegetation measures can be used to reduce the yield of fine sediment
from road surfaces (Beschta 1978, Burroughs and others 1984, Kochenderfer and
Helvey 1987, Swift 1984).

Few studies have evaluated long-term and watershed-scale changes to sediment yields
as roads are abandoned, obliterated, or restored. Personnel at Redwood National Park
are undisputed experts in road restoration at a watershed scale; they have developed,
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tested, and applied road-restoration techniques at a scale virtually unprecedented
throughout the world (Ziemer 1997). Since Redwood National Park was expanded in
1978, 134 miles of the 300 miles of road within park boundaries have been restored or
obliterated. This work has removed about 1,300,000 cubic yards of material from stream
crossings, landings, and unstable road benches. The volume of material is about equal
to the long-term average annual sediment discharge near the mouth of Redwood Creek
(Ringgold, n.d.). To evaluate the success of removing this volume of material, the
delivery mechanism, timing, and proportion of the removed material that actually would
have found its way to the channel without the restoration activity, the quantity of new
material introduced by erosion caused by the restoration work itself, and the relative
proportion of the treated areas compared to untreated areas at comparable risk in the
basin must be known. Such evaluations are uncommon.

Roads interact directly with stream channels in several ways, depending on orientation
to streams (parallel, orthogonal) and landscape position (valley bottom, midslope, ridge).
The geomorphic consequences of these interactions, particularly during storms, are
potentially significant for erosion rates, direct and off-site effects on channel morphol-
ogy, and drainage network structure, but they are complex and often poorly understood.
Encroachment of forest roads along the mainstem channel or flood plain may be the
most direct effect of roads on channel morphology in many watersheds. Poorly de-
signed channel crossings of roads and culverts designed to pass flow also may affect
the morphology of small tributary streams, as well as limit or eliminate fish passage.
Indirect effects of roads on channel morphology include the contributions of sediment
and altered streamflow that can alter channel width, depth, local gradients, and habitat
features (pools, riffles) for aquatic organisms (Harr and Nichols 1993).

Roads in midslope and ridgetop positions may affect the drainage network by initiat-
ing new channels or extending the existing drainage network. By concentrating runoff
along an impervious surface, roads may decrease the critical source area required to
initiate headwater streams (Montgomery 1994). In addition, concentrated road runoff
channeled to roadside ditches may extend the channel network by eroding gullies or
intermittent channels on hillslopes and by linking road segments to small tributary
streams (Weaver and others 1995, Wemple and others 1996a). These effects of roads
on the channel network have implications for slope stability, sedimentation, and stream-
flow regimes.

An emerging focus of the postflood studies in the Pacific Northwest is the importance
of designing roads to accommodate disturbances (see “Hydrologic Effects” below),
particularly in the area of road-stream crossings, which are implicated in most docu-
mented road failures (Furniss and others 1997). Another facet of this research is rec-
ognizing that roads can serve both as sources (by initiating landslides) and sinks (by
trapping debris flows) of sediment during large events (Wemple and others 1996a).

Reliability of findings—These findings represent a broad synthesis of more than 50
years of research on geomorphic effects of roads in a wide range of physiographic and
land-use settings. Although they are generally well supported by field, small watershed,
and plot studies, specific effects of roads are strongly influenced by local factors, in-
cluding road building techniques, soil and geology, precipitation and runoff regimes,
and topography. As with hydrologic studies, evaluating effects of roads on geomorphic
processes is further limited by the short timeframes (one to several years) during which
such effects typically are monitored. Few studies have placed road effects in a broad
landscape or watershed setting.
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Generalizability—Most studies of roads have been conducted in only a few landscapes
(the Pacific Northwest, Rocky Mountains, Appalachians, interior highlands, and Pied-
mont), so the ability to generalize to other terrains is limited. Statements about effects of
roads on mass erosion are limited to those landscapes affected by such processes. A
large part of the United States, including the Central States, Piedmont, and the coastal
plain in the East, do not experience mass erosion processes in the forest. For the most
part, only historical road-building practices (pre-1990) have been rigorously evaluated,
either by scientists or by the landscape itself through large floods. Little is known, how-
ever, about geomorphic effects of old mining and arterial roads (older than 50 years).

Secondary links—The geomorphic and hydrologic effects of roads are closely related.
Restoration strategies to reduce either geomorphic or hydrologic effects are likely to be
quite different, however, which underscores the need to clearly identify objectives for
restoration. For example, practices to reduce road network extension of surface flow
paths by draining water back into the subsurface could have the unintended conse-
quence of destabilizing fill slopes. Both the mass erosion and fine-sediment delivery
issues are closely linked to concerns about aquatic habitat.

Conclusions—As with the hydrologic issues, evaluating geomorphic effects of roads
needs to be addressed at several scales: individual road segments, intermediate-sized
watersheds, and the entire road network in the river basin (which may include private
lands and roads and roads built for a broad range of purposes, not just forest opera-
tions). Key directions for future research work are to systematically evaluate the rela-
tion between improved road practices and mass-erosion rates, particularly in light of
mid-1990s floods in the Pacific Northwest and California; develop a conceptual and
analytical framework for evaluating how roads in different landscape positions (valley
bottom, midslope, ridgetop) interact with streams; develop empirical data on the amount
of drainage-network extension and drainage-density increases resulting from roads in
different geomorphic settings; and place geomorphic effects of roads in broader land-
scape contexts by using sediment budget and disturbance budget approaches.

Issues—The interaction between forest roads and water lies at the heart of several
key issues surrounding the effects of roads on the environment. At the scale of individ-
ual road segments, designing and building roads to drain or channel water away from
the road surface is one of the main problems facing road engineers, and it reflects the
substantial effects that roads can have on hillslope hydrology. Road drainage problems
and water and debris passage problems—especially during floods—are primary rea-
sons for road failure, often with major structural, ecologic, economic, or social con-
sequences. For example, of the $178 million spent on flood recovery on Forest Service
lands in the Pacific Northwest Region after the 1996 floods, more than 70 percent was
to fix road damage; most of the damage resulted from water drainage problems that, in
turn, triggered mass movements (Cronenwelt, n.d.). At a broader scale, roads can influ-
ence the size and timing of streamflows from watersheds, with possible consequences
for downstream channels and aquatic ecosystems. For these reasons, many road
restoration projects are explicitly or implicitly focused on the ways roads influence the
routing of water, with consequences for erosional processes.

Findings—Roads have three primary effects on water: they intercept rainfall directly on
the road surface and road cutbanks and intercept subsurface water moving down the
hillslope; they concentrate flow, either on the surface or in an adjacent ditch or channel;
and they divert or reroute water from flow paths that it would take were the road not
present. Most hydrologic and geomorphic consequences of roads result from one or
more of these processes. By intercepting surface and subsurface flow, for example,

Hydrologic Effects
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and concentrating it through diversion to ditches, gullies, and channels, road systems
effectively increase the density of streams in the landscape. This changes the amount
of time required for water to enter a stream channel, which alters the timing of peak
flows and hydrographic shape (King and Tennyson 1984, Wemple and others 1996a).
Similarly, concentration and diversion of flow into headwater areas can cause incision
of previously unchanneled portions of the landscape and initiate slides in colluvial hol-
lows (Mongomery 1994). Diversion of streamflow at road-stream crossings is a key
factor contributing to road failure and erosional consequences during large floods
(Furniss and others 1998, Weaver and others 1995).

Hydrologically, different parts of the road system behave differently. All roads are not
created equal and do not perform the same during storms, and the same road segment
may behave differently during storms of different magnitudes. Recent, detailed exam-
ination of hydrographs at stream crossings with culverts shows that during the same
storm, some road segments contribute substantially more flow to channels than others,
primarily owing to differences in the amount of subsurface water intercepted at the cut
bank (Bowling and Lettenmeier 1997, Wemple and others 1996b). As storms become
larger or soil becomes wetter, more of the road system contributes water directly to
streams. Slope position has a profound effect on the magnitude of hydrologic change
caused by roads. Discharge from hill slopes, height of cut bank, density of stream
crossings, soil properties, and response to storms all differ with slope position.

Although hydrologic effects of roads have been studied for more than 50 years, sys-
tematic studies with long-term measurement of the full range of potential interactions
between water and roads are few. Most studies have emphasized geotechnical issues,
including road design, culvert size and placement, and erosion control from road sur-
faces (see Reid and others 1997, for bibliography; Swift 1988). Of those studies that
have attempted to look at the hydrologic behavior of roads, most have been part of small
(typically 0.3 to 2 square miles) watershed experiments, where roads were a component
of the experimental treatment, which often included other silvicultural practices. Key
studies and locales of this type include those by Rothacher (1965, 1970, 1971, 1973),
Harr and McCorison (1979), Harr and others (1975), Jones and Grant (1996), and
Thomas and Megahan (1998) in western Oregon; Ziemer (1981, 1998) and Wright
and others (1990) in northern California; King and Tennyson (1984) in central Idaho;
Reinhart and others (1963), Hewlett and Helvey (1970), Swank and others (1982, 1988)
in the southern Appalachians, Helvey and Kochenderfer (1988) in the central Appa-
lachians; and Hornbeck (1973) and Hornbeck and others (1997) in the northern
Appalachians. Very few studies have focused on the hydrologic behavior of roads
alone; in the Pacific Northwest and Rocky Mountains, maximum measurement periods
during which roads were the only treatment range from 1 to 4 years (Wemple 1994).
Most studies have been conducted as “black box” experiments comparing streamflow
hydrographs before and after road building, with little ability to identify key processes.
Exceptions include the work of Megahan (1972), Keppeler and others (1994), and
Wemple (1994) on subsurface flow interception and Luce and Cundy (1994) and
Ziegler and Giambelluca (1997) on road-surface runoff. Few studies have focused on
road effects, on hydrology in arid or tropical areas, or on areas dominated by snow
hydrology, permafrost, and wetlands.

Even fewer published studies have explicitly considered how road networks affect
the routing of water through a basin. We therefore have little basis to evaluate the
hydrologic functioning of the road system at the scale of an entire watershed or land-
scape. Few published studies to date have identified how roads in different landscape
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positions might influence the movement of water through a basin. Montgomery (1994)
looked at the effect of ridgetop roads on channel initiation, and Wemple (1994) docu-
mented the magnitude of drainage network enlargement caused by roads in different
slope positions.

Based on studies of small watersheds, the effect of roads on peak flows is detectable
but relatively modest for most storms; insufficient and contradictory data do not permit
evaluation of how roads perform hydrologically during the largest floods. Roads do not
appear to affect annual water yields, and no studies have evaluated their effects on low
flows. In some studies, roads produced no detectable change in flow timing or magni-
tude (Rothacher 1965, Wright and others 1990, Ziemer 1981), but in other basins, aver-
age time to storm peak advanced and average peak magnitude increased after road
building for at least some storm sizes (Harr and others 1975, Jones and Grant 1996,
Thomas and Megahan 1998). In a study in Idaho, peak stormflow magnitude increased
in one basin and decreased in another after road building, an effect the authors attri-
bute to subsurface flow interception by roads and desynchronization of delivery of water
to the basin outlet (King and Tennyson 1984). A whole-tree logging operation in New
Hampshire that resulted in 12 percent of the area in roads (Hornbeck and others 1997)
showed a maximum average increase of growing-season peak flows of 63 percent in the
second year after harvest. This increase disappeared as the forest regenerated, and
only 2 of the 24 peak flows in the 6th through the 12th growing seasons showed statis-
tically significant increases. Dormant-season peak flows generally decreased because
cutting changed snowmelt regimes. Helvey and Kochenderfer (1988) concluded that
typical logging operations in the central Appalachians do not increase flows sufficiently
to require larger culverts to accommodate them. Forest harvesting without roads in the
southern Appalachians increased stormflow volumes by 11 percent and peak flow rates
by 7 percent (Hewlett and Helvey 1970, Swank and others 1988). Harvesting an adja-
cent watershed with 4 percent of the area in roads increased stormflows by 17 percent
and peak flows by 33 percent. Four years later, peak flows dropped to a 10-percent
increase after 40 percent of the road system was closed and returned to forest
(Douglass and Swank 1975, 1976). Collectively, these studies suggest that the effect of
roads on basin streamflow is generally smaller than the effect of forest cutting, primarily
because the area occupied by roads is much less than that occupied by harvest opera-
tions. Generally, hydrologic recovery after road building takes much longer than after
forest harvest because roads modify physical hydrologic pathways, but harvesting
principally affects evapotranspiration processes. The hydrologic effect of roads de-
pends on several factors, including the location of roads on hillslopes, characteristics of
the soil profile, subsurface water flow and ground-water interception, design of drainage
structures (ditches, culverts) that affect the routing of flow through the watershed, and
proportion of the watershed occupied by roads.

Most road problems during floods result from improper or inadequate engineering and
design, particularly at road-stream crossings but also where roads cross headwater
swales or other areas of convergent groundwater. Road redesign that anticipates and
accommodates movement of water, sediment, and debris during infrequent, but major
storms should substantially reduce road failures and minimize erosional consequences
when failures occur. Recent studies after large floods in the Pacific Northwest highlight
the importance of water diversion by roads and road-related structures (that is, plugged
culverts, ditches) in contributing to road-related failures (Donald and others 1996,
Furniss and others 1997). A typical failure resulted from culverts sized only to accom-
modate the flow of water, but not the additional wood and sediment typically transported
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during major floods. The culverts became obstructed and diverted water onto the road
surface, into neighboring drainages unable to adjust to the increase in peak flow from
the contributing basin, or onto unchanneled hillslopes. “Cascading failures” were com-
mon, where diversion or concentration of flow led to a series of other events, ultimately
resulting in loss of the road or initiation of landslides and debris flows. Analysis of the
probability of large floods and how they relate to the design life of roads indicates that
most road crossings are likely to have one or more large floods during their lifetimes.
Consequently, designing roads with large storms in mind is prudent and well within the
reach of current engineering practices (Douglass 1977; Furniss and others 1991, 1997;
Helvey and Kochenderfer 1988). The potential for stream diversion on wildland roads
indicates that the environmental consequence of road failure during large storms is an
option to consider.

Although the ability to measure or predict the hydrologic consequence of building or
modifying a specific road network might be limited, general principles and models can
be provided that, if followed, may decrease the negative hydrologic effects of roads.
These principles will be useful during upgrading or decommissioning of roads to meet
various objectives. A partial list of principles includes:

• Locate roads to minimize effects; conduct careful geologic examination of all
proposed road locations.

• Design roads to minimize interception, concentration, and diversion potential,
including measures to reintroduce intercepted water back into slow (subsurface)
pathways by using outsloping and drainage structures rather than attempting to
concentrate and move water directly to channels.

• Evaluate and eliminate diversion potential at stream crossings.

• Design road-stream crossings to pass all likely watershed products, including woody
debris, sediment, and fish—not just water.

• Consider landscape location, hillslope sensitivity, and orientation of roads when
designing, redesigning, or removing roads.

• Design with failure in mind. Anticipate and explicitly acknowledge the risk from
existing roads and from building any new roads, including the probability of road
failure and the damage to local and downstream resources that would result.
Decisions about the acceptable probability and especially consequences of failures
should be informed through explicit risk assessments. The many tradeoffs among
road building techniques to meet various objectives must be acknowledged. For
example, full bench road construction may result in lower risk of fill slope failure,
but it also may increase the potential for groundwater interception; outsloping of the
road tread may reduce runoff concentration on the road surface but also increase
driving hazard during icy or slippery conditions.

Reliability of findings and generalizability—Hydrologic effects of roads are strongly
influenced by landscape condition, road design and construction, and storm history.
Generalizability of paired-watershed studies is limited by the short timeframes (one to
several years) during which road effects alone are typically monitored. In addition, most
road studies have been done in only a few landscapes where road problems are com-
mon (the Pacific Northwest, Rocky Mountains, and Appalachians), thereby limiting the
ability to generalize to other terrain. The general principles represent reasonable inter-
pretations of the available scientific knowledge, however. Some landscapes may be
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much more sensitive than others to certain key processes, such as interception of sub-
surface flow and drainage network extension resulting from gullying. For this reason, the
specific range of hydrologic effects likely to be encountered needs to be evaluated by
both regional and landscape scales.

Secondary links—The hydrologic effects of roads are strongly linked to their sedi-
ment and geomorphic effects. Other links can be found with wildlife (for example, road-
created wetlands) and invasion by exotics (for example, microclimate related to water
availability above and below the road prism), but these links have received little scientific
attention.

Conclusions—Future efforts to redesign, restore, or remove road systems because of
hydrologic concerns should have clear objectives: What hydrologic processes are con-
sidered problems? Where do they occur? What can be done about them? What degree
of hydrologic alteration is considered acceptable? This type of evaluation of roads is
best accomplished in the context of a watershed analysis (USDA FS 1999). Key areas
for future research are to develop analytical models that allow managers to display the
predicted hydrologic consequences of alternative road-network designs (these types
of models are still in their infancy but should be more widely available in the next 2 to
3 years), expand process-based studies of how roads affect specific hydrologic mech-
anisms (for example, subsurface flow interception or channel network extension) in dif-
ferent geomorphic settings evaluate at the landscape scale the extent of links between
the road and stream networks in different landscapes, and relate type and size of road
failures to specific design practices and landscape position.

Issue—The presence of roads commits a soil resource, and where roads occupy
formerly productive land, they affect site productivity.

Findings—Forest roads can have significant effects on site productivity by removing
and displacing topsoil, altering soil properties, changing microclimate, and accelerating
erosion. The direct effects of taking land out of production by removing trees and dis-
placing soil, or removing soil during building and maintaining roads, has been estimated
to range from 1 to 30 percent of the landscape area in managed forest lands (Megahan
1988a). In the Western United States, tractor and ground-cable systems average about
10 percent of the area affected by roads to support harvest operations, and skyline and
helicopter operations average 2 percent (Megahan 1988b). Studies in Eastern U.S. for-
ests have consistently found that 4 to 5 percent of the total forested area is taken out of
forest production by building roads during logging operations, although more than 50
percent of this area may be reforested within 8 years, but at reduced growth rates and
productivity. Total road length required to support logging operations depends on the
harvest and silvicultural systems and topographic configuration, but the area disturbed
may be surprisingly consistent (Douglass and Swift 1977, Robinson and Fisher 1982,
Swank and others 1982, Swift 1988).

Measurable declines in tree growth are common where soil is excavated to build the
road prism. Evidence of off-site effects of roads on productivity is conflicting, though
road-associated mass erosion may scour soil from steep slopes. Road building changes
soil physical properties including depth, density, infiltration capacity, water holding ca-
pacity, and gas exchange rate, nutrient concentrations, and microclimate. Fertile top-
soils, often containing most of the organic matter and plant nutrient capital of a site,
frequently are buried under road fills or sidecast and may be rendered inaccessible to
plant roots. Trees can grow on any portion of a closed road, but they can grow only on

Site Productivity
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cut and fill slopes on open roads. Sites are harshest and soils poor or nonexistent on
road cuts and the cut portion of road treads. Tree height and diameter growth is re-
duced on these portions of the road (Smith and Wass 1979, 1980, 1985). Growth is
sometimes enhanced on or below fill portions of roads because of reduced competition
and greater soil depth. Pfister (1969) documents a 30-percent increase in height growth
of western white pine (Pinus monticola Dougl. ex D. Don) adjacent to outsloped roads.
Megahan (1988a) suggests that this increase is due to enhanced soil moisture below
outsloping roads. Smith and Wass (1980) document significant declines of 23 percent
in height growth for lodgepole pine (Pinus contorta Dougl. ex Loud.) and 20 percent for
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) below insloped roads, which they
attribute to loss of available water through redirected drainage flow. Improper fill place-
ment and drainage can cause upslope groundwater to rise, and the changed soil mois-
ture kills trees (Boelter and Close 1974, Stoeckeler 1965), although not commonly. Loss
of nutrient capital is inevitable with soil disturbance from road building (Swanson and
others 1989), but isolating this effect from other site changes has proved difficult. An
indirect indication of nutrient loss is the marked growth response of plants on road fills
after fertilizer is applied. Fertilizer applied to a granitic road fill in Idaho increased
growth of vegetation by 32 to 116 percent (Megahan 1974a), but such increases are
not documented after fertilizer is applied on undisturbed soils. Both surface and mass-
erosion rates increase after road building, and often roads accelerate erosion on the
slope below. Downslope damage generally is associated with mass erosion when a
landslide originates from a road and causes scour on lower slopes or gullies related to
concentrated road drainage (Megahan 1988a). This problem is widespread on steep
slopes of the Pacific States and in the northern Rocky Mountains (Burroughs 1985,
Swanson and others 1981), although Megahan (1988b) estimates that productivity is
reduced on about 0.3 percent of forested land at a broad scale. These effects may
range from decades (Ice 1985) to more than 85 years (Smith and others 1986). Road
treads are highly compacted compared to natural soils, but compaction is not a produc-
tivity issue so long as roads are open and the running surface is bare. Road decom-
missioning must take compaction into account in restoring productivity, and various
“ripping” treatments are routinely applied to decompact road surfaces.

Reliability, confidence, and generalizability—Direct effects of roads—including lost
productivity because of the area occupied by roads themselves, and diminished pro-
ductivity on cut slopes and road treads on closed roads—are well documented and
general in geographic extent. Losses of productivity associated with road-caused,
accelerated erosion are site specific and variable in extent, but they are commonly re-
ported for all steep-slope landscapes. Rates of reforestation along road fills are high
in the Pacific Northwest and Eastern United States and slower in the inland West and
Southwest. Road-caused nutrient imbalances or declines often are confounded by other
effects (notably soil moisture losses) in Western States.

Conclusions—A substantial amount of information is available on productivity in road
fills and cut slopes and strong anecdotal, but obvious, evidence of lack of productivity on
road treads. Information on effects of roads on adjacent site productivity is limited, and
variable results confound attempts to generalize and accurately predict effects.

Secondary links—Applying salt to roads is discussed in “Water Quality” and its effects
on plant damage are discussed in “Forest Diseases,” both below. Erosional processes
and rates are discussed extensively in “Geomorphologic Effects,” above. Loss of site
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productivity represents a long-term economic loss, and quantifying such losses is con-
founded by the difficulty in establishing or even estimating the degree of soil produc-
tivity changes associated with roads.

Issues—Natural populations of animal species are reduced by habitat loss caused by
road building and by the animals’ avoidance of areas near roads. Populations can be
fragmented into smaller subpopulations, thereby causing increased demographic fluc-
tuation, inbreeding, loss of genetic variability, and local population extinctions.

Findings—Habitat loss has broader effects than just the conversion of a small area of
land to road surface. Roads fragment by changing landscape structure and by directly
and indirectly affecting species. Habitat effects of roads on the landscape include dis-
secting vegetation patches, increasing the edge-affected area and decreasing interior
area, and increasing the uniformity of patch characteristics, such as shape and size
(Reed and others 1996). Whenever forest roads are built, changes in habitat and
modified animal behavior will lead to changes in wildlife populations (Lyon 1983).
Road-avoidance behavior is characteristic of large mammals such as elk (Cervus
canadensis), bighorn sheep (Ovis canadensis), grizzly (Ursus arctos horribilis),
caribou (Rangifer tarandus), and wolf (Canis lupus). Avoidance distances of 300 to 600
feet are common for these species (Lyon 1985). Road usage by people and their
vehicles has a significant role in determining road avoidance by animals. In a telemetry
study of movement by black bear (Ursus americanus), bears almost never crossed
interstate highways, and they crossed roads with little traffic more frequently than those
with high traffic volumes (Brody and Pelton 1989). Bobcats (Lynx rufus) crossed paved
roads in Wisconsin forests less than expected, possibly to minimize interactions with
vehicles and people (Lovallo and Anderson 1996). A few studies have related genetic
changes in populations simply to the presence of roads (Forman and others 1997), but
the distribution of roads in the environment also must be considered. Road density is a
useful index of the effect of roads on wildlife populations (Forman and others 1997).
Wolves in Wisconsin are limited to places with pack-area mean road densities of 0.7
mile/square mile or less (Mladenoff and others 1995). Some studies have shown that
a few large areas of low road density, even in a landscape of high average road den-
sity, may be the best indicator of suitable habitat for large vertebrates (Rudis 1995).

Reliability, confidence, and limitations—The evidence is strong that forest roads
displace some large mammals and certain birds such as spotted owls (Strix occiden-
talis) and marbled murrelets (Brachyramphus marmoratus) and that displaced animals
may suffer habitat loss as a result. Effects of roads on small mammals and songbirds
are generally described as less severe, with changes expressed as modifications of
habitat that cannot readily be classified as detrimental or beneficial. This interpretation
is also probably true for amphibians and reptiles.

Generalizability—For large mammals, general principles have been explained, above,
that can be applied to project decisions.

Secondary links—Habitat fragmentation is linked to other habitat-related topics and
also links with access-related topics, particularly timber, where the density and distri-
bution of roads is a key technical and economic question.

Conclusions—Specific issues related to wildlife can be addressed directly. Integration
with other technical, economic, and social issues (such as timber availability and recre-
ational access) have to be dealt with by management.

Habitat Fragmentation
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Issues—Road building introduces new edge habitat in the forest. The continuity of the
road system also creates a corridor by which edge-dwelling species of birds and
animals can penetrate the previously closed environment of continuous forest cover.
Species diversity can increase, and increased habitat for edge-dwelling species can
be created.

Findings—Roads and their adjacent environment qualify as a distinct habitat and have
various species, population, and landscape-scale effects (Baker and Knight 2000,
Dawson 1991, van der Zande and others 1980). Some research has attempted to
describe habitat modifications caused specifically by roads, but most of this work is
species and site specific (Lyon 1983). Surveys of songbirds in two national forests of
northern Minnesota found 24 species of birds more abundant along roads than away
from them (Hanowski and Niemi 1995). Close to half these species were associated with
edges, including birds like crows (Corvus brachyrhynchos) and blue jays (Cyanocitta
cristata) that use roads as corridors to find food. Turkey hens (Megapodiidae) in North
Carolina nested near closed and gated logging roads and used them extensively in all
stages of brood development (Davis 1992). One study showed that habitat in the road-
side right-of-way supports a greater diversity of small mammals than do adjacent habi-
tats (Adams and Geis 1983), but this finding may not apply to forest roads with only nar-
row cuts and fills on either side. The similarity between forest roads and transmission-
line rights-of-way may be important in assessing the contribution of roads to habitat.
Studies have shown that wide transmission-line corridors support grassland bird com-
munities of species not found in the forest, and narrow corridors produce the least
change from forest bird communities (Anderson and others 1977). The same study
notes that increasing edge diversity of birds, for instance, may negatively affect
abundance of interior species (see “Biological Invasions,” below).

Reliability, confidence, and limitations—Limited species and site-specific data exist
describing the immigration of particular species into habitat created by roads. Detailed
information on specific habitat characteristics affected by the building and presence of
roads is lacking. The relation of microclimate, vegetation distribution, and water supply
to the road network needs to be described.

Generalizability—In general, road building fragments habitat and creates habitat edge,
thereby modifying the habitat in favor of species that use edges. Edge-dwelling species
generally are not threatened, however, because the human-dominated environment has
provided ample habitat for them. Any habitat modifications attributed to the road may be
insignificant compared to the effects of the activity, such as timber harvest, for which
the road was built.

Secondary links—Links exist to other habitat-related topics and also to biological
invasions.

Conclusions—Science information about the underlying principles related to this issue
is incomplete. Further study is needed before anything more than site- and species-
specific analyses can be undertaken.

Issues—A widely cited generalization about biological invasion is that it is promoted
by disturbance. Building roads and subsequently maintaining them (including ditch
clearing, road grading, and vegetation clearing) in the interior of a forest represents
disturbances that create and maintain new edge habitat. These roadside habitats can be
invaded by an array of exotic (non-native) plant species, which may be dispersed by
“natural” agents such as wind and water as well as by vehicles and other agents related

Habitat

Biological Invasions
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to human activity. Roads may be the first point of entry for exotic species into a new
landscape, and the road can serve as a corridor along which plants move farther into
the landscape (Greenberg and others 1997, Lonsdale and Lane 1994). Some exotic
plants may then be able to move away from the roadside into adjacent patches of suit-
able habitat. Invasion by exotic plants may have significant biological and ecological
effects if the species are able to disrupt the structure or function of an ecosystem. In-
vasion also may be of concern to land managers, if the exotic species disrupt manage-
ment goals and present costly eradication problems.

Findings—Although few habitats are immune to at least some invasion by exotic plants,
predicting which species will become pests usually is difficult. Assessing the scale of a
biological invasion problem is complicated by the lag between when an exotic is intro-
duced and when it begins to expand its distribution and population size in a new area.
Cowbirds (Molothrus ater), for example, can be introduced into forested environments
by roads and subsequently affect populations of Neotropical migratory birds through
nest parasitism. The spread of pathogens where roads act as vectors is described in
“Forest Diseases,” below. Few environmentally benign approaches to exotic plant control
or eradication have been tested.

Reliability, confidence, and limitations—Field studies of exotic plants tend to focus on
a particular geographic region, and observed patterns of road-supported invasion may
not apply to other regions. In general, however, observations suggest that biological
invasion is often a negative effect of extending roads into forest interiors. Such effects
should be considered in the design and execution of road network extensions.

Generalizability—Observations in different settings suggest that the exotic species that
successfully invade and the scale of invasion problems differ regionally. Some exotic
species can become significant pests, and others remain fairly benign.

Secondary links—Consequences of biological invasions link to habitat quality issues
(including changes in plant community structure and function), other edge effects, and
effects on sensitive or threatened species.

Conclusions—Information to assess the degree of risk relies on case studies; the risks
may be slight or significant. A less than ideal science base exists for identifying which
exotic species pose the greatest threat and what preventive or remedial measures are
appropriate. Retrospective studies may help identify directions. One study showed that
abandoned roads had fewer exotics (both in number of species and frequency of
individuals) than did roads that were in use.

Issues—The effects of roads on aquatic habitat are believed to be widespread and pro-
found, and evidence is documented through empirical associations and direct mech-
anistic effects, although the mechanistic effects become fuzzy when direct, quantitative,
cause-effect links are sought. Several studies correlate road density or indices of roads
to fish density or measures of fish diversity. Mechanisms include effects of fine sedi-
ment, changes in streamflow, changes in water temperature caused by loss of shade
cover or conversion of groundwater to surface water, migration barriers, vectors of
disease, exotic fishes, changes in channel configuration from encroachment, and
increased fishing pressure. A growing body of work indicates that the complexity of
habitat and the predictability of disturbance influences species diversity. At the land-
scape scale, correlative evidence suggests that roads are likely to influence the fre-
quency, timing, and magnitude of disturbance, which are likely to influence community
structure.

Indirect and
Landscape-Scale
Effects

Aquatic Habitat
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Findings—Increased fine-sediment composition in stream gravel has been linked to
decreased fry emergence, decreased juvenile densities, loss of winter carrying capac-
ity, and increased predation of fishes. Increased fine sediment can reduce benthic
organism populations and algal production. Increased sediment production associated
with roads is discussed in detail in “Geomorphic Effects,” above. Survival of incubating
salmonids from embryos to emergent fry has been negatively related to the proportion of
fine sediment in spawning gravels (Chapman 1988, Everest and others 1987, Scrivener
and Brownlee 1989, Weaver and Fraley 1993, Young and others 1991). Increased fine
sediment in stream gravel can reduce intragravel water exchange, thereby reducing
oxygen concentrations, increasing metabolic waste concentrations, and restricting
movements of alevins (Bjornn and Reiser 1991, Coble 1961, Cordone and Kelley 1960).
Survival of embryos relates positively to dissolved oxygen and apparent velocity of
intragravel water, and positively to gravel permeability and gravel size (Chapman 1988,
Everest and others 1987). Consequently, juvenile salmonid densities decline as fine
sediment concentrations increase in rearing areas (Alexander and Hansen 1986, Bjornn
and others 1977, Chapman and McLeod 1987, Everest and others 1987, Shepard and
others 1984). Increases in fine sediment also can reduce winter carrying capacity of
streams by loss of concealment cover (Bjornn and others 1977, Chapman and McLeod
1987, Thurow 1997) and by increasing the likelihood of predation (Chapman and
McLeod 1987). Pools function as resting habitats for migrating adults, rearing habitats
for juveniles (Bjornn and Reiser 1991), and refugia from natural disturbances (Sedell
and others 1990). Pools that lose volume from sediment (Jackson and Beschta 1984,
Lisle 1982) support fewer fish (Bjornn and others 1977), and fish that reside in them
may suffer higher mortality (Alexander and Hansen 1986). Similarly, populations of
tailed frogs can be severely reduced or eliminated by increased sedimentation
(Corn and Bury 1989, Welsh 1990), presumably because of their dependence on
unembedded interstitial areas in the stream substrate where they hide and overwinter
(Brown 1990, Daugherty and Sheldon 1982). Increased sediment reduces populations
of benthic organisms by reducing interstitial spaces and flow used by many species and
by reducing algal production, the primary food source of many invertebrates (Chutter
1969, Hynes 1970).

The effects of roads are not limited to those associated with increases in fine-sediment
delivery to streams; they can include barriers to migration, water temperature changes,
and alterations to streamflow regimes. Improper culvert placement at road-stream
crossings can reduce or eliminate fish passage (Belford and Gould 1989), and road
crossings are a common migration barrier to fish (Clancy and Reichmuth 1990, Evans
and Johnston 1980, Furniss and others 1991). In a large river basin in Washington, 13
percent of the historical coho habitat was lost as a result of improper culvert barriers
(Beechie and others 1994). Roads built adjacent to stream channels pose additional
effects. Changes in temperature and light regime from removing the riparian canopy
can have both positive and negative effects on fish populations. Sometimes increased
food availability can mitigate negative effects of increased summer water temperatures
(Bisson and others 1988). Beschta and others (1987) and Hicks and others (1991) doc-
ument negative effects, including elevation of stream temperatures beyond the range of
preferred rearing, inhibition of upstream migrations, increased disease susceptibility,
reduced metabolic efficiency, and shifts in species assemblages. Streamflow stability
and predictability (size, timing, duration, and frequency) also strongly influence
salmonid densities by influencing reproductive success and overwintering survival
(McFadden 1969). For example, high flows after spawning can wash out eggs or
displace fry, thereby increasing mortality (Latta 1962, Mortensen 1977, Shetter 1961).
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The effect of roads on peak flows is relatively modest (see “Hydrologic Effects,” above),
and the issues of changing stability and predictability because of roads may be of little
importance to aquatic habitat suitability.

Road-stream crossings have effects on stream invertebrates. Hawkins and others
(in press) found that the aquatic invertebrate species assemblages (observed versus
expected, based on reference sites) were related to the number of stream crossings
above a site. Total taxa richness of aquatic insect larvae (mayflies, Ephmeroptera;
stoneflies, Plecoptera; and caddisflies, Trichoptera) were negatively related to the
number of stream crossings. Another study (Newbold and others 1980) found signif-
icant differences between macroinvertebrate assemblages above and below road-
stream crossings.

Several studies at broad scales document aquatic habitat or fish density changes as-
sociated with road density or indices of road density. Eaglin and Hubert (1993) show a
positive correlation with numbers of culverts and stream crossings and amount of fine
sediment in stream channels, and a negative correlation with fish density and numbers
of culverts in the Medicine Bow National Forest. Macroinvertebrate diversity negatively
correlates with an index of road density (McGurk and Fong 1995). Increasing road
densities are associated with decreased likelihood of spawning and rearing of non-
anadromous salmonids in the upper Columbia River basin, and populations are nega-
tively correlated with road density (Lee and others 1997).

Reliability, confidence, and limitations—Research evidence of increased erosion and
sediment delivery to streams resulting from roads is strong. Subsequent habitat changes
from such processes as pool filling and cobble embeddedness are well documented, but
these effects depend heavily on channel geometry, flow regimes, and so on. Thus, they
range widely in time and space. Measured changes in stream temperature after canopy
removal are strong but biological response is highly variable, and existing literature
speculates on possible mechanisms. Empirical evidence relating road density to habitat
and population response at landscape scales is fairly new. The study by Lee and others
(1997) has a large database and is analytically sound, but it demonstrates a statistically
valid population response only for non-anadromous salmonids. Because roads are not
distributed randomly on the landscape, these studies can be confounded by other land-
scape variables that may control biological response. This issue is addressed by Lee
and others (1997).

Generalizability—Broad-scale patterns in the distribution of roads and fish suggests
that the effects of roads are common and widespread across a range of environments
and conditions (Bettinger and others 1998, Lee and others 1997). Changes in aquatic
habitat resulting from increased erosion and sediment delivery are highly controlled
by lithology and slope, however. Road-derived sediment in granitic terrain typically
results in an increase in the proportion of fine bedload. In fine-textured parent materials,
suspended load may increase but not change pool filling and cobble embeddedness.
Changed timing and size of peak and low flows resulting from roads have different
implications for storm-generated and snowmelt-dominated hydrologic regimes, and
they result in different biological effects for oversummer and overwinter egg survival.
The effect of cover removal on elevated stream temperature depends on the rate of
vegetation recovery and appears to be brief in the Eastern United States (Swift 1983).

Secondary links—Responses by aquatic habitat depend on geomorphic and sediment
changes associated with roads. Road-associated changes in nutrients and hazardous
chemical spills are also linked but are issues addressed elsewhere in this report.
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Conclusions—Road effects on aquatic habitat and population response are well docu-
mented and overwhelmingly negative, but results differ among sites. Measures of the
cumulative effects of roads that are closely related to mechanism (for example, the
length of roads connected by direct surface-flow paths to streams or the miles of poten-
tial habitat blocked by culverts) would be more likely to produce stronger relations be-
tween roads and aquatic habitat elements than would road density.

Issues—The decline of anadromous fish in many parts of the country, especially the
salmonids in the West, has led to much research on the diverse causes. Among those,
the relation of roads to intensity of land use and adverse effects on aquatic habitats has
been discussed in several recent studies and publications (Meehan 1991, Naiman and
others 1992, Spence and others 1996). The discussion centers on three themes: the
correlation of road density to fish habitat and fish populations is not strong; the legacy
of past road building is so vast and budgets for maintaining roads so low that the prob-
lems will be with us for a long time; and road building practices have improved in the last
decade to the point where we need not worry about the effects of roads on aquatic sys-
tems. The scientific assessment for the interior Columbia basin provided an opportunity
to examine these issues at a broad, landscape scale in this ecoregion.

Findings—Roads contribute more sediment to streams than does any other land man-
agement activity (Gibbons and Salo 1973, Meehan 1991), but most land management
activities, such as mining, timber harvest, grazing, recreation, and water diversions,
depend on roads. Most of the sediment from timber harvest activities is related to roads
and road building (Chamberlain and others 1991, Dunne and Leopold 1978, Furniss
and others 1991, MacDonald and Ritland 1989, Megahan and others 1978) and the
associated increases in erosion rates (Beschta 1978, Gardner 1979, Meehan 1991,
Rhodes and others 1994, Reid 1993, Reid and Dunne 1984, Swanson and Dyrness
1975, Swanston and Swanson 1976). Serious degradation of fish habitat can result
from poorly planned, designed, located, built, or maintained roads (Furniss and others
1991, MacDonald and others 1991, Rhodes and others 1994). Roads also can affect
water quality through applied road chemicals and toxic spills (Furniss and others 1991,
Rhodes and others 1994), and the likelihood of toxic spills reaching streams has in-
creased with the many roads paralleling them.

Roads directly affect natural sediment and hydrologic regimes by altering streamflow,
sediment loading, sediment transport and deposition, channel morphology, channel
stability, substrate composition, stream temperatures, water quality, and riparian con-
ditions in a watershed. For example, interruption of hillslope drainage patterns alters the
timing and magnitude of peak flows and changes base stream discharge (Furniss and
others 1991, Harr and others 1975) and subsurface flows (Furniss and others 1991,
Megahan 1972). Road-related mass soil movements can continue for decades after
roads have been built (Furniss and others 1991). Such habitat alterations can adversely
affect all life stages of fish, including migration, spawning, incubation, emergence, and
rearing (Furniss and others 1991, Henjum and others 1994, MacDonald and others
1991, Rhodes and others 1994).

Poor road location, concentration of surface and subsurface water by cross-slope
roads, inadequate road maintenance, undersized culverts, and sidecast materials all
can lead to road-related mass movements (Lyons and Beschta 1983, Swanston 1971,
Swanston and Swanson 1976, Wolfe 1982). Sediment production from logging roads
in the Idaho batholith was 770 times higher than in undisturbed areas; about 71 percent
of the increased sediment production was due to mass erosion (Megahan and Kidd
(1972), leaving 29 percent due to surface erosion.

Landscape-Scale
Effects on Fish
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In granitic land types, sedimentation is directly proportional to the road distance
(Jensen and Finn 1966). For instance, 91 percent (66,000 cubic yards) of the annual
sediment production by land-use activities (72,200 cubic yards) in the South Fork of
the Salmon River (Idaho) is attributed to roads and skid trails (Arnold and Lundeen
1968). King (1993) determined that roads in the Idaho batholith increase surface ero-
sion by 220 times the natural rates per unit area. Roaded and logged watersheds in the
South Fork of the Salmon River drainage also have significantly higher channel-bed
substrate-embeddedness ratings than do undeveloped watersheds (Burns 1984).

Roads greatly increase the frequency of landslides, debris flow, and other mass
movements (Dunne and Leopold 1978, Furniss and others 1991, Megahan and others
(1992). Mass movement along the west side of the Cascade Range in Oregon was 30 to
300 times greater in roaded than in unroaded watersheds (Sidle and others 1985).
Megahan and others (1992) found that 88 percent of landslides in Idaho are associated
with roads. Roads were the primary factor in accelerated mass movement activity in the
Zena Creek drainage (Idaho batholith) after the 1964-65 winter storms (Gonsior and
Gardner 1971). Of 89 landslides examined along the South Fork of the Salmon River,
77 percent originated on road hillslopes (Jensen and Cole 1965). Cederholm and others
(1981) found increases (above natural rates) in the percentage of fine sediment in
fish spawning habitat when road density exceeded 2.5 percent of the Clearwater River
watershed in Washington. Increased stream-channel sedimentation in Oregon and
Washington watersheds east of the Cascade Range also is associated with road density
(Anderson and others 1992).

Road-stream crossings can be a major source of sediment to streams and result from
channel fill around culverts and subsequent road-crossing failures (Furniss and others
1991). Plugged culverts and fill-slope failures are frequent and often lead to catastroph-
ic increases in stream channel sediment, especially on abandoned or unmaintained
roads (Weaver and others 1995). Unnatural channel widths, slope, and streambed form
are found upstream and downstream from stream crossings (Heede 1980), and these
alterations in channel morphology may persist for long periods. Channelized stream
sections resulting from riprapping roads adjacent to stream channels are directly affect-
ed by sediment from side casting, snow removal, and road grading; such activities can
trigger fill-slope erosion and failures. Because improper culverts can reduce or elimi-
nate fish passage (Belford and Gould 1989), road crossings are a common migration
barrier for fish (Clancy and Reichmuth 1990, Evans and Johnston 1980, Furniss and
others 1991).

Key aspects of aquatic habitat are pools and instream wood (positive attributes) and
fine sediment (negative attribute). From an analysis of stream-inventory data for the
Columbia River basin (Lee and others 1997), pools declined with increasing road den-
sity and were highest in wilderness areas. Relations between wood and surface fines
were less clear. In Oregon and Washington, where wood frequency was measured, it
was higher for Forest Service lands managed as wilderness or in areas with moderate
use; it was significantly related to road density in the northern Cascades, southern
Cascades, Columbia Plateau, northern glaciated mountains, and Blue Mountains but not
in the Upper Klamath. Only the Lower Clark Fork and central Idaho mountains had
sufficient data to model the relation of wood frequency to surface fines. In these latter
two areas, the relation with road density was not significant, although the highest mean
values of five sediments were associated with the highest road-density class.
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Analysis of fish distribution and status data for seven species of anadromous and resi-
dent salmonids in the Columbia basin showed that the frequency of strong populations
generally declined with increasing road densities. Additional analyses of road effects
focused on four non-anadromous species, because effects of roads and other land
uses on anadromous species may be masked by migrational and ocean-related factors
(for example, dam passage, predation, harvest). Three species showed significant road
effects when either occupied spawning and rearing areas were distinguished from un-
occupied areas or strong status was differentiated from depressed status. The analysis
suggested a decreasing likelihood of occupancy, or a decreasing likelihood of strong
status if occupied, with increasing road density. No other variables except ground-slope
showed the consistent patterns across all species shown by the road-density measures.

The investigation of the influence of roads on population status clearly showed an in-
creasing absence and a decreasing proportion of strong populations with increasing
road density for several subgroups of fish. Additional evidence suggested that the low-
est mean road-density values (number of road miles per unit area) are always associ-
ated with strong population status.

This trend is apparent for Yellowstone cutthroat trout (Onchorynchus clarki bouvieri),
even though it was the only subgroup that did not show a significant road effect in a
logistic regression analysis. The lack of statistical significance in the face of apparent
trends, however, points to complex interactions among the explanatory variables that are
not adequately addressed in the relatively simple logistic model. Consistent, significant
effects for other species may be further testament to the presence and pervasiveness of
the effects. Strong relations between roads and the distribution and status of these spe-
cies were detected despite the potential confounding effects of other variables (such as
harvest, non-native introductions, and other habitat factors).

These results show that increasing road densities and their attendant effects are asso-
ciated with declines in the status of four non-anadromous salmonid species. These spe-
cies are less likely to use highly roaded areas for spawning and rearing and, if found,
are less likely to have strong populations. This consistent pattern is based on empirical
analysis of 3,327 combinations of known species’ status and subwatershed conditions,
limited primarily to forested lands administered by the Forest Service and the Bureau
of Land Management. The relation would not be expected to be as strong on the con-
forested, lower gradient lands administered by the bureau. Of the four species ex-
amined, the redband trout is the only one supported by the low-gradient lands. Only in
forested, high-elevation areas could redband trout status be clearly associated with
road-density changes.

Most aquatic conservation strategies acknowledge the need to identify the best habitats
and most robust populations to use as focal points from which populations can expand,
adjacent habitat can be usefully rehabilitated, or the last refugia of a species can be
conserved in unroaded areas where biophysical processes are still operating without
effects from many human disturbances. These refugia also provide necessary experi-
mental controls for evaluating the effects of land management activities in other areas.
The ecological importance of unroaded areas has been highlighted in the Columbia
basin assessment as well as other reports (FEMAT 1993, Henjum and others 1994).

The overlap of unroaded areas—both within and outside designated wilderness areas—
with stronghold watersheds for fish and with important conservation watershed efforts in
the Columbia basin also was examined. Designated wilderness and unroaded areas are
important anchors for strongholds throughout the basin. Unroaded areas occupy 41
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percent of the area with known and predicted strongholds in the east-side environmental
impact statement area. One-third of this area is outside designated wilderness. Of the
known and predicted strongholds in the upper Columbia basin area, 68 percent are
unroaded, of which 37 percent are outside wilderness.

Aquatic integrity in the Columbia basin was analyzed in relation to road densities and
integrity ratings for other resources (forest, range, hydrology). Forest clusters with the
highest integrity ratings were associated with low road densities; low integrity ratings
corresponded with moderate or higher road densities. For example, the range cluster
with the highest aquatic and composite integrity also had mostly low road densities. But
the relations between road densities and integrity ratings for other range clusters were
more variable.

The legacy of road building in the Pacific Northwest is enormous. The FEMAT report
(1993) notes that federally managed forest lands in the range of the northern spotted owl
contain about 180 000 kilometers (111,600 miles) of roads. A major portion of this road
system may constitute a potential threat to riparian and aquatic habitats through sedi-
mentation. An estimated 250,000 stream crossings (about 1.3 per kilometer [2.3 per
mile]) are associated with these roads, and a significant number of culverts are thought
to be unable to withstand storms with a recurrence interval greater than 25 years
(FEMAT 1993), a hypothesis tested and affirmed by the February 1996 flood. Analysis
suggests more than 205 000 kilometers (127,000 miles) of roads are on Forest Service
and Bureau of Land Management lands in the Columbia River basin. Many stream
crossings exist, with high densities of crossings in steep, highly dissected terrain and
low densities in drier and flatter terrains. Many of the culverts or stream crossings are
expected to perform poorly in flood events with recurrence intervals of more than 25
years, similar to their west-side counterparts identified in the FEMAT report. Even with
adequate culvert size, lack of maintenance of a road network of this size could lead to
significant road-drainage problems and accompanying effects on aquatic habitat.

Budgetary constraints on land management agencies may lead to lack of maintenance,
resulting in progressive degradation of road-drainage structures and functions, in-
creased erosion rates, and the likelihood of increased erosion (Furniss and others
1991). Problems are greatest with older roads in sensitive terrain and roads functionally
abandoned but not adequately configured for long-term drainage. Applying erosion pre-
vention and control treatments to high-risk roads can drastically reduce risks for future
habitat damage and can be both effective and cost-effective. In watersheds that contain
high-quality habitat and have only limited road networks, large amounts of habitat can
be secured with small expenditures to apply storm proofing and decommissioning activi-
ties to roads (Harr and Nichols 1993).

For federal forests with moderate to high road densities, the job of maintaining roads
may be expensive because many road networks have not been inventoried to deter-
mine their influence on riparian or aquatic resource goals and objectives. Substantial
increases in sedimentation are unavoidable even when the most cautious road-building
methods are used (McCashion and Rice 1983, Megahan 1980). Improving road-building
and logging methods, however, can reduce erosion rates and sediment delivery to
streams. The amount of sedimentation or hydrologic alteration from roads that aquatic
species can tolerate before a negative response appears is not well known, though gen-
eral effects of sediments on fishes are known. Sediment exceeding natural background
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loads can fill pools, silt spawning gravels, decrease channel stability, modify channel
morphology, and reduce survival of emerging salmon fry (Burton and others 1993,
Everest and others 1987, MacDonald and others 1991, Meehan 1991, Rhodes and
others 1994).

Rice (1992) documents an 80-percent reduction in mass erosion from forest roads
and about a 40-percent reduction in mass erosion from logged areas in northern
California that resulted from improvements in forest practices beginning in the mid-
1970s. Megahan and others (1992) used the BOISED sediment-yield production model
to evaluate the effects of historical and alternative land management in an Idaho water-
shed (South Fork Salmon River). They report that current management practices, prop-
erly implemented, could reduce sediment yield by about 45 to 90 percent when com-
pared with yields caused by the historical land use in their study watershed. If the
improved road design currently practiced by the Boise National Forest is used, how-
ever, total accelerated sediment yields are still 51 percent more than natural ones.
These improved road designs plus maximum erosion mitigation lead to 24-percent
increases over natural yields in unroaded areas. Helicopter logging results in 3-percent
increases over natural yields, and wildfire increases sediment yield about 12 percent
over natural loads (Megahan and others 1992).

Megahan and others (1995) evaluated the effects of helicopter logging and prescribed
burning on south-facing slopes of headwater drainages in the Idaho batholith by using
paired watersheds monitored from 1966 to 1986. Average annual sediment yields show
a statistically significant increase of 97 percent persisting for the 10 years of posttreat-
ment study after logging and burning. Accelerated surface erosion primarily result from
the prescribed burning, not the helicopter logging, because burning results in most of
the bare-soil exposure and in connecting the affected area to streams. Surface erosion
rates in the logged and burned areas are about 66 times greater than those on undis-
turbed slopes. The conclusion is that current best management practices can reduce
sediment yields compared with historical practices. But the risk of increased sedimen-
tation from forest management continues, particularly with such activities as road
building, timber harvest, and prescribed burning.

Temporary roads may have fewer adverse effects than do permanent roads, depending
on the extent to which they are decommissioned. As indicated by the analyses for the
Columbia basin, distinguishing the direct effects of roads from the cumulative effects of
other activities associated with roads is sometimes difficult. Thus, temporary roads may
reduce the direct effects of roads, but effects of activities for which the temporary roads
were built still will affect the environment.

Reliability, confidence, and limitations—The relations among roads, aquatic species
and their habitats, and other variables analyzed for the Columbia basin were developed
from predicted road density data developed from actual subsampled road data and a
rule-based model. The method used in developing road density classes is not a sub-
stitute for actually mapping roads, but the rule-based model approach provides a tool
for predicting road densities across a large landscape, when existing road data are
incomplete or out of date. Also, the rule-based model assures that the method used in
developing road densities is consistent throughout the Columbia basin. The final road
density model had inherent uncertainties because of incomplete data layers, limitations
of the sampling design, and the limitations of a rule-based model.
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A few road types could not be predicted by using this rule-based approach, despite its
general utility. For instance, Yellowstone National Park was assigned a road density
class of none because no unique rule-based model combinations existed for predicting
the park’s road system. Roads inside the park are based on human recreational inter-
ests, which were not accounted for in the model.

Generalizability—Because the Columbia basin assessment was designed specifically
as a broad-scale analysis, the relation of roads and aquatic species and their habitats
can be applied at the large-landscape scale. Those relations may not be the same for
federally managed lands outside the Pacific Northwest, particularly the Columbia basin,
although aquatic habitat loss and alterations, which include effects of roads, are associ-
ated with the decline of many fish species throughout North America (Miller and others
1989). Those general relations also may differ at finer scales because of specific bio-
physical characteristics, such as geology and soils, and use of actual rather than pre-
dicted road densities.

The declines in population status of non-anadromous salmonids in the Columbia basin
should be viewed as indicating the types of responses that may be experienced by other
native aquatic species in similar habitats. The species most like the non-anadromous
salmonids in distribution or habitat requirements would be expected to show the most
similar responses. This group would include the anadromous species—such as steel-
head, stream chinook salmon, and Pacific lamprey—that broadly overlap in range with
the non-anadromous salmonids and use many of the same habitats for significant por-
tions of their life. No logical reasons exist to expect anadromous fishes to be immune to
the effects of habitat change evident in the non-anadromous species. The ranges of
other species—including sculpins, dace, and some suckers—also overlap considerably,
and these species may follow similar trends in population abundance and distribution.

Although unroaded areas are significantly more likely to support strong populations,
strong populations are not excluded from roaded watersheds. Several possible reasons
for this coexistence have been suggested: The inherent productivity of some areas
allows fish populations to persist despite disturbances linked to roads; real or detectable
effects on fish populations may lag behind the initial physical effects in watersheds
where roads have been built in the last several years; and the scale of the subwatershed
(19,800 acres on average) at which strong populations are identified may mask a
potential disconnect between the real locations of strongholds and roads (which are
identified at 1-square-kilometer [0.39-square-mile] pixels). This issue of scale can be
resolved with a midscale or subwatershed analysis. The fact that strong salmonid pop-
ulations can coexist in many roaded areas provides opportunities to determine the rea-
sons, which may be instructive for both watershed restoration and future road building.
Given current information, the assumption that because roads and strong fish popula-
tions coexist in some watersheds, they will in others is not prudent, however. In general,
greater short- or long-term watershed and ecological risks are associated with entering
an unroaded area than with proceeding cautiously with management activities in roaded
areas to close and obliterate existing roads. The data strongly suggest a closer examina-
tion of the stronghold subwatersheds and their roaded condition.

Secondary links—The effects associated with roads reach beyond their direct contri-
bution to disruption of hydrologic function and increased sediment delivery to streams.
Roads provide access, and the activities that accompany access magnify the negative
effects on aquatic systems beyond those caused solely by the roads themselves. Activi-
ties associated with roads include fishing, recreation, timber harvest, livestock grazing,
and agriculture. Roads also provide avenues for stocking non-native fishes.
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Unfortunately, inadequate broad-scale information on many of these attendant effects
for the Columbia basin prevents identification of their component contributions. Simi-
larly detailed analyses are needed to address the relations between roads and fish at a
landscape scale in other ecoregions.

Conclusions—The range of specific case studies for broad-scale assessment of road
relations in the Columbia basin provides a substantial base of information on which to
evaluate the direct effects of roads and the cumulative effects of activities associated
with roads on aquatic habitats and species in the Northwest.

Issue—Effects of roads on vertebrate populations act along three lines: direct effects,
such as habitat loss and fragmentation; road use effects, such as traffic causing verte-
brate avoidance or road kill; and additional facilitation effects, such as overhunting or
overtrapping, which can increase with road access.

Findings—In recent research in the interior Columbia River basin, Wisdom and others
(2000) identify more than 65 species of terrestrial vertebrates negatively affected by
many factors associated with roads. Specific factors include habitat loss and fragmen-
tation, negative edge effects, reduced densities of snags and logs, overhunting, over-
trapping, poaching, collection, disturbance, collisions, movement barriers, displacement
or avoidance, and chronic, negative interactions with people. These factors and their
effects on vertebrates in relation to roads are summarized from Wisdom and others
(2000) as follows:

Road construction converts large areas of habitat to nonhabitat (Forman 2000, Hann and
others 1997, Reed and others 1996); the resulting motorized traffic facilitates the spread of
exotic plants and animals, further reducing quality of habitat for native flora and fauna
(Bennett 1991, Hann and others 1997). Roads also create habitat edge (Mader 1984, Reed and
others 1996); increased edge changes habitat in favor of species that use edges, and to the
detriment of species that avoid edges or experience increased mortality near or along edges
(Marcot and others 1994).

Species dependent on large trees, snags, or logs, particularly cavity-using birds and mammals,
are vulnerable to increased harvest of these structures along roads (Hann and others 1997).
Motorized access facilitates firewood cutting, as well as commercial harvest, of these
structures.

Several large mammals are vulnerable to poaching, such as caribou, pronghorn antelope,
mountain goat, bighorn sheep, wolf, and grizzly bear (Autenrieth 1978, Bruns, 1977, Chadwick
1973, Dood and others 1986, Greer 1985, Gullison and Hardner 1993, Horejsi 1989, Knight
and others 1988, Lloyd and Fleck 1977, Luce and Cundy 1994, Mattson 1990, McLellan
1990, McLellan and Shackleton 1988, Mech 1970, Scott and Servheen 1985, Singer 1978,
Thiel 1993, Van Ballenberghe and others 1975, Yoakum 1978). Roads facilitate this poaching
(Cole and others 1997).

Gray wolf and grizzly bear experience chronic, negative interactions with humans, and roads
are a key facilitator of such interactions (Mace and others 1996, Mattson and others 1992,
Thiel 1985). Repeated, negative interactions of these two species with humans increases
mortality of both species and often causes high-quality habitats near roads to function as
population sinks (Mattson and others 1996a, 1996b; Mech 1973).

Carnivorous mammals such as marten (Martes americana), fisher (M. pennanti), lynx (Lynx
canadensis), and wolverine (Gulo luscus) are vulnerable to overtrapping (Bailey and others
1986, Banci 1994, Coulter 1966, Fortin and Cantin 1994, Hodgman and others 1994,

Terrestrial Vertebrates
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Hornocker and Hash 1981, Jones 1991, Parker and others 1983, Thompson 1994, Witmer and
others 1998), and overtrapping can be facilitated by road access (Bailey and others 1986,
Hodgman and others 1994, Terra-Berns and others 1997, Witmer and others 1998).
Movement and dispersal of some of these species also is believed to be inhibited by high rates
of traffic on highways (Ruediger 1996), but this has not been validated. Carnivorous mammals
such as lynx also are vulnerable to increased mortality from highway encounters with
motorized vehicles (as summarized by Terra-Berns and others 1997).

Reptiles seek roads for thermal cooling and heating, and in doing so, these species experience
significant, chronic mortality from motorized vehicles (Vestjens 1973). Highways and other
roads with moderate to high rates of motorized traffic may function as population sinks for
many species of reptiles, resulting in reduced population size and increased isolation of
populations (Bennett 1991). In Australia, for example, 5 million reptiles and frogs are esti-
mated to be killed annually by motorized vehicles on roads (Ehmann and Cogger 1985, as
cited by Bennett 1991). Roads also facilitate human access into habitats for collecting and
killing reptiles.

Many species are sensitive to harassment or human presence, which often are facilitated by
road access; potential reductions in productivity, increases in energy expenditures, or
displace-ments in population distribution or habitat use can occur (Bennett 1991, Mader
1984). Exam-ples of such road-associated effects are human disturbance of leks (sage grouse
[Centrocercus urophasianus] and sharp-tailed grouse [Tympanuchus phasianellus]), nests
(ferruginous hawk [Buteo regalis]), and dens (kit fox [Vulpes macrotis]). Another example is
elk avoidance of large areas near roads open to traffic (Lyon 1983, Rowland and others 2000),
with elk avoidance increasing with increasing rate of traffic (Wisdom and others 2000,
Johnson and others 2000).

Bats are vulnerable to disturbance and displacement caused by human activities in caves,
mines, and on rock faces (Hill and Smith 1984, Nagorsen and Brigham 1993). Cave or mine
exploration and rock climbing are examples of recreation that could reduce population fitness
of bats that roost in these sites (Nagorsen and Brigham 1993, Tuttle 1988). Such activities
may be facilitated by human developments and road access (Hill and Smith 1984).

Ground squirrels often are targets of recreational shooting (plinking), which is facilitated by
human developments and road access (Ingles 1965). Many species of ground squirrels are
local endemics; these small, isolated populations may be especially vulnerable to recreational
shooting and potentially severe reductions or local extirpations of populations.

Roads often restrict the movements of small mammals (Mader 1984, Merriam and others
1988, Swihart and Slade 1984), and consequently can function as barriers to population
dispersal and movement by some species (Oxley and Fenton 1974).

Many granivorous birds are attracted to grains and seeds along roadsides and as a result have
high mortality from collisions with vehicles (Vestjens 1973). And pine siskens (Carduelis
pinus) and white-winged crossbills (Loxia leucoptera), for example, are attracted to road salt,
which can result in mortality from vehicle collisions (Ehrlich and others 1988).

Terrestrial vertebrates inhabiting areas near roads accumulate lead and other toxins that
originate from motorized vehicles, with potentially lethal but largely undocumented effects
(Bennett 1991).

In summary, no terrestrial vertebrate taxa seem immune to the myriad of road-associ-
ated factors that can degrade habitat or increase mortality. These multifaceted effects
have strong management implications for landscapes characterized by moderate to high
densities of roads. In such landscapes, habitats are likely underused by many species
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that are negatively affected by road-associated factors. Moderate or high densities of
roads sometimes index areas that function as population sinks that otherwise would
function as source environments were road density low or zero.

Reliability, confidence, and limitations—General effects of roads and road-associ-
ated factors on a wide variety of vertebrate taxa are well documented from a broad
range of studies conducted in North America, Europe, and other areas (Bennett 1991,
Forman and Alexander 1998, Mader 1984, Trombulak and Frissell 2000, Vestjens 1973).
Reliability of such effects at large, landscape scales, and for many taxa, is compelling
and unequivocal. Reliability of site-specific, small-scale effects, with focus on single
species, is less certain. For many species at local scales, the array of factors that could
affect habitats or populations have been neither well studied nor documented. Despite
such limitations, current knowledge of broad-scale effects on a variety of taxa is highly
certain and provides an overarching paradigm from which likely or presumed effects on
single species at local scales can be inferred. The many factors associated with roads
suggests that mitigating such effects succeeds best at large scales, when focused on
multiple species, and when based on a combination of aggressive road obliteration and
protection of roadless areas (Trombulak and Frissell 2000).

Generalizability—Although the summary of road-associated effects on vertebrates
described here is taken from research conducted in the interior Columbia River basin
(Wisdom and others 2000), results likely apply to several species occupying a diversity
of forest and rangeland environments in North America. At least four reasons account
for this presumed high generalizability: the road and road-associated effects described
by Wisdom and others (2000) were synthesized from research conducted across the
world; the synthesis focused on multiple species encompassing diverse taxa and envi-
ronmental requirements; the synthesis addressed an extreme range of environmental
conditions on federal lands administered by the Forest Service, the Bureau of Land
Management, and state, private, and tribal landowners; and the synthesis focused on
large-scale, overarching effects common to many species and conditions.

Secondary links—Many road-associated effects on terrestrial vertebrates are inti-
mately linked to managing human activities related to road access. Accordingly, mitiga-
tion of road-use effects requires effective control of human access to roads related to
managing livestock, timber, recreation, hunting, trapping, and mineral development.

Conclusions—Comprehensive mitigation of the full array of road-associated effects on
terrestrial vertebrates of conservation concern poses one of the most serious of land
management challenges. Balancing such mitigation with socioeconomic desires will be
controversial and contentious. Comprehensive efforts to mitigate road-associated ef-
fects on terrestrial vertebrates is well suited to testing as a large-scale management
experiment developed and implemented jointly by managers, researchers, and the
public.

Issues—Large numbers of animals are killed annually on roads. In selected situations,
such as for some amphibians with highly restricted home ranges, populations of rare
animals may be reduced to dangerous sizes by road kills.

Findings—An estimated 1 million vertebrates a day are killed on roads in the United
States (Lalo 1987). Studies show that the number of collisions between animals and
vehicles is directly related to the position of the nearest resting and feeding sites
(Carbaugh and others 1975). Because most forest roads are not designed for high-
speed travel, and the speed of the traffic is directly related to the rate of mortality, dir-
ect mortality on forest roads is not usually an important consideration for large mammals

Road Kill
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(Lyon 1985). An exception is forest carnivores, which are especially vulnerable to road
mortality because they have large home ranges that often include road crossings (Baker
and Knight 2000). Forest roads pose a greater hazard to small, slowly moving, migratory
animals, such as amphibians, making them highly vulnerable as they cross even narrow
forest roads (Langton 1989). Nearly all species of reptiles use roads for cooling and
heating, so many of them are killed by vehicles. Highways and other roads with
moderate- to high-speed traffic function as population sinks for many species of
reptiles, resulting in reduced and increasingly isolated populations (Wisdom and others
2000). Predators and scavengers are killed while they feed on road-killed wildlife, as
are other species attracted to roads because of salts or vegetation, or because roads
facilitate winter travel (Baker and Knight 2000). Although countless animals are killed
on roads every year, documented road-kill rates are significant in reducing populations
of only a few rare species in North America, and these kills generally are on high-speed
highways (Forman and others 1997).

Reliability, confidence, and limitations—A large body of data documents annual road
kill, and wildlife science can describe the factors that put wildlife at risk, but little re-
search has focused on how to mitigate the effects on wildlife populations.

Generalizability—Most road-kill questions will be related to individual species and
geographic sites, but general principles such as the frequency of travel between known
resting and feeding areas for individual species can be used in project decisions.

Secondary links—Road-kill issues link to habitat fragmentation, predation, and access
issues.

Conclusions—The issues can be addressed based on site and species. Difficulty will
arise in integrating road kill with the social and economic issues related to mitigation.

Issues—In general, the existence of roads seems to have little effect on forest tree
diseases, but there are some examples where building or using roads caused signifi-
cant local effects. Nearly always, the negative effects can be ameliorated through simple
modifications in how they are built and used. The one benefit of roads, as it pertains to
tree diseases, is to provide access for silvicultural activities that protect resources, such
as the ability to inoculate decay fungi into trees to create wildlife habitat (Bull and others
1997). One negative effect includes the movement of people on the roads, which allows
the pests to be introduced. Road building also may set the stage for an insect attack that
further stresses the trees and then a disease outbreak that kills them (Boyce 1961).

Findings—A significant forest disease problem associated with roads is Port-Orford-
cedar root disease. This disease of Port-Orford-cedar (Chamaecyparis lawsoniana (A.
Murr.) Parl.) is a root disease caused by the fungus Phytophthora lateralis. Spores of
the fungus are carried in water or contaminated soil to uninfected areas. Roads of any
sort in the very limited geographic range of the primary host provide a way to move
soil—along with the fungus—from infected to uninfected areas. Spread of the fungus
can be checked by careful planning to reduce entry to uninfected areas, road closures,
partial road closures during wet weather, attention to road surfaces and drainage of
possibly contaminated water to streams, wash stations to remove soil from vehicles
before entry to uninfected areas, and sanitation strips to remove host plants from near
roadsides (Kliejunas 1994, Roth and others 1987, Zobel and others 1985). Building and
maintaining roads may exacerbate root diseases. Wounded trees and conifer stumps
created and not removed during road building provide infection courts for annosus root
disease; the disease may then spread through root contacts to kill a patch of trees

Forest Diseases
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(Otrosina and Scharpf 1989). Trees damaged or stressed by road building—through
direct wounding of stems and roots, covering of roots with side castings, or compacting
of soil over roots—become susceptible to various tree diseases. Armillaria root disease
is benign in deciduous stands where only injured trees are attacked but more serious in
conifer stands where pockets of disease are initiated (Shaw and Kile 1991). Oak de-
cline is associated with poor sites, older stands, and road building or other disturbance
(Wargo and others 1983). Black stain root disease (Leptographium wagneri) attacks
stressed conifers associated with disturbance, especially compaction caused by road
building; in pinyon pine (Pinus monophylla), it is associated with roads and campsites
(Hansen 1978, Hansen and others 1988, Hessburg and others 1995). Droopy aspen
disease is associated with road building and compaction, but the pathogen identity is
unknown (Jacobi and others 1990, Livingston and others 1979). Sap streak disease in
sugar maple is associated with compaction from roads and from direct injury to trees
(Houston 1993).

Road building can be planned to help reduce the spread of some forest tree diseases:
mistletoe is spread by the forcible ejection of the mistletoe seeds. In young plantations
or pole-sized stands, roads can subdivide an area to prevent mistletoe seeds from
reaching a healthy stand (Hawksworth and Wiens 1996). In Texas, roads could be
planned to separate a portion of a stand with oak wilt from healthy trees. The act of
building the road (if extensive enough) severs root connections and prevents tree-to-
tree movement of the pathogen (Appel and others 1995, Rexrode and Brown 1983). In
other areas, new or established roads may have the unintended effect of breaking the
continuity of host roots and thus halting the spread of laminated root rot (Phellinus
weirii) and other root diseases (Hadfield 1986, Thies and Sturrock 1995).

Roads indirectly contribute to disease spread by giving people access to remote forests
and ways to transport material long distances. New pockets of both oak wilt and beech
bark disease (Houston and O’Brien 1983) may have resulted from moving firewood
from the forest to a homesite (Appel and others 1995, Rexrode and Brown 1983).
Pitch canker (Fusarium subglutinans) was recently reported on Monterey pine (Pinus
radiata) in California; previously, it had been found on little-leaf and slash pines in the
South. A single introduction is thought to be responsible; 117 vegetative compatibility
groups are found in Florida but only 5 in California, and 70 percent of the isolations in
California are from a single group, likely carried on a tree transported as an ornamental
(Correll and others 1992, Storer and others 1995). Campers who use roads to get to
remote sites in Colorado and other states have caused significant mortality by carving
on aspen and birch, which provides pathways for various fungi that cause cankers and
quickly kill the trees. Many trees are unintentionally damaged, for example, when
campers hang a gas lantern on a branch too close to the trunk of a tree, thereby
causing heat damage.

One abiotic disease has caused significant damage. In the Lake Tahoe basin in
California, trees were killed by salt put on the roads to reduce ice. This problem also
has appeared in some areas of the Midwest and east coast (Kliejunas and others
1989, Scharpf 1993, Scharpf and Srago 1974). Needle and rust diseases spread long
distances by spores and do not appear to be influenced by roads or road building.

Reliability, confidence, and limitations—Field studies tend to focus on a single
disease or an insect-disease complex; many of these centers are associated with or
influenced by compaction or tree damage associated with roads.
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Generalizability—Problems, where they exist, appear to be specific to the pathogen,
host, and site.

Conclusions—In general, land managers appear to have the information and technol-
ogy needed to handle most road, road building, and disease interactions. Additional
science-based information is needed to understand and manage the interactions be-
tween compaction and black stain root disease and between compaction and droopy
aspen disease.

Issues—The introduction of roads into the closed forest environment creates corridors
by which predators can enter and affect native populations.

Findings—Forest roads create corridors by which predators, especially people, can
enter the forest environment and affect wildlife populations. Nest depredation of song-
birds may increase by predators attracted to edges. Evidence for edge effects, how-
ever, is highly variable (Paton 1994). Although evidence has been found for local edge
effects in cowbird parasitism and nest depredation, their effects on bird populations is
not documented. Geographic location and large-scale patterns in the amount of forest
and nonforest habitats may be more important in determining the reproductive success
of forest songbirds (Donovan and others 1997, Robinson and others 1995). Forest
carnivores apparently travel on roads in winter when snow is deep, and thus the road
system alters and enhances their ability to move (Paquet and Callaghan 1996). Wolves
and grizzly bears are two key species that have chronic, negative interactions with
people, and roads are a key facilitator. Repeated, negative interactions of these two
species with people increase mortality of both species and often cause high-quality
habitats near roads to be population sinks (Wisdom and others 2000). High road densi-
ties are associated with a variety of negative human effects on several wildlife species
(Brocke and others 1988). People directly affect snakes by collecting, harassing, and
killing them (Wisdom and others 2000). Increases in illegal hunting pressure, facilitated
by roads, also negatively affect populations. Moose, wolves, caribou, pronghorn ante-
lop, mountain goat, and bighorn sheep are particularly vulnerable to this kind of preda-
tion (Lyon 1985, Wisdom and others 2000).

Reliability, confidence, and limitations—Limited data exist on the effects of introduc-
ing natural predators as a result of road building. The evidence is strong that human
predation, either legally in game management programs or illegally, is greatly facilitated
by roads and can significantly affect populations of animals.

Generalizability—General principles related to human effects on wildlife populations
are understood by wildlife managers and can be applied to species and site-specific
management.

Secondary links—Predation links to other habitat-related topics, such as fragmenta-
tion and road kill, and also to people-related topics such as recreation.

Conclusions—Species-specific issues related to predation facilitated by roads can be
addressed for specific sites. Predation related to illegal hunting facilitated by improved
access can be addressed by legal measures, or, where legal remedies are ineffective,
by closing or decommissioning roads where wildlife values are high.

Issues—Previous issues in this section may be synthesized by the concept of biodiver-
sity. Biodiversity is, in simplest terms, the variety of life and its processes (Keystone
Center 1991). Recent syntheses (Heywood and Watson 1995) emphasize the recipro-
cal relation between biodiversity—conceived as genetic and species diversity—and

Predation
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ecosystem function. The many species comprising the biodiversity of an area play
roles essential to ecosystem function and are the source of variation that enables an
ecosystem to adapt to change. The healthy, functioning ecosystem, in turn, supports
the many species living within it. Appreciating this reciprocity means that biodiversity
can be taken as a natural measure of the ecosystem as a whole and thus can integrate
the many concerns listed.

Some species may play more important roles than others in the normal functioning of
an ecosystem. For example, keystone species may define the major structural ele-
ments of an ecosystem, as Douglas-fir does for forests in the Pacific Northwest, or
they may—by virtue of their position in a complex trophic structure—act to maintain the
diversity as keystone predators do for herbivores. On the other hand, the many species
that do not appear to serve an important role in an ecosystem constitute a reservoir of
potential adaptation to change. Because an ecosystem cannot predict change, the
diversity of species acts as a hedge against it.

Biodiversity is vital to long-term ecosystem function, and human activities that decrease
biodiversity can impair it. Our working hypothesis, then, is that measures of biodiversity
provide the best integrative assessment of the effects of roads on ecosystems.

Findings—Roads can have major adverse effects on biodiversity, many of which are
already described (Forman and Collinge 1996). A recent review by Forman and
Hersperger (1996) usefully distinguishes these aspects of the road-biodiversity
interaction:

• Road density: As road density increases, thresholds may be passed that cause
some species to go locally extinct. The probability of extinction depends, in part, on
body size, with larger animals requiring larger residual populations to prevent their
extinction.

• Road-effect zone: The effects of roads can extend over some distance from their
centers, such that their “effective widths” can be many times their actual widths.

Reliability, confidence, and limitation—The confidence in the general negative rela-
tion between roads and biodiversity is high. The current primary limitation, however, is
on the utility of measures of biodiversity for assessing road effects. First, both the status
of keystone and other important species must be assessed, which seems fairly straight-
forward. But, second, the status of the pool of all the other species that form the basis
for adaptation to change must be assessed, and how to do this assessment is much less
clear.

Landscape ecology as well as fragmentation and viability analysis contain relevant
scientific uncertainties. Two critical uncertainties must be resolved to understand how
roads affect fragmentation and population viability. First, in the mechanistic analysis of
the effects of roads and roadlike entities, such as power lines, on landscape fragmen-
tation and species viability, the question of the “effective width” of roads is open. Kiester
and Slatkin (1974) predict that, for species using conspecific cuing for movement strat-
egies and habitat selection (likely most vertebrates), a spatially localized source of
mortality in an area of otherwise suitable habitat can act as an active sink, drawing in-
dividuals in as residents die, making it likely that the new individuals will die as well. Con-
sider a road traversing the habitat of a territorial or conspecific-cuing species. Those
individuals whose home range overlaps a road have some probability of being hit each
time they venture across it. Eventually they are killed, and their neighbors, in the pro-
cess of constantly testing the boundaries of their home ranges, move into the vacated
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area next to the road and themselves run the risk of road mortality. The question is,
How far from a road does this probability of mortality spread? Second, at the landscape
scale, the relation between patterns of dispersal of individual species and measurements
of fragmentation must be clarified. Current information (Schumaker 1996) indicates that
most of the commonly used measures of fragmentation do not predict habitat connec-
tivity for individual endangered species; rather, a model of fragmentation must be de-
rived from species-specific dispersal characteristics. This kind of analysis is now
available for only a few species.

Generalizability—Exactly how roads affect biodiversity in any particular place is a
matter of the devil being in the details. The results given here would generally apply to
any area.

Secondary links—Appreciation of biodiversity itself is an important part of the passive-
use value of biodiversity. In particular, the aesthetic appreciation of biodiversity through
an understanding of how biodiversity is sublime (rather than just beautiful) is now
leading to a new link between biodiversity and passive-use value (Kiester 1997).

Conclusions—Forman and Hersperger (1996) conclude “ ...that a quantum leap in
focus on the ecological effects of roads is warranted, and that the foundations are in
place for effective research, planning, public education, and action.”

Issues—Roads provide access to and increase the opportunity for applying a variety of
chemicals in national forests. Some applications target the roads, such as with road sur-
face treatment; other chemicals are intended for adjacent ecosystems to control pests
and fertilize vegetation. Materials also are added to roads by traffic, such as asbestos
from brake linings, oil leakage, and accidental spills. Some portion of applied and spilled
chemicals eventually reaches streams by drift, runoff, leaching, or adsorption on soil
particles. Roads also increase the nutrient delivery to streams by removing vegetation,
rerouting water flow paths, and increasing sediment delivery. And roads increase the
likelihood of toxic spills associated with accidents along streamside corridors.

Findings—Chemicals applied on and adjacent to roads can enter streams by various
pathways. The likelihood of water-quality deterioration from ground applications is a
function of how much chemical is applied, the proximity of the road to a stream, and the
rainfall, snowmelt, and wind events that drive chemical and sediment movement. The risk
is a function of the likelihood of water-quality deterioration and exposure of organisms,
including people, and how susceptible the organisms are to the pollutant or pollutants.
(A large proportion of Forest Service roads are low standard and few if any chemicals
are applied, so the risk of chemical contamination for most Forest Service roads is
relatively low.)  Chemicals are applied directly to roads and adjacent rights-of-way for
various purposes, including dust abatement, stabilizing the road surface, deicing,
fertilizing to stimulate plant growth on road cuts and fills, and controlling weeds and the
invasion of nonweedy plants onto the roadway (Furniss and others 1991, Norris and
others 1991, Rhodes and others 1994). Applied chemicals can enter streams directly
when they are applied, but little is known about the effects of these chemicals on stream
biota (Furniss and others 1991). Norris and others (1991) provide a comprehensive
review of the types and amounts of fertilizers, pesticides, and fire retardants applied to
forests in the United States, although little information is given to distinguish road-related
from aerial applications. They report that most herbicides are applied by ground-based
equipment, presumably using roads for access; that ground-based applications in or
near aquatic zones can result in chemicals entering streams by drift or direct applica-
tion; and that these problems are more serious when the chemicals are applied from the

Water Quality
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air. Movement of sediment containing adsorbed chemicals is possible, and the risk
increases with increasing persistence (Norris and others 1991). The amount of input by
this pathway is thought to be small, however; it is a more likely pathway for entry of salts
applied for de-icing and of fertilizers applied to road fills.

Increased nutrient supply to streams from roads is proportional to the area disturbed
and maintained free of vegetation and the amount of sediment delivered. Increased
nutrients rarely have detrimental effects on stream water quality, but they may modify
the composition of aquatic biota (Hawkins and others, in press). Few studies examining
watershed responses to logging separate the effect of road building from those of the
broader disturbance associated with removing timber. In one such study, Swank (1988)
monitored stream chemical composition during the pretreatment, road building, logging,
and posttreatment phases in a cable-logged watershed in the southern Appalachian
Mountains. No stream chemical response was found to result from the road-building
phase of the watershed treatment. Nutrient movement to streams often increases signif-
icantly after timber harvest operations (Frederiksen and others 1973, Hornbeck and
others 1973, Likens and others 1970, Pierce and others 1972, Swank and Waide
1988). The primary intent of these studies was to assess onsite nutrient losses, with
changes in water quality a secondary concern. All cited studies report increases in
nitrogen cation and phosphorus concentrations in streams after treatment. In general,
nutrient loss to streams is roughly proportional to how much vegetation was removed.
For example, three studies at Hubbard Brook in New Hampshire compared three treat-
ments: clearcutting with a herbicide treatment to suppress vegetation regrowth (Likens
and others 1970), clearcutting without suppressing regrowth (Pierce and others 1972),
and strip cutting of one-third of the forest (Hornbeck and others 1973); the three studies
found nitrogen concentrations in streams reduced, most by the first treatment, less by
the second, and least by the third. These findings suggest that residual or reestablished
vegetation immobilizes released nutrients, thus diminishing the disturbance effect.
Although roads might not respond in the same way because of drainage rerouting, we
expect that nutrient mobility is proportional to the area maintained in a disturbed, non-
revegetated state.

Hazardous chemical spills from vehicle accidents can pose a direct, acute threat of
contamination to streams. The risk of hazardous chemical spills resulting from vehicle
accidents adjacent to waterways is recognized and documented by the National Forest
System and by state transportation departments (IDT 1996). Risk-analysis models of
accident-related chemical spills are available, but they are designed for paved roads in
nonmountainous terrain. Models take into account risk to human health, traffic frequen-
cy, vehicle type, and proximity to water. Possible contaminants include any substance
being transported, such as fuel, pesticides, chemicals used in mining, fertilizers, and
fire retardants.

Reliability, confidence, and limitations—Both anecdotal and scientific bases for
linking increased access provided by roads to increased use of a wide variety of intro-
duced chemicals are strong. Potential delivery to streams is mainly anecdotal, and few
models are available for predicting delivery. Evidence for increased nutrient delivery to
streams from disturbance by roads is strong, but it is confounded by other manage-
ment activities such as logging.

Generalizability—The use of chemicals that are potential contaminants is well known
and often described. The likelihood of routinely or accidentally spilled chemicals is re-
lated to type and frequency of traffic, but determining probabilities of spills accurately is
difficult or impossible, especially for accidents. The likelihood of contaminants reaching
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a stream differs widely from site to site; it is most strongly controlled by stream proximity
and road drainage features. Soluble and persistent elements and compounds adsorbed
on sediment particles have increased probability of contaminating waterways.

Secondary links—Roads have strong links to aquatic health and biological response. A
large body of literature exists on bioassays, but little information is available on trans-
port, toxicity, and persistence of potential contaminants in natural systems. Terrestrial
effects of chemicals, such as damage to vegetation by road salt, are not addressed
here.

Conclusions—Most of the information is anecdotal or requires extrapolation from other
studies (nutrient issues). The degree to which aquatic organisms are affected by ap-
plied and routinely spilled chemicals is poorly known or not understood in most places.
Better information on effects is needed to make decisions about chemical application,
road drainage control, and road location. Better models of chemical spill risks on
forested roads are needed.

Issues—Dust emitted into the atmosphere by vehicles moving on unpaved roads con-
tributes to reducing visibility and to suspending airborne particulates that can pose
health hazards. Issues revolve around the contribution of national forest roads to re-
gional and urban air pollution and what effects maintaining, paving, and shutting down
roads on national forests have on this problem. Roads built into or surfaced with
serpentinitic rock may contain asbestos-type minerals that could pose a hazard to
people exposed to dust from the road surface.

Findings—Scientific literature on this topic is scarce. A study of degraded visibility and
its causes in 16 national parks and wilderness areas on the Colorado Plateau, by the
Grand Canyon Visibility Transport Commission (available online at http://www.nmia.com/
gcvtc/), found that dust from unpaved roads could be a contributing factor. Soils in the
Southwest are often very fine textured, and once dust is made airborne by vehicles, it
can remain suspended for a long time and be transported long distances by the wind.
The commission recommended that the Environmental Protection Agency (EPA) require
further study and mitigation of these effects.

The amount of dust emitted into the atmosphere is estimated by a formula that consid-
ers the number and speed of vehicles traveling on a road in a given period, the relative
humidity, and the composition of the road surface. This model was developed and
reviewed by the Department of Transportation and the EPA. Related information about
calculations for paved roads can be found at http://www.epa.gov/ttn/chief/ap42/ch13/
related/c13s02-1.html.

Dust emissions also raise issues of human health. Where national forests are close to
urban areas, dust from national forest roads can contribute to the burden of airborne
particulate matter from a wide variety of sources including transportation and industrial
activities. The fine fraction of airborne particles with diameters less than 2 microns have
been found to contribute to human health problems and increased mortality, especially
in young children, old people, and people with lung problems such as asthma and
emphysema. Particles of this size and smaller cannot be effectively cleared by human
lungs and therefore accumulate. How much road dust from forest roads contributes to
the fine particulates in urban atmospheres is not currently known for most cities
because the EPA is just beginning wide-spread monitoring of fine particulates, and
reliable results will take at least 3 years to gather.

Air Quality
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Unpaved roads built into or surfaced with serpentine materials can generate dust con-
taining asbestos or asbestiform minerals. Although few such roads exist, methods have
been developed to determine the extent of ambient asbestos coming from them.

During commercial use of unsurfaced roads, watering or other dust-abatement treat-
ment (such as the addition of lignin sulfonate or calcium chloride) is often required by
the Forest Service or other road manager to reduce dust emissions and conserve the
fine fraction of the road surface. Such treatments do not accompany noncommercial
uses, however, and they include most of the traffic for such roads.

The EPA has proposed a regional haze rule calling for more regions to do the kind of
analysis done by the Grand Canyon Commission. Such analyses are likely to find
similar emissions from unpaved roads and similar visibility problems elsewhere. EPA’s
recent tightening of the National Ambient Air Quality Standard on the effects of fine
particles on human health are likely to require similar analyses of particle emissions,
especially as they affect urban air quality. Analyzing the entire transportation system,
including national forest roads, would be a logical approach to finding the most efficient
means of controlling air pollution. Under emissions-trading scenarios, treatments, like
paving or closure to reduce emissions of particles from national forest roads might
qualify for highway funds, as cost-effective adjuncts to upgrading major arterials to
reduce air pollution.

Reliability, confidence, and limitations—The basic models of dust emission and
transport down-wind are generally reliable and widely used by the EPA in regulatory
decisions. Much of the basic data to make these calculations for national forest roads
have not been collected; thus, most estimates of the emissions are based on very
coarse estimates of the conditions that produce dust emissions. Effects of the amount
of road maintenance on emissions also are not well understood. The effects of road
closures on dust emissions are not easily predicted because they depend on the details
of how traffic is rerouted from closed sections and what emissions are created by the
rerouted traffic pattern.

Generalizability—Models of emissions are relatively easy to generalize to many parts
of the country, if reliable data are collected to use in them.

Secondary links—Reductions in visibility negatively affect recreational values because
beauty is one of the major attractions to national forest visitors. Improving national forest
roads to reduce dust emissions could be linked to regional transportation plans aimed at
reducing air pollution. Such a link might make Forest Service roads eligible for highway
funds.

Conclusions—Emissions from national forest roads would need to be included in
regional analyses of air emissions. Models to make these analyses are available, but
data to represent national forest roads would have to be collected and included in the
analysis.

Issues—Road closures are expected to strongly affect Forest Service timber programs.
On federal timberlands, the timber program and an extensive road network evolved
simultaneously. Many roads were built by purchasers or with purchaser credits from
timber sales, but these roads served a variety of users. By the late 1980s, about 25,000
timber sales were recorded per year (of more than $300) supplying 14 percent of the
U.S. timber harvest. This harvest supported some 125,000 direct jobs in many com-
munities, mostly in the Western United States. By 1997, the proportion of total U.S.
harvest supplied from federal lands had dropped by half because of efforts to protect
various habitats for species at risk of extinction.

Direct
Socioeconomic
Effects

Timber Programs
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Along with the evolution of the existing road network went the development of logging
systems designed for site conditions, soil-compaction concerns, and costs. Such sys-
tems (except for some forwarder systems) are designed to minimize skid distances,
both in harvest units and at road-based landings. The most commonly used logging sys-
tems (cable yarding or ground-based skidding systems) depend on direct access to a
stand. Helicopter and cut-to-length (harvester-forwarder) systems depend on access to
nearby stands (usually less than a mile).

Findings—In steep terrain, reducing road densities may require longer cable yarding
distances, and because yarding distance is a significant cost factor, especially in thin-
nings (Hochrein and Kellogg 1988; Kellogg and others 1996a, 1996b) timber harvesting
costs likely will increase. In addition, greater reliance could be placed on helicopter
logging, which would increase logging costs by as much as 2.5 times. Another result
could be more wood left behind in the forest because logs must be bucked to their
optimum length to maximize the payload of the helicopter.

In gentler terrain, a reduction in road densities could lead to an increased use of cut-to-
length (harvester-forwarder) systems or more reliance on cable yarding. Primary trans-
portation distance (movement of logs from stump to landing) is a variable significantly
affecting the productivity of ground-based skidding (Tufts and others 1988) as well as
harvester-forwarder systems (Kellogg and Bettinger 1994). Lanford and Stokes (1996)
note, however, that at least with similar primary transportation distances in the South-
east, harvester-forwarder systems have comparable costs per unit harvested to tradi-
tional ground-based skidder systems, yet with lower environmental effects. If cable
yarding replaced some ground-based systems, costs could increase by 1.4 times or
more (Kellogg and others 1996b).

Logging cost increases (all else held constant) would reduce the likelihood that pro-
posed sales would sell and lead to reduced harvest. The Forest Service’s Washington,
DC, office provided an estimate of the extent of these harvest reductions. They esti-
mated that harvests would be reduced by 6 percent in the Northern Region (Montana,
northern Idaho, North Dakota, and northwestern South Dakota), 90 percent in the Inter-
mountain Region (southern Idaho, Nevada, Utah, and western Wyoming), and 17 per-
cent in the Pacific Northwest Region (Oregon and Washington). If the issue involves
only the use of secondary roads into sale units or just reliance on temporary roads for
local sale access, then these effects may be overstated.

More difficult to determine are the long-term effects of focusing future management
activities in only the roaded sections of national forests, where one of the primary man-
agement tools is stand manipulation through timber-sale contracts. Some management
activities, such as prescribed fire, are not road dependent but most of the techniques
for stand manipulation require some type of access.

Another issue is how changes in one region relate to changes elsewhere in North
America. Reductions in federal timber harvest largely in the West are offset by in-
creases in harvest elsewhere (mostly in Canada and on private timberlands in the
South). These offsetting changes are usually sufficient to reduce consumer effects
to modest, so that the largest effects are borne by producers (and their employees)
in the affected regions.

Reliability, confidence, and limitations—Studies document the effect of skid dis-
tances and different logging systems on logging costs (Kellogg and Bettinger 1994,
Kellogg and others 1996a, Lanford and Stokes 1996, Tufts and others 1988). Some
of these studies were used to support timber appraisal processes. The effect of higher
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logging costs (because of more expensive logging systems) on stumpage prices has
been well documented in the literature (for example, Jackson 1987); stumpage values
have to be greater than logging costs for sales to be sold. Increasing logging costs, all
else held constant, will result in fewer sales (or more sales being below cost). The ef-
fects listed in the findings are uncertain after one to two years because of the ability
timber sale planners have to redesign timber sales, including their ability to change
harvest unit locations.

Generalizability—The results are generalizable. What does differ are the values for
timber throughout the West and the opportunities for less road-dependent logging
systems.

Secondary links—The secondary effect of greatest concern is the potential loss of
access to stands for forest management activities that remove individual trees. Although
much of the current controversy is over final harvest, many other silvicultural practices
depend on timber-sale contracts and timber removals to achieve various stand and land-
scape conditions. Often the forest road network was designed to allow access to multiple
stands. Identifying the optimal network in light of potential additions or reductions in
roads is difficult (Dean 1997). In addition to considering the loss of access, planners
need to consider costs of alternative road building or rebuilding, landslide risks, and
expected environmental effects, when they evaluate road management alternatives
(Sessions and others 1987). Algorithms to incorporate road management alternatives
in forest planning efforts have been described for traditional optimization techniques
(Jones and others 1991), as well as heuristic methods (Bettinger and others 1998,
Weintraub and others 1995). The effects of road management alternatives on timber
programs is a site-specific problem, depending on the road system that exists, the road
management alternatives examined, and the condition (age, volume, and so on) of the
harvestable timber stands affected by the alternatives. For example, areas of mature
forest stands in nonreserved land allocations may be most affected by near-term
changes in the road network.

Conclusions—Roads and timber-program issues have been much studied, including
attention to the ability to trade off more intensive management on the roaded parts of
national forests with the unroaded portions. The ability to address immediate effects
(say, for the next fiscal year) is very high, but beyond several years, the ability to pre-
dict effects greatly diminishes because no opportunities are available for mitigating the
effects of changes in sale location or design. Finally, economic effects tied to changes
in timber flows are very real. Roughly 10 direct jobs are generated for each 1 million
board feet of harvest from national forests in the West. In addition, payments in lieu of
taxes account for significant parts of local government funds in much of the rural West.

From a planning perspective the ability to examine tradeoffs in road system alternatives
is moderate. Examinations into the theoretical complexity of road network planning prob-
lems have led to the development of planning models designed for integrating road de-
cisions with land management decisions (Bettinger and others 1998; Jones and others
1986, 1991; Nelson and Brodie 1990; Sessions and Sessions 1997; Weintraub and
others 1994, 1995; Zuuring and others 1995). These models are particularly useful for
measuring tradeoffs among the quantifiable management benefits and costs associated
with changes in the road network. Not all issues relevant to a decision can be ade-
quately quantified, however, because the output or response relations are not known or
are just being developed. For example, the response variables can be complex and may
depend on activities in adjacent stands (see Bettinger and others 1998). In addition to
the complex planning model, data development (both geographic information system
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[GIS] and associated tabular inventories) is one of the main challenges. The ability
to collect and use GIS data as well as the attributes of a road system (and related
resources) is evolving and, over time, analyses now based on current data will pro-
gressively become more precise and accurate.

Issues—A variety of products harvested from the abundant biotic resources of the
North Temperate Zone forests are being transformed into medicinals, botanicals, deco-
ratives, natural foods, and a host of other novel and useful products. These renewable,
vegetative natural resources harvested for personal or commercial use are called non-
timber or special forest products. Consumer forces, changing social climate, and ex-
panding global markets are contributing to the increasing development of these prod-
ucts as viable economic options for sustaining rural communities. Ginseng (Panax
quinquefolius), goldenseal (Hydrastis canadensis), coneflower (Echinacea
angustifolia), and St. John’s wort (Hypericum perforatum)—all plants found on na-
tional forest lands are major contributors to a multibillion-dollar herbal and botanical
industry. Access to these resources has important economic value to those rapidly
growing industries. Plants harvested from the wild are “wildcrafted” by harvesters from
local communities or contract crews brought in from elsewhere. Particularly for the local
harvesters, who operate under the permit system of various public and private land
ownerships and who often have low income, access by road to the resource becomes a
critical cost factor. In addition, roads create openings important to maintaining diverse
species in abundance. How roads will affect the survival and sustainability of nontimber
forest products and how access to nontimber forest products will be influenced remain
important issues. Both issues are important to the people and communities that already
depend on these herbs, shrubs, lichens, fungi, algae, and micro-organisms as part of
their economy.

In 1992, the herbal-medicinal market was estimated at just under $1 million and growing
at a rate of 13 to15 percent per year (Mater 1997). Traffic USA, a program of the World
Wildlife Fund that monitors commercial trade in wild plants and animals, estimates an-
nual retail sales of medicinal plants in the United States in 1997 at $1.6 billion and rising.
Of the 25 top-selling herbs in U.S. commerce (Brevoort 1998), more than 50 percent
are included in the 1,400 plant species found and traded in the United States. Moss and
lichens, harvested extensively from public forest lands and exported to worldwide mar-
kets, were valued at more than $14 million in 1995 (Vance and Kirkland 1997). Demand
is increasing for huckleberries and mushrooms, important foods harvested for commer-
cial and personal use. In 1995, less than 1 million pounds of the matsutake (Tricholoma
magnivelare) mushroom were harvested, but in 1997, in one 8-week period, 1.2 million
pounds were harvested, which provided the Forest Service with $365,935 in revenue
from permit sales (Smith, n.d.). Floral greens are an important mainstay for several
markets in the Pacific Northwest. A 1989 study (Schlosser and others 1991) showed
that the total value of floral and Christmas greens earned $128.5 million in product sales
with about $48 million paid to harvesters, which supported the employment of about
10,000 people and about 675,000 acres in production west of the Cascades. On a
single ranger district (Hood Canal Ranger District, Olympic National Forest) from
February 1996 through February 1997, 1,500 permits were sold for commercial har-
vest of greens, bringing in revenue of $63,835. Christmas boughs have continued to
increase in demand, and by 1995, harvest in the Pacific Northwest was approaching
20 million pounds per year (Savage 1995).

Nontimber Forest
Products
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Findings—Market growth is documented (Mater Engineering 1992, 1993a, 1993b).
Collection activities permit information, environmental and other assessments, and
maps with roads indicated are part of the written procedures and permitting instructions
at forests and districts affected by special forest products. Costs of harvest are recog-
nized as a factor in permit prices, and they influence contract bids in these assess-
ments. Market value is related to cost; increasingly difficult access as plants become
scarce may be factored into market value. An assessment in the Southern Region
(Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North
Carolina, Oklahoma, Puerto Rico, South Carolina, Tennessee, Texas, Virgin Islands, and
Virginia) identified dozens of plants and products for which free use and commercial
permits are issued. Illegal collection is considered a problem in many areas, and some
documentation exists in Oregon with the Bureau of Land Management, Forest Service,
and state enforcement personnel. Although not explicitly, roads play a role in illegal
taking, as well as in monitoring harvest activities. Other reports and inventories have
maps indicating roads that offer access to nontimber forest products and often act as a
means of pinpointing the desirable harvesting areas. For example, in the special forest
products inventory (Karen Theiss and Associates 1996) created for Trinity County,
California, roads were used extensively to describe how to find areas where wildcrafters
could harvest a particular species.

Reliability, confidence, and limitations—Much of the documentation that relates to
special forest products can be found in forest and environmental assessments and in
recent reports and papers published in journals and books (Molina and others 1997,
Savage 1995, Thomas and Schumann 1993, Vance 1997). In some of these docu-
ments, roads are addressed directly about use and compliance with reciprocal agree-
ments where they are in effect. Historically, special products have been administered
as a byproduct of timber contracting and road building. The same benefits accrued by
recreational collectors of mushrooms, berries, and so on in those areas also could be
enjoyed by commercial harvesters. No formal documentation of these benefits going to
commercial harvesters is available. Note that some states (e.g., Oregon) require anyone
transporting any such product, including firewood, on public roads to have a legal per-
mit or bill of sale.

Generalizability—Generalizing the need for roads or road decommissions for non-
timber forest products is impossible. Some populations of harvestable species will bene-
fit from the disturbance caused by building and maintaining roads, and other popula-
tions will be harmed. Although enforcement of illegal harvest might be hampered, so
would legal harvest. But market forces adjusting for reduced harvest (product scarcity)
is unpredictable, and whether any increased value would be transferred to the harvester
is not known.

Secondary links—Habitats and plant community structure of some commercially har-
vested species are linked to roads. From an assessment of 45 commercial species in
Oregon, 30 percent can be found in openings and along roadsides. It also is well known
that certain species require undisturbed mature forest and would not benefit from the
gaps and disturbance caused by roads. Because of the specific habitat requirements
of, for example, wild ginger, pitcher plants, and shade-loving mosses, roads would not
directly benefit these plants. Some of these species are listed as sensitive, and ready
access threatens their survival. Documentation exists for habitat requirements of almost
all commercial plants and fungi. Other habitat concerns are related to maintaining roads.
A special forest products inventory created for Trinity County, California, suggests that
harvesters stay away from roadsides because some Bureau of Land Management and
Forest Service districts routinely spray herbicides and pesticides.



48

Communities and sustainable economies—Many rural areas need more sustainable
and diversified economies, for which they may require assistance. The Forest Service
recognized this need and developed economic action programs aimed to help com-
munities strengthen their local economies through a range of forest-based resources,
including nontimber forest products.

Conclusions—Information on habitat requirements for many of the commercial species
is available, and retrospective studies may show how road closures affect species com-
position; for example, in the prevalence of native versus exotic species (Parendes and
Jones 2000). Developing appropriate policies and implementing them for most special
forest product species would benefit from information and models that predict regional
and general effects from building or closing roads on the species’ harvest and sustain-
ability. Information on the economic effects on various components of the industry—
from harvester’s overhead to product price—is needed. These questions must be an-
swered to determine how building or decommissioning roads would affect the sustain-
ability of particular commercial species and hence the sustainability of the economies
reliant on them.

The effects of roads on the economic, social, and biological factors and their effects
outlined above need to be documented. Although roads are generally recognized as
major components of recreational and commercial-harvest activities that affect hundreds
of species in the national forests, systematic studies that integrate these components,
much less any individual component, have not been carried out. Only fragmented in-
formation on these biological resources, products, uses, values, and habitat considera-
tions is available. Case studies will provide information on local or regional scales, but
a comprehensive model of the relation of roads to special forest products nationally re-
quires a comprehensive special forest products database. In addition, an integrated
strategy for special forest products that addresses community and resource sustain-
ability together would benefit from targeted and integrated research-based information.

Issues—According to the 1995 draft RPA program, about 46.2 million acres of national
forest lands are considered suitable for livestock grazing. Producing livestock can be an
important part of local economies, and livestock grazing is deeply rooted in the culture
of the American West and sanctioned by legislation. Grazing was first authorized on
national forest lands by the Organic Administration Act of 1897 and confirmed by many
later appropriations acts (USDA FS 1989). The Public Rangelands Improvement Act of
1978 reinforced a national policy that public rangelands were to be “managed...so that
they become as productive as feasible for all rangeland values.” The network of roads
on national forest lands has both positive and negative effects on rangelands and the
administration of the grazing program. Roads have mostly replaced driveways as a
means for transporting sheep and cattle to and from mountain allotments. As a result,
these driveways have dramatically improved in rangeland health. Until the 1970s, live-
stock driveways were considered “sacrifice areas” in the range-management discipline
(Stoddart and Smith 1955). Thus, national forest roads can promote ecosystem man-
agement objectives along alternative transportation corridors, which they replace. Roads
can simultaneously lead to ecosystem changes that reverse rangeland management
objectives, however, and increase the administration of the range management program.
Administratively, national forest roads allow range conservationists to access allotments
quickly by using vehicles rather than horses. But the same roads can produce conflicts
between users of the national forests, such as between livestock grazing and recreation
interests. And roads can reduce permittee operating costs by providing motorized
access to allotments.

Grazing and Rangeland
Management
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Findings—Essentially no scientific information exists that analyzes the ecological,
administrative, or economic effects of roads on administering the Forest Service range-
management program. Preliminary unpublished analyses from the interior Columbia
River basin ecosystem management project addressed the road issue from the perspec-
tive of ecological responses to the presence or absence of roads. The analyses found
correlations between changes in vegetation composition, riparian functioning, and fire
regimes and the presence of forest roads. They could not conclude any cause-and-
effect relations from these correlations, however. The program also found higher road
densities to be associated with diminished ecological integrity, including those based on
range criteria.

To assess the importance of national forest roads for administering the grazing pro-
gram, as well as their economic value to permittees, an ad hoc interdisciplinary team
was formed to provide a nominal assessment. The findings below reflect the input of the
team:

• Roads in national forests are essential for administering the grazing program,
allowing timely access to allotments. Compliance enforcement was mentioned in
particular as an activity greatly benefiting from forest roads. The principal reasons
cited were that agency downsizing has resulted in high workloads for remaining
range conservationists, which does not allow them sufficient time to carry out their
duties; guard stations have been closed; Forest Service personnel no longer have
the option of spending nights in the field in some places; and many allotment plans
incorporate Forest Service roads into their approved grazing system or as drive-
ways to and from the allotment; for example, in the Black Hills, all driveways are
along roads.

• Roads can reduce permittee operating costs by providing motorized access to
allotments. The team estimated that, if all national forest roads were closed, per-
mittee costs would increase by three to five times. These costs would accrue from
increased riding time, cost of horses and riders, and added equipment costs (such
as horse trailers). The grazing program derives benefit from only part of the road
system, however, and if arterial and collector roads remained open, the expected
cost increases would be less, from none to a twofold increase.

• Roads can heighten conflicts among users of national forests, such as cattlemen
and recreationalists, although some evidence shows that concerns about road
conditions actually can cause some forest visitors to slightly, but measurably, shift
their focus of attention from grazing encounters to roads (Mitchell and others 1996).

Reliability, confidence, and limitations—No peer-reviewed studies have assessed the
effects of national forest roads, or roads in general, on livestock grazing or ecosystem
management. The results from the Columbia River basin program are tentative and show
no causal relations. The results of studies examining the influence of roads on forested
landscapes must be carefully extended because the results from studies in Eastern
forested landscapes may not apply to Western forested landscapes (Miller and others
1996). The results of the interdisciplinary-team assessment are heavily weighted to-
wards the Rocky Mountain Region (Colorado, Kansas, Nebraska, South Dakota, and
eastern Wyoming) and thus may not represent a national perspective.
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Generalizations—National forest roads are an important part of range-allotment plans.
Roads are also important for administering the grazing program on national forest lands.
Ecologically, roads may have a negative effect on rangelands; however, the environ-
mental effects of not having roads are unknown. The team concluded that closing some
roads would be acceptable from the perspective of managing the grazing program if the
process was systematically evaluated first.

Secondary links—Effects of roads on spread of non-indigenous weeds (biological
invasions), wildlife-livestock interactions, and recreation-grazing interactions (particu-
larly with four-wheeling interests) are important.

Conclusions—No science-based information was found on how national forest roads
affect livestock grazing. Many questions remain, including the cost of closure to per-
mittees, and the effects of road closure on administering range management programs,
including the weeds program, and on compliance.

Issues—The road-related issues associated with energy and mineral resources fall into
three overlapping categories: access rights, property rights, and benefits and negative
effects. The extractive industries want, and have certain legal rights to, access to public
lands to explore for energy and mineral deposits. The access may be on existing forest
roads or may require building new roads. The Forest Service road system facilitates
providing energy and mineral resources extracted from public lands, which can benefit
society. The negative environmental effects of roads used in support of nonrenewable
resource extraction are covered in the earlier sections of the synthesis. Mineral devel-
opments and oil fields in and of themselves can affect the environment negatively, such
as by loss of habitat, increased noise, and added particulate emissions in the air and
water, but these effects can be attributed only secondarily to roads; that is, without the
road, mineral development might not have taken place.

These issues are a consequence of the inherent nature of the resources and their treat-
ment under existing law. The defining characteristic of energy and mineral resources is
nonrenewability; energy and mineral resources are finite, so extraction inevitably leads
to resource exhaustion. Depleted deposits must be replaced either through domestic
exploration and mine or field development or through importation. In many places, na-
tional forest lands are underlain by deposits of nonrenewable resources, some of which
are privately held, that make demand for access inevitable.

Federal law and Forest Service policy clearly support exploration for and extraction of
resources from public lands. Leasable resources (that is, metallic minerals found on
acquired lands and all energy resources) are managed under the Mineral Leasing Act
of 1920. Locatable minerals, primarily the metallic ones on public domain lands, are
managed under the Mining Law of 1872. Saleable minerals (that is, common varieties
such as gravel) are managed under the Mineral Materials Act of 1947. These laws
predate the National Forest Management Act of 1976 and the Multiple Use Sustained
Yield Act of 1960.

Findings—Under the Mining Law of 1872, U.S. citizens and firms have the right to ex-
plore for and stake claims to selected minerals on all public domain lands not specifi-
cally withdrawn from mineral entry. Claims are valid in perpetuity or can be converted to
private property rights (that is, patented) assuming that appropriate legal requirements
are fulfilled. The Forest Service cannot unilaterally deny exploration access to national
forest public domain lands, although the agency does have the right to withdraw specific
areas from further mineral entry. The agency cannot prevent staking of a claim on these

Energy and Mineral
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lands, and a claim holder is entitled to use the surface for activities attendant to explor-
ing for, developing, and extracting minerals, within the limits set by federal, state, and
local environmental laws. The agency cannot block an otherwise legal patent (that is,
deny a claim holder the right to convert the claim to private property). The Congress
can, and has, placed a moratorium on new patents, but the moratorium could be lifted
in the future. In any event, hundreds of thousands of patented and unpatented claims
are already held within the administrative boundaries of the national forests.

The Forest Service has considerably more control over the location of exploration and
development activities for leasable minerals than it has for locatable minerals. For na-
tional forests and grasslands with completed oil and gas leasing EISs, petroleum ex-
ploration activities are restricted to areas designated as appropriate in those documents.
The regions also are taking an active role in directing access for leasable minerals. For
example, the Northern Region is attempting to restrict oil and gas exploration to areas
relatively near existing roads. This approach is not without potential for controversy,
however. Decommissioning of roads could be perceived as a de facto withdrawal of the
adjacent lands from exploration. The circuit courts are split on the question of whether
failure to offer lands for lease is tantamount to withdrawal.

The Forest Service is required by law to provide reasonable access to valid existing
mineral rights, regardless of their form, whether unpatented claim, lease, or private
property, as a patented claim or subsurface mineral right. An unpatented claim is an
implied property right that can be held, sold, or inherited, and access is regulated under
the Mining Law of 1872. Patented claims are private property, and access is regulated
under the Alaska National Interest Land Conservation Act of 1980 (ANILCA). Coal, oil
and gas, and mineral leases also offer a limited form of property right. The rights to
individual energy and mineral resources may be held by different legal entities, and the
mineral rights may be severed from the surface, which is termed a “split estate.”  Ac-
cess to unpatented inholdings, patented claims, leases, and severed mineral rights can
be restricted but seldom denied. Access may be by the existing road system or require
new roads. The Forest Service is neither required by law nor expected by industry to
build or maintain energy and mineral access roads. Roads built for other reasons (for
example, in support of recreation development) might be paid for by the Forest Service
but also be used by a mining or energy firm. The firm is always required to maintain the
road or to pay for road maintenance called for by their activities; they frequently pay
through a reimbursement arrangement with the agency.

The Forest Service can affect the location and design of roads built on national forest
lands to support energy and mineral activities. In addition, the agency can sometimes
place stipulations on access by limiting road use to certain months, permitting aerial
access only, or precluding surface occupancy. Constraints that are unduly expensive to
fulfill or so restrictive as to make an otherwise economic mineral deposit uneconomic,
however, might well be perceived as denying reasonable access. Temporary roads often
are built to facilitate energy and mineral exploration activities. Building plans are subject
to review and approval by the agency. If no discovery is made, the exploration firm ob-
literates the road. Otherwise, the road could be upgraded to permanent status, depend-
ing on the circumstances and legal authority. Public use of the road might sometimes be
limited because road condition acceptable to the mineral industry might be neither ac-
ceptable to, nor safe for, the general public. In addition, other means of access, partic-
ularly for exploration, do not require roads, including access by helicopter, foot, horse-
back, and all-terrain vehicles.
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The energy and minerals industries use the existing road system in exploration, devel-
opment, extraction, and reclamation activities. Only a small portion of the entire road
system is affected in any given year, but assuming use of most roads over the long term
would be reasonable. Designating a subset of the existing road system as having no
future benefit to the industry is not feasible because geographic targets for exploration
and development change in response to technological advances and market fluctua-
tions. Limiting mineral exploration access to areas where minerals have already been or
are being extracted could preclude future discoveries. Road closures or decommission-
ings are controversial. Firms wanting to rebuild obliterated roads could face long delays
because of the lengthy approval process now in place for building new roads. Such
delays could disrupt multiyear exploration and development plans and financing.

The energy and mineral resources produced from national forest lands are essential to
the manufacturing, farming, building, and power-generating industries, with a value of
$4.3 billion in 1995. Forest Service production represents only a small part of the total
value of U.S. production, however. For example, the value of copper produced on na-
tional forest lands represents only 1 percent of total U.S. copper. Sometimes, production
from national forest lands is a significant percentage of domestic production; national
forests produced 80 percent of domestic lead in 1995. Significant amounts of coal and
molybdenum also are produced from national forest lands. These contributions to the
domestic economy are made possible by use of the forest road system.

Reliability, confidence, limitations, and generalizability—Some case law on energy
and mineral access and property rights can be applied more broadly than to the spe-
cific litigation reported in it. And for certain situations, existing case law, statutes, and
regulations clearly demonstrate the right to reasonable access for existing mineral
rights. In numerous other situations, however, the right to access for energy and mineral
exploration and development is less clear-cut. Unresolved access issues are associated
with both ANILCA and Section 8 of the Lode Law of 1866 (R.S. 2477), which granted
right of way across unreserved public domain lands. Considerable debate continues on
the degree to which this right has been modified by subsequent legislation.

Secondary links—Roads built to provide access for energy and mineral exploration
and development often are heavily used for other purposes. Secondary links can be
found to recreation, species endangerment, biological invasions, and many other areas.
The effects from energy- and minerals-related roads and road usage are comparable to
those of other roads in the Forest Service system built to the same specifications and
carrying the same types and amount of traffic. Unpaved Forest Service roads frequently
are topped with a layer of aggregate or crushed stone, and the material often has been
extracted from Forest Service lands. Thus, the extent of the road system also has im-
plications for the volume of aggregates extracted; fewer miles of road built and main-
tained implies fewer tons of aggregate and crushed stone extracted.

Conclusions—The legal issues surrounding energy and mineral road access and
usage will require the input of the Office of General Council: Pamela Piech (202/720/
2515) is an expert on the Mining Law of 1872; James Snow (202/720/6055) is an expert
on RS2477 and ANILCA. Little or no research has been published on the secondary
links associated with energy and mineral road usage. One key area for future nonlegal
research is to determine the landscape-scale effects of energy and mineral develop-
ment; for example, extensive oil-field road networks may lead to habitat fragmentation.
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Another need is to determine exactly which roads are currently being used for access
to explore, develop, extract, and reclaim. Quantifying the effects on road condition of
nonrenewable resource activities by number and size of vehicles is also important, and
another management need is to identify the roads leading to or adjacent to valid existing
mineral rights.

Issues—Almost all the different types of public recreational uses of national forests de-
pend in one way or another on roads for access. Whether, when, and where various
recreational uses occur depend on the availability of access to, and the extent and
location of, the road system. Altering this system is likely to have widespread and dif-
fering effects across different types of uses. In considering the future of roads on
national forests, the general question is, “What are the direct, indirect, and secondary
effects on recreation from possible changes in national forest road systems?” More
specifically, “What are the direct effects of changing the class, spatial density, ecolog-
ical distribution, maintenance, and total mileage of national forest roads on the density,
placement (ecologically and socially), mix, economic value, experience quality, and
amount of recreation uses?” As well, “What are the indirect effects on access to views
of natural scenery and on the quality of scenic resources, and what are the secondary
effects on the economic and social viability of communities in the area and the condition
of the forest ecosystem?” Answers to these and many other questions are needed as
input when national forest road policies are considered and in seeking to optimize net
benefits across multiple roads.

Findings and hypotheses—The relations between roads and recreation on national
forests is highly complex and includes many direct, indirect, and secondary links that
are not well understood. Research findings specifically addressing these links are
limited and uneven across the questions we have posed. Indirect evidence and related
research provide the following insights and hypotheses:

• Roads provide corridors of access to a variety of national forest sites, settings, and
viewing opportunities for widely diverse users. Almost all recreation use in national
forests depends to some degree on road access. Sightseeing, driving outdoors for
pleasure, and developed camping are examples of activities that directly use roads
as a part of the recreation experience. Backpacking, white-water boating, and
birdwatching are examples of activities usually away from roads, but the user still
must access areas of interest by using them. Altering road systems can disrupt
long-established access and use patterns and, at least in the short run, result in not
meeting visitors’ expectations. Less road mileage or maintenance, or both, can lead
to uneven shifts in recreational opportunities across different user, socioeconomic,
and ethnic groups who depend differently on roads for access.

• Roads provide staging access to remote areas and wilderness, but the presence of
roads can at the same time reduce opportunities for solitude and perceptions of
wildness. The amount, placement, and class of roads are positively correlated with
the amount and concentration of recreational uses. But visible roads, greater
numbers of users, and sounds from motor vehicles can interrupt solitude and per-
ceptions of wildness for wilderness and other backcountry users.

• As demand for forest recreational opportunities continues to grow locally, regionally,
and nationally, even a stable amount and condition of forest roads likely will result in
increased congestion, lowered satisfaction, and user conflicts. Outdoor recreation
trends show recent strong growth in participation across a wide spectrum of activi-
ties and segments of the American public (Cordell and Bergstrom 1991). Projections
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show this growth is likely to continue well into the future for all nature-based activi-
ties except hunting (Bowker and others 1999). At the same time, access to private
lands is continuing to decrease and be limited to lessees and friends of the owners
(Cordell and others 1999). Public lands are likely to be the destinations of choice
for increasing numbers of people looking for high-quality outdoor recreational ex-
periences in natural settings. Several national parks already have limited motorized
access to bus tours or other public transportation as one way to address increased
congestion from private cars. Continued growth in demand without increases in road
systems or limits to use of private cars likely will lead to lowered satisfaction and
more conflicts at the more popular national forests (Tarrant and others 1999).
Changes in satisfaction likely will differ significantly by setting (for example, as dis-
tinguished in the recreation opportunity spectrum [Tarrant and others 1999]). Direct
recreational access, the character of and access to scenic views, and provision of
increasingly sophisticated visitor services (including rescue and medical services)
will depend on the character of the road system in place.

Reliability, confidence, and limitations—Data on national forest use and the relations
of roads to that use are unreliable, but a national project is underway to develop an im-
proved use-monitoring system. Data from the customer project provide insights into user
perceptions of experience quality related to national forest attributes, including roads
(Tarrant and others 1999). Social group differences between users of roaded, near
road, and backcountry settings are available for the U.S. population in general, and to
some degree for national forest users. Science-based methods are available for ex-
amining in more depth the relations between roads, recreational use, visitor satisfac-
tion, and economic values and effects. Little research exists to guide management for
optimizing recreational benefits from roads and globally optimizing multiple benefits
across the broad range of national forest road uses.

Secondary links—Even though increased use (on the same or fewer miles of forest
roads) or changes in the mix of recreational uses, or both, may increase aggregate
visitor spending (and thus general economic effect), the distribution of economic effects
among economic sectors and regions is likely to be altered. The biophysical effects of
recreational use on forest ecosystem conditions are confined mostly to near-road
zones, the site of most use. The biophysical condition of affected sites tends to stabilize
after each successive increment of recreation use, although the resulting condition may
be unacceptable to managers, users, or both. Specific links between recreational use
and conditions of ecological components and links between recreational use and other
resource uses are not well known.

Conclusions—Quantitative and qualitative methods, research underpinning the recrea-
tion opportunity spectrum, and a wealth of related published and unpublished literature
dealing with economic values (Bergstrom and Loomis 1999); secondary economic
effects (Archer 1996, Bergstrom and others 1990); visitor perceptions and behavior
(Tarrant and others 1999; Williams and Patterson, in press), resource and social capac-
ity (Shelby and Heberlein 1986); conflicts, consumption, and future projections of road-
based recreation (Cordell and Bergstrom 1991, Bowker and others 1999, Cordell and
others 1999), and social justice assessment are available. For the most part, however,
existing databases and literature have only indirectly addressed the hypotheses de-
scribed above that deal specifically with the relations between roads and recreation
(for example, Knight and Gutzwiller 1995). Substantial research is needed to better
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understand direct and indirect relations between road-system characteristics, recrea-
tional use, and ecosystem conditions, including issues such as the introduction of
exotics, soil erosion, habitat fragmentation, forest-product harvesting, wildlife disturb-
ance, riparian vegetation, and fire.

Issues—The increasing density of road networks in and adjacent to many forest, shrub,
and rangeland areas has been an important factor in changing patterns of disturbance
by fire on the landscape. Roads provide access that has increased the scale and ef-
ficiency of fire suppression, and roads have created linear firebreaks that affect fire
spread. These factors can be useful in both fire suppression and prescribed fire opera-
tions. In addition, road access has undoubtedly contributed to increased frequency of
human-caused ignitions in some areas.

Findings—That improved road access leads to increased efficiency and effectiveness
of fire-suppression activities is a long-held tenet of fire fighting. Much of the effective-
ness of past fire-suppression policies probably can be attributed to increased access
for ground crews and equipment, particularly under weather and fuel conditions where
fire behavior is not severe. Under the severe conditions associated with intense, rapidly
spreading fires, the value of forest roads for access or as fuelbreaks is likely to be
minimal. Although little has been published in the science literature to quantify these
effects, a study in southern California concluded that the road network had been a key
factor in determining what suppression strategies were used, both in firefighter access
and because roads were widely used for backfiring and burning-out operations (Salazar
and Gonzalez-Caban 1987). Early studies of fuelbreak effectiveness in southern
California came to similar conclusions (Green 1977). Daily costs of fire-fighting activi-
ties unfortunately are of little value in answering the question of how much road access
increases efficiency, because fire-fighting agencies tend to put money and resources
into fighting fires with access, which confounds the results. In spite of this, strong
anecdotal evidence supports this effect.

An important issue in the Western United States is building new roads to allow harvest
and prescribed fire to reduce fuel accumulations in ecosystems where past manage-
ment (principally fire suppression and harvest) have increased the risk of large, severe
wildfires (Lehmkuhl and others 1994). The principal concern here is the tradeoff be-
tween reducing the effects of wildfire and increasing the risks of road effects on aquatic
habitat. In the Columbia basin, scientists concluded that “it is not fully known which
causes greater risk to aquatic systems, roads to reduce fire risk, or realizing the full
potential risk of fire,” and that more research is needed (Quigley and others 1997).
Some potential considerations in setting priorities for forest health treatments have been
suggested in an adaptive management framework for addressing this concern (Rieman
and Clayton 1997). We currently have few data on how these processes might be af-
fected by road networks, although a study after the 1987 Stanislaus fires in California
suggests that cross-slope road networks reduced sediment delivery to debris basins
(Chou and others 1994).

The benefits that roads provide for fire prevention and fire management carry an as-
sociated cost. For purposes of simplicity, we will highlight them here in place of a
second fire section under the “undesirable or negative effects.” Indirect effects of
increased access have increased the role of human-caused ignitions, particularly in
areas of expanding urban and rural development into wildland interfaces (Hann and
others 1997). The high rate of human-caused fires in the Blue Mountains of eastern
Oregon is associated with high recreational use in areas with high road densities (Hann
and others 1997). The importance of human-caused ignitions as an issue may depend
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on what resources are considered of concern. For example, in the Southwest, numbers
of ignitions go up with access, but numbers of ignitions are not limiting to maintaining
fire regimes, but fuel loadings and climatic conditions are (Swetnam and Baisan 1996).
Numbers of ignitions are important determinants of fire risk, however, in areas such as
wildland-urban interfaces for which maintaining historical fire-regime patterns is not the
overriding issue. In addition, numbers of ignitions are important determinants of fire risk
in some wildland-urban interfaces where fire intensities are often higher (such as
chaparral), and active suppression of ignitions by people may be critical to maintaining
historical fire patterns (Conard and Weise 1998).

Road networks have resulted in changes in fuel patterns and fire regimes at the broad
scale. If we accept that road networks have been important in effectively suppressing
fire and that they alter fire patterns on the landscape, then road systems are, in some
sense, linked to changes in fuel patterns and fire regimes. Before fire-suppression
activity in the Western United States, fuels were maintained at relatively low amounts in
dry forest types, with high fuel loads restricted to small, isolated patches (Agee 1993).
As access increased, areas burned by wildfire declined, at least through the 1960s. As
a result of suppression supported by access (in part), fuel accumulations increased and
areas with moderate to high fuel loadings became larger and more contiguous. This pat-
tern of change has been documented for the entire upper Columbia River basin, where
scientists assert that fire suppression has generally been more effective in roaded
areas, which has resulted in roaded areas in the upper basin departing further from un-
altered biophysical templates (as measured by dominant species, structures, and pat-
terns) than have the unroaded areas (Hann and others 1997). Roads (along with other
human disturbances such as clearcutting) contribute to new disturbance patterns at the
landscape scale, both by increasing efficiency of fire fighting and providing barriers
to fire-spread that are different from natural barriers (Swanson and others 1990). In-
creased emphasis on removing roads in certain environmentally sensitive areas will
reduce access for fire suppression and prescribed fires, potentially leading to in-
creased fuel accumulation and fire hazard in some areas.

Reliability, confidence, and limitations—Logic and anecdotal evidence for the conten-
tion that road access increases effectiveness and efficiency of fire suppression efforts
are strong, but quantifying this issue in terms of cost savings or size and severity of
fires is not well documented. The scientific support for the contention that roads serve
as firebreaks is strong, but how important this effect is in controlling the pattern of fire
on the landscape is not clear; the ecological implications of this pattern change also are
not clear. The secondary effect of roads providing access for timber harvest that has
resulted in changing mosaics of fire is strong; the ecological consequences, while
strong, are highly variable. Long-term effects on changing fire regimes in the Western
United States are well documented. Increased access probably leads to increased
human-caused ignitions, but the implications of this increase differ from area to area.
Increased ignitions at urban-wildland interfaces are likely to be a problem, but it may be
unimportant in affecting fire regimes in less-developed landscapes in the West. Building
roads to provide access to reduce fuel in fire-suppressed forests is likely to enhance
this activity, but it may carry added risks to aquatic environments over the risk of fire
alone.

Generalizability—Most of the concerns addressed here apply primarily to the Western
United States. In much of the East, road networks are well developed and relatively
stable because of terrain and vegetation differences. Wildfire interactions are likely to
be similar to those described for the West, but the effects are likely to be significantly
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less. In the Southeast, where use of prescribed fire is widespread, roads are frequently
used as firebreaks. Much of this activity is on private lands, however, and a high pro-
portion of the road network is state and county highways rather than Forest Service
roads.

Secondary links—Fire issues are linked to issues of forest (ecosystem) health and
aquatic habitat.

Conclusions—In general, the importance of roads for providing access and firebreaks
is well established, although literature on cost-to-benefit ratios is lacking; most evidence
is anecdotal. The issue of road access to lessen fire risk and improve forest health in
unroaded areas is heating up, and little published research is available to fall back on
for resolving the debate.

Issues—Among the benefits that roads provide is access for research, timber and non-
timber forest inventories, and monitoring. Although the economic scale of these tasks
may be low compared to some other activities, the knowledge derived may be key for
managing other access-related uses, in addition to the more general objectives sought.
Hence, understanding the relation of roads to inventory and monitoring activities is not a
trivial issue.

Findings—Although finding sufficient data for a complete and wide-ranging analysis is
difficult, the role roads play in inventory and monitoring access (that is, the cost per
plot) can serve as a surrogate for the larger problem. Plot-survey contracts are based
on four categories in which the proximity to roads plays a significant part. For example,
costs run about $600 per plot when roads allow access to within 0.25 mile of the plot
sites. In the same region, cost rises to $1,300 per plot in roadless areas open only to
foot access. In the Pacific Northwest, the nearly 650 wilderness plots, of a total of
11,360 in all terrain, had survey costs only about 23 percent greater ($1,460 per wild-
erness; $1,174 per nonwilderness plot). The data did not permit comparing the cost
difference of road-accessed plots in the Pacific Northwest Region over the montane
sites in the Pacific Southwest Region, however. More extreme conditions are encount-
ered in Alaska, where roadless areas are vast, yet helicopter access is permitted. The
average cost per plot for roadless areas in the Alaska interior has averaged $4,000
per plot for 170 plots. Obtaining good data for comparing areas covered by these
approaches is generally difficult because photo-interpretation based on aerial photo
coverage is used to supplement ground-survey efforts.

Reliability, confidence, and limitations—Problems of access to survey plots for re-
search, inventory, and monitoring will clearly raise costs of operations. The exact differ-
ences can be quantified by taking terrain differences, size of roadless areas, and
means of permitted entry into account. For this study, we used only a few data points
from limited regions to understand the extent of this issue. More comprehensive anal-
yses are possible with existing data, given the resources to do them. The data are suf-
ficiently robust to suggest that the cost elements relating to access constitute a factor in
research, inventory, and monitoring. Whether the magnitude of the contribution of such
uses constitutes a significant economic component when compared to, say, recreation
is not clear, however.

Generalizability—The data examined for this order-of-magnitude approach were taken
from limited observations originating in the Pacific Southwest, Pacific Northwest, and
Alaska, with Alaska representing extreme conditions. Corroboration for the observed
higher cost resulting from the absence of road access was attained qualitatively for the
Eastern Region of the Forest Service.

Forest Research,
Inventory, and
Monitoring
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Secondary links—Access issues have similar aspects whether extraction (such as
timber, mining, and grazing), recreation, inholdings, or related activities are considered.
The links do suggest that coordination of overlapping uses be a variable examined when
road density and road-network planning are considered.

Science-based sources of information have not been found on the relations between
roads and private inholdings. The following propositions are therefore offered as hy-
potheses based on judgment, not scientific findings. These propositions do not neces-
sarily apply to inholdings dedicated to mineral and energy exploration or extraction,
which are covered in “Energy and Mineral Resources,” above.

• The Forest Service is required by law to permit access to private inholdings.

• The Forest Service can require private inholding owners or lessees to comply with
official regulations and standards that apply to building roads on or through national
forest land. The regulations and standards are documented in writing as official
policy, but they are subject to interpretation and application in specific cases by
agency line officers.

• The Chief (of the Forest Service) may consult appropriate national forest policy
offices and line officers about the sources of scientific documentation used in
practice and official regulations, standards, and procedures applicable to roads on
or through national forest lands that provide access to private property.

• In general, the scientific documentation of ecological and human effects of roads on
or through national forest land provided elsewhere in this synthesis applies to roads
that provide access to private inholdings.

• No scientific basis exists for stating propositions about whether the Forest Service
subsidizes access to private inholdings or the effect, if any, of Forest Service roads
on the market, use, and passive-use values of private inholdings.

• The Chief needs inventory information about the type, number, acreage, location,
use, value, and so on of private inholdings on national forest land and the extent to
which private inholdings use national forest roads for access. At present, no
systematic inventory procedure or documentation can provide comprehensive and
valid information of that type.

Issues—A comprehensive understanding of the economic effects of roads in the
national forests must include both effects that can be measured in dollars (market
effects) and those with no direct dollar values (nonmarket effects). The influence and
importance of market values to land management decisions is obvious, and measuring
and comparing effects of management decisions that affect market values are relatively
simple. For example, the cost of building and maintaining a road into a forest can be
readily compared to the income generated from harvesting the timber accessed by that
road. Also important, but far more difficult to measure and compare, are the things
people care about for which no market exists, such as access for hunting, bird watch-
ing, and wilderness experience.

Natural resource economists have invested much effort over the last several decades to
develop and test methods for estimating nonmarket values. The methods can produce
useful information, but they are costly and their validity has not yet been demonstrated
sufficiently to satisfy many economists (Arrow and others 1993, Cambridge Economics
1992, Mitchell and Carson 1989, Portney 1994).

Nonmarket and Passive-
Use Value

Private Inholdings
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Economists generally classify nonmarket values as either active or passive. The term
“active-use value” applies to goods and services used in some activity like recreational
fishing, skiing, or camping. The term “passive-use value” includes two categories
(Peterson and Sorg 1987, Randall 1992): things people appreciate without actually
using them or even intending to use them (like a distant wilderness or an endangered
plant or animal) are called “existence values”; and things people want to remain available
for others (such as their descendants) to use and appreciate are called “bequest
values.”

Environmental economists often define and measure these nonmarket values in mon-
etary terms, but monetary valuation is often not possible, cost-effective, or appropriate.
All nonmarket consequences of national forest roads and of any changes to these roads
must be considered in road management and policy decisions. For example, passive-
use values are likely to strongly affect decisions about preserving areas without roads
or about removing existing roads to create roadless areas. Thus, the nonmarket conse-
quences need to be identified in some way—either in monetary terms or by some other
means.

Under regulations of the Comprehensive Environmental Response, Compensation and
Liability Act of 1980 (CERCLA), as amended, 42 U.S.C. 9651 (c), a United States Court
of Appeals for the District of Columbia ruled in 1989 that passive-use values “...reflect
utility derived by humans from a resource and thus, prima facie, ought to be included in
a damage assessment.” Thus, if Forest Service roads significantly alter passive-use
value, whether positively or negatively, such value needs to be considered in road policy
and management decisions. Failure to include these nonmarket values in an economic
evaluation, when such values are judged to be important, presents the manager with
biased information that could lead to inefficient and unfair allocation of resources.

Significant questions: Under what conditions do people assign passive-use value to
national forest landscapes or their attributes? Forest Service officers responsible for
road policy and management need to know the forest landscape conditions to which
people assign passive-use or other nonmarket values, how such values differ among
individuals and groups of people, the strength or significance of the value assigned, how
changes in the landscape affect the nonmarket values, and how such values trade off
with other forest-related values assigned by affected people.

Do Forest Service roads, road policies, or road management actions strongly affect
passive use and other nonmarket values? If so, how and why? A related question is
whether the effects of roads on nonmarket values affect people differently and differ by
landscape. For example, if the supply of landscape that provides passive-use value is
sufficiently large in a given region, small increments of road building or decommis-
sioning may not affect people very much. Many small encroachments could produce
severe cumulative effects, however.

Findings—People do assign passive-use value to natural resources, especially road-
less areas and natural areas with unique characteristics. And the passive-use value
often exceeds the active-use value served (or potentially served) by road access
(Bengston and Fan 1997; Brown 1993; Driver and others 1987, 1996; Payne and
others 1992; Walsh and others 1984, 1990).

Building roads in roadless areas may reduce passive-use value significantly; decom-
missioning roads may increase such value. Building roads into roadless areas may
serve values that require such access, however, and decommissioning roads may
obstruct values and uses that require access. Decisionmakers need to consider all
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these tradeoffs. Individuals and affected groups often disagree aggressively about the
passive-use value of specific roaded and roadless areas and the effects of building or
decommissioning those roads (Bengston and Fan 1997). Thus an equity (or distribu-
tion) question must be considered: Whose desires should the Forest Service fulfill when
stakeholders’ values conflict? What criteria should be used to decide among them?
What approaches can be taken to resolve the conflict?

The effects of roads on passive-use value differ by location and circumstance. Dif-
ferences in the quality and uniqueness of landscapes modify passive-use-value effects
from building or decommissioning roads. The relation between supply and demand
also will affect the extent and strength of a passive-use value. For example, if many sub-
stitutes for a given roadless landscape exist, building a road in that area may have little
or no effect on its passive-use value, just as the hunter’s killing of a single elk does not
reduce the passive-use value of elk because the species is still abundant. Likewise, if an
abundance of roads are provided to resources that people want for active use, decom-
missioning or closing one road will have little effect. People with strong attachments to a
special place, use, or road may suffer loss, however, unless they can find and adapt to
a substitute.

Validly and reliably measuring changes in passive-use and other nonmarket value is
costly and can sometimes exceed the cost of being wrong. Managers of national forest
roads must understand such values, however, and the circumstances under which they
are significant decision factors, to assure that the values can be included where appro-
priate. A survey-based method called contingent valuation (contingent valuation gen-
erally uses surveys or interviews to determine how much people say they would be
willing to pay for some nonmarket good) that asks people to state their willingness to pay
for nonmarket values can provide a useful indication of relative magnitude, but applying
it to passive-use value of public goods is where the method is most vulnerable to flawed
results, criticism, and controversy. Studies must be designed and applied carefully and
the results interpreted cautiously. Other methods, such as value juries (Brown and
others 1995), focus groups, public hearings, and other forms of public participation also
can provide useful information. Quantitative measures should be taken only when the
scale of the problem justifies sufficient investment for scientifically rigorous results.

If fully and correctly disclosed, the cost of opportunities foregone by preserving a
roadless landscape can serve as the price to be paid for the values served by preser-
vation. Preserving a roadless area may sometimes cause an opportunity cost in the
form of alternative uses foregone, such as timber harvest, developed recreation, or fire
suppression. If the opportunity cost has been fully disclosed to the decisionmaker, a
decision to preserve a roadless landscape is a policy acknowledgment that the value
created exceeds that opportunity cost. In a decision about whether to designate an area
as roadless, opportunity cost can sometimes serve as the price to be paid for whatever
values, including intangibles, are served by the designation. Stakeholders and decision-
makers can then decide—by judgment, negotiation, or analysis—whether the gain is
worth the price (Bell 1996; Fight and others 1978, 1979; Randall and others 1979).

Reliability and degree of confidence—The scientific literature supports the general
propositions that roadless natural landscapes and unique natural features and resources
generate passive-use and other nonmarket values; that such values differ among indivi-
duals, groups, and landscape conditions; and that disagreement about nonmarket value
fuels conflict. Legal precedent also validates policy concern. The effects of roads on
passive-use and other nonmarket values have not yet been studied extensively, and
the validity and reliability of methods for measuring the necessary values are still
questionable.
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Generalizability—No science-based procedures, analytical methods, formulas, tables
of values, or handbooks are available for applying the general principles we have out-
lined to specific decisions or to transfer measured values from one place to another.
Each project-scale decision requires original human-dimension inventory and assess-
ment techniques, either by technical measurement or through public involvement. Man-
agers making decisions on whether to build or remove roads in specific places always
need to consider the principles and questions defined in the findings section. Roadless
areas may have significant passive-use and other nonmarket value, depend-ing on the
people affected and the availability of substitutes, but obtaining the required information
requires original inventory and assessment for each decision. Expensive procedures
may not be appropriate where the scale of the problem does not justify the cost.

Research in progress is exploring nonmarket active-use-value transfer (that is, general-
izing by formulas and tables) among different site-specific situations. The results thus
far are encouraging but not conclusive, although they may offer useful guidance in
some situations (Rosenberger and Loomis 2000). We are not aware of any similar work
on passive-use-values.

Secondary links—Passive-use value affects public attitudes toward the Forest Service
as well as public willingness to accept and support proposed forest policies and plans.
Roads and roadless areas sometimes take on symbolic meaning in the broader context
of environmental concerns about such things as biodiversity, pollution, and ecosystem
health. Passive-use value associated with symbolic issues triggered by changes in road
distribution can be an important cause of conflict and litigation.

Conclusions—Extensive scientific evidence exists on passive-use and other non-
market values in general and on applying them to unique natural environments, environ-
mental accident damage assessment, and sensitive species. Little scientific evidence is
available on the relations among roads, roadless landscapes, and passive-use value,
however. Published studies demonstrate that people often do assign significant passive-
use value to natural areas, including roadless ones, in specific places (Bishop 1978;
Brookshire and others 1986; Carson and others 1999; Cicchetti and Wilde 1992;
Ciracy-Wantrup 1968; Crowards 1997; Farmer and Randall 1998; Freeman 1993;
Krutilla 1967; Krutilla and Fisher 1975; Loomis and White 1996; Mazzotta and Kline
1995; Morton 1999; Walsh and others 1984, 1990). National forest roads can be an
important cause of ecological degradation. Under the right conditions and taken to-
gether, those studies also imply that national forest roads can cause a significant loss
of passive-use values. The actual effect on passive-use value will be specific to the site
and situation, however; the only refereed studies we found that document the specific
relation between roads and passive-use value are Brown and others (1996) and Champ
and others (1997). Rosenberger and Loomis (2000) compiled a comprehensive tabula-
tion of nonmarket recreational values, including a bibliography of 162 studies.

Additional studies are needed to test hypotheses or estimate parameters that apply to
specific decisions. General methodological and theoretical research not specifically
focused on forest roads is ongoing in several disciplines, including environmental
economics, sociology, psychology, political science, and anthropology. Several ap-
proaches are being pursued, including social and psychological surveys, ethnographic
studies, methods for effective citizen participation, focus groups, citizen and value
groups, and monetary valuation. The needed and ongoing research is long term, how-
ever, and must not delay making decisions in the short term, based on the best available
current knowledge.
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Issues—In addition to satisfying the American penchant for sightseeing by car and
other forms of recreation requiring auto travel, roads and their features themselves
sometimes have heritage value because of historic significance or architectural fea-
tures. Roads also may affect areas considered sacred by American Indians or other
religious groups. These issues can affect the legal and political framework for Forest
Service road policy and management because important historical, social, and cultural
values are often part of developing, maintaining, or decommissioning roads. Forest
planning for transportation and for individual roads should incorporate information on
heritage and cultural values for both roaded and unroaded areas.

Findings—Roads and associated features are part of the history of the nation. Some
features are significant for their association with exploration and settlement, others for
accomplishments in engineering, and still others for reasons of local history and culture.
Roads and other transportation features figured prominently in the early nonindigenous
settlement and development of the nation. Roads that were or are significant in this way
include early Spanish roads, such as El Camino Real (the Royal Highway) in California
and New Mexico; those that follow the routes of American Indian trails (Davis 1961);
military roads such as Cook’s trail, which crosses the forests of northern Arizona (Scott
1974); and some early routes established for commerce, such as the Santa Fe Trail,
which crosses the Cibola National Forest. Given their historical role, such roads (many
still in use) often are eligible for the National Register of Historic Places. Of equal im-
portance, historic roads often have special meaning to people who live near them or
have used them. Route 66, for example, which crosses the Kaibab National Forest, is
considered historically valuable for its role in establishing regular, all-season east-west
automobile transportation to California (Cleeland 1988, 1993).

Features forming part of or associated with a road may be historically or culturally val-
uable for their own merits (Fraser 1987). Bridges and other features built by the Civilian
Conservation Corps often are fine examples of engineering and considered eligible for
the National Register of Historic Places (Throop 1979). Many such bridges are on For-
est Service roads. Roads also may have heritage value as part of a cultural landscape,
such as the landscapes associated with homesteading, ranching, or logging. Even road-
side advertising can have local cultural significance, such as the hand-painted message
along an abandoned highway in the Cibola National Forest that claims “Curandera cures
all.” The National Park Service and the U.S. Committee of the International Council on
Monuments and Sites recognized the heritage value of transportation corridors in a
conference held in 1993 (USDI 1993).

Building, maintaining, and decommissioning roads can affect historical and cultural
values. Roads often directly affect historical and archaeological sites. Building, main-
taining, or decommissioning roads can damage or destroy archaeological sites (Spoerl
1988) with earthmoving equipment used on buried and surface remains, such as struc-
tures and other cultural materials. Roads also affect sites indirectly by increasing ero-
sion or by making sites accessible to vandals. Less tangibly, but no less important,
roads often affect areas that American Indians consider sacred, may limit their ability to
conduct ceremonies that require privacy, and may even diminish the sacred qualities of
such places. Building new roads, or adding to existing ones, can affect sacred areas
that may qualify for the National Register of Historic Places as Traditional Cultural Prop-
erties (Parker and King 1990). The Cibola National Forest has recently been in litigation
initiated by Sandia Pueblo over plans to rebuild a road through Las Huertas Canyon in
New Mexico. The pueblo claims that the canyon is eligible to be a Traditional Cultural
Property. A larger issue in this case is that the road and the traffic it brings affect use of

Heritage and Cultural
Value of Roads
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the area for pueblo ceremonies. In northern California, similar issues surrounded the
case of the Gasquet-Orleans Road on the Six Rivers National Forest (Theodoratus and
others 1979), which concerned road building and resource extraction in an area that
local American Indians considered sacred. The dispute over this road lasted many
years, and its repercussions continue to be felt.

Generalizability—The findings are partially generalizable to all national forests but not
to all decisions. As with sensitive species, some issues arise where heritage and cultural
values are especially significant. Because of legal requirements and the intensity of
concern among affected stakeholders, however, assessing cultural and heritage values
is essential in every Forest Service decision about building or decommissioning roads.

Secondary links—Inadequate participation in road policy decisions by affected stake-
holders concerned with heritage or cultural values can lead to litigation and political con-
flict. It also can stimulate symbolic opposition to the Forest Service on other fronts that
even direct amelioration of the heritage or cultural concerns cannot resolve.

Conclusions—Good information is available on cases encountered by the Forest Ser-
vice; it is generally after the fact, however, and pertains to actions taken to resolve con-
flicts caused by failure to consider the issues early and effectively in policy and man-
agement decisions. Existing information about heritage and cultural values relating to
roads and roadless areas often may not be adequate; ongoing inventories tend to be
project-specific rather than part of the general program. Obtaining information about
sacred places from some American Indian groups is difficult because Forest Service
styles of communication and negotiation often are incompatible with these cultures, and
revealing sacred values and identifying sacred places to outsiders may be thought to
imperil the values in need of protection.

Documentation—Much of the documentation for the heritage and cultural values of
roads resides in administrative documents in the 50 state historic-preservation offices
and the Advisory Council on Historic Preservation.

Issues—Both benefits and costs are associated with building, maintaining, and con-
tinued use of Forest Service roads. Likewise, benefits and costs are associated with
removing existing roads. The issues revolve around whether the good things outweigh
the bad things and what the extent of roads should be in national forests.

Findings—Some economic activity is supported by building and maintaining roads:
economic activity also is supported by decommissioning roads. Analyses for the 1995
RPA program suggest that about 33 jobs economy wide (nationally) are supported per
$1 million expenditure on building and maintaining roads (Alward and others 2000). A
reasonable speculation might be that roughly the same rate of employment would be
supported by removing existing roads and restoring the land underlying them. Road
building and removal represent one-time stimuli to the economy, but maintaining roads is
a recurring stimulus. After a road is removed, the jobs supported by road maintenance
cease.

The major effects of roads on local economies, however, would be expected to result
from the economic activity those roads support by providing access to the national
forest and to communities in or near it. On Forest Service roads, that activity includes
logging, silvicultural operations, and recreation, among others. Also supported is econo-
mic activity that depends on recreation, such as guides, outfitters, and rafting permit-
tees. The roads also provide access for land management and firefighting operations.

Economic Effects and
Development
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Indirect (and approximate) indications of the amounts of economic activity that might be
associated with changes in Forest Service roads can be obtained from several sources.
Reports indicate that timber harvest from national forests supports about 16.5 jobs eco-
nomy wide (in the local area) per million board feet harvested (USDA FS 1996). That
estimate is conservative because it is based on summed local-area models. Recrea-
tional use of national forests supports a range of 1,000 to 2,000 jobs economy wide
(nationally) per million trips, depending on the primary activity, based on analyses
done for the 1995 RPA program (Alward and others 2000, Archer 1996).

Use of public lands, in general, follows roads. In Alaska, for example, intensity of use
by both hunters and nonconsumptive wildlife users follows road corridors (Miller and
McCollum 1997). Further, we hypothesize that more casual users—such as scenery
gazers, picnickers, car campers, and day hikers that constitute the bulk of national
forest recreationists—probably stay closer to the road than do some hunters and
backpackers, the minority of national forest recreationists.

Whenever timber is cut and removed from the forest, roads will be needed; even heli-
copter logging at some point converts to road use by truck hauling. One issue is the
quality of the roads and the length of their lives; that is, whether they are permanent
and remain after timber harvesting ceases, or temporary and closed after harvest. Per-
manent roads are available for other activities over time, primarily recreation and man-
agement activities. Temporary roads are available for timber activity and some incidental
activity during harvest, but when the roads are closed, benefits accruing from those
roads cease. That the cost of maintaining a road over time could sometimes outweigh
the cost of removing it at the end of one timber harvest cycle and rebuilding it for the
next one is at least conceivable. Environmental effects (and cost) of multiple entries and
decommissioning of temporary roads must be balanced against those of a single per-
manent road. Permanent roads cost more to build and maintain than temporary ones,
with increased potential for degrading the ecosystem, but they can result in more bene-
fits over longer periods than temporary roads because of the access they allow.

Roads affect spatial patterns of forest use. Changes in roads change those patterns.
Recreational users are particularly attracted to or driven away from particular areas by
the availability and ease of access. With decreased access to the national forest, some
users might drop out and give up outdoor recreation. Others would shift their use to
other areas, some on Forest Service land and others off. The result would be reduced
economic activity in the locale where forest access was decreased and increased
economic activity in areas where displaced users moved. In general, the effects would
be reversed if access were increased. Sometimes, however, increased access could
lead to decreased use and result in less local economic activity; for example, where new
roads and associated commercial activity degrade a viewshed, which could decrease
visits to view autumn foliage.

Another result of spatial shifts in recreational use could be to concentrate use in areas
to which displaced users move. Concentrated use may increase environmental effects
as well as decrease the quality of people’s experiences. Crowding imposes costs on
existing users in those areas by diminishing the benefits they received from their rec-
reational use because of the inflow of displaced users from areas affected by de-
creased road access.

Anything that affects the demand for and benefits received from recreation and other
uses of Forest Service land has subsequent economic effects, and it may alter develop-
ment because land uses drive local economic activity. Forests and local economies will
be affected differently, depending on the mix of local activities.
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Building or removing Forest Service roads and maintaining existing roads can help miti-
gate ecosystem degradation associated with roads. Note that the tradeoffs are between
the expense of minimizing or eliminating environmental degradation associated with For-
est Service roads and access to Forest Service lands with associated economic activity.

Many roads are or have been funded by the timber program. Benefits accrue from use
of those roads beyond timber, largely for recreation. This contrast presents a classic
problem of joint cost allocation, and the accounting problem of attributing cost should not
be used as an excuse for looking only at specific programs or components of the Forest
Service mission.

The jobs and other economic activity supported by building and maintaining roads must
be balanced against the cost of building and maintaining those roads, including costs
resulting from choosing not to maintain selected roads. The question is, do the benefits
associated with the roads, both direct and indirect from all sources, justify the cost in-
curred by society, including costs of increased ecosystem degradation from deferred or
inadequate maintenance? Reports like this one can provide information on a wide var-
iety of benefits and costs, but answering the question just posed is a policy decision.

Reliability, confidence, and generalizability—Analyses done for the 1995 RPA pro-
gram provide a broad picture of national effects that can be expressed as averages
and rates per unit of activity. They are not site-specific studies, and they do not esti-
mate the effects on local areas. A few recreation-demand studies based on specific
sites and regions provide corroborating evidence of the qualitative results (English 1997,
McCollum and Miller 1994, Miller and McCollum 1997). The transportation literature con-
tains some studies on roads and development (Berechman 1994, Broder and others
1992, Rephann 1993, Rietveld 1994), but those studies are mainly about highway sys-
tems, and though we expect their conclusions to be qualitatively relevant to the types of
roads administered by the Forest Service, some attributes of Forest Service roads are
so different that creating a complete picture is impossible. A primary gap in knowledge
is understanding the links between policy or management actions and their effects on
forest-based activity (both in the amount of activity undertaken by users and in the
benefits they receive), especially for recreational and noncommodity uses. Changes
in road availability and quality affect whether and how much users access the forest
in particular areas. Road availability and quality also affect the quality of users’ expe-
riences, and thereby affect the benefit they receive. No access or access on a poorly
maintained road, for example, could decrease benefit for some activities but have little
or no effect on others. We did not find any activity-specific studies documenting the
direction and size of such effects. Those factors are relevant because they drive de-
mand for access to Forest Service land and the local economic activity associated with
use of these lands.

Further gaps in knowledge exist on the distributive effects of new or improved and
degraded or removed roads on forest use in local areas and on local economic activity.
To what extent do the existence or lack of Forest Service roads, and their condition, at-
tract or drive away users pursuing particular activities? The general development litera-
ture provides some insights and qualitative expectations for Forest Service roads, but
empirical findings on the likely size of the effects are absent.

Conclusions—Empirical estimates are not available to document the size of the eco-
nomic contribution of recreation-dependent commercial activities like guides, outfitters,
and rafting permittees. Also missing are empirical estimates of benefits received from
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and economic activity supported by specific recreation activities in specific areas.
Estimates are often obtained from national studies or site-specific studies in other areas
and blindly applied to areas being analyzed.
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This section draws from the analysis in the main document, with interpretations relevant
to roadless and unroaded areas.

Managing and maintaining existing forest roads has not kept pace with either the shift-
ing balance of forest users or the increased scientific understanding of the ecological
effects of roads. In particular, entry into roadless areas merits consideration of both
benefits derived and risk of unacceptable impacts. Thus, managing for roadless area
protection consists of positive steps such as providing for habitat conservation areas,
watershed protection, critical habitat protection, contingency or passive-use values, and
related land stewardship objectives. It also consists of restricting actions that may con-
tribute to deteriorating environmental integrity, such as stand-replacing fires or large-
scale insect outbreaks.

Questions affecting roadless areas include:

• Are significant and important social values associated with the existence and
protection of wilderness and roadless areas?

• Does a road network in itself pose a risk to the integrity (as defined in the interior
Columbia River basin study) of roadless forested ecosystems?

• Do roadless areas make substantial contributions to maintaining biodiversity and
desirable habitat characteristics?

• Can roadless areas stay intact without management efforts that are facilitated by
roads (for example, fire prevention, disease and pest control)?

• Does creating new roads in roadless areas have overriding benefits that outweigh
the potential ecological costs?

Existing and perhaps new science information may be needed to assess some or all of
the questions posed. In addition, methods from the social sciences are available to con-
duct surveys and assessments of public perceptions, values, and beliefs to determine
the values that roadless areas hold in the mind of the public. This summary of existing
information is an attempt to identify the ecological and biophysical characteristics of
large nonroaded blocks of the forest and rangeland ecosystems that would permit con-
clusions about the value of maintaining such landscape features, and to examine the
scientific aspects of a possible rationale for road building in currently roadless areas.

Ecological and biophysical aspects of roadless areas—An approach for providing
the scientific basis of ecological and biophysical value is to summarize the known
information on roadless areas at the landscape or large basin scale and proceed to
smaller spatial scales. Questions that may be asked at the larger scale include the
following:

• Is retention of existing roadless areas an important as part of a conservation
strategy?

• Does the distribution of roadless systems affect the success of conservation
strategies?

• Does the size of individual roadless areas affect the success of conservation
strategies?

One of the few examples of landscape-scale analysis of road influences is the interior
Columbia River basin environmental assessment. Analysis of fish distribution and status
data for seven species of anadromous and resident salmonids in the Columbia basin
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showed that frequency of strong populations generally declined with increasing road
densities. Additional analyses of road effects focused on four non-anadromous species,
because effects of roads and other land uses on anadromous species may be masked
by migrational and ocean-related factors (for example, dam passage, predation, and
harvest). Three species showed significant effects from roads, either when occupied
spawning and rearing areas were distinguished from unoccupied areas or when strong
status was differentiated from depressed. The analysis suggested a decreasing likeli-
hood of occupancy—or a decreasing likelihood of strong status if occupied—with
increasing road density. No other variables except ground slope showed the consistent
patterns across all species shown by the road density measures.

The investigation of the influence of roads on population status clearly showed an in-
creasing absence and a decreasing proportion of strong populations with increasing
road density for several subgroups. Additional evidence suggests that the lowest mean
road density values (number of road miles per unit of area) always are associated with
strong population status.

Based on the synthesis reported in the main body of this document, this trend is ap-
parent for Yellowstone cutthroat trout, even though it was the only subgroup not showing
a significant road effect in a logistic regression analysis. The lack of statistical signifi-
cance in the face of apparent trends, however, points to complex interactions among the
explanatory variables not adequately addressed in the relatively simple logistic model.
Consistent, significant effects for other species may be further testament to the pre-
sence and pervasiveness of the effects. Strong relations between roads and the dis-
tribution and status of these species were detected despite the potential confounding
effects of other variables (such as harvest, non-native introductions, and other habitat
factors).

These results show that increasing road densities and their attendant effects are as-
sociated with declines in the status of four non-anadromous salmonid species. These
species are less likely to use highly roaded areas for spawning and rearing and, if
found, are less likely to have strong populations. This consistent pattern is based on
empirical analysis of 3,327 combinations of known species’ status and subwatershed
conditions, which were limited primarily to forested lands administered by the Forest
Service and the Bureau of Land Management. We would not expect the relation to be as
strong on the nonforested, lower gradient lands administered by BLM. Of the four spe-
cies examined, the redband trout is the only one supported by the low-gradient lands.
Only in forested, high-elevation areas could redband trout status be clearly associated
with road density changes.

Most aquatic conservation strategies acknowledge the need to identify the best habitats
and most robust populations to use as focal points; from these, populations can expand
where adjacent habitat can be usefully rehabilitated or the last refugia of a species
can be conserved. These strategies also provide necessary experimental controls for
evaluating the effects of land management activities in other areas. The ecological
importance of unroaded areas has been highlighted in the Columbia basin assessment
and in other reports cited in the main body of this paper.

The overlap of unroaded areas within and outside designated wilderness areas with
stronghold watersheds for fish and other important conservation watershed efforts in
the Columbia basin also was examined. Designated wilderness and unroaded areas
are important anchors for strongholds throughout the basin. Unroaded areas occupy
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41 percent of area with known and predicted strongholds in the east-side EIS area.
One-third of this area is outside wilderness. Sixty-eight percent of known and predicted
strongholds in the upper Columbia basin EIS area are unroaded, of which 37 percent
are outside of wilderness.

Aquatic integrity in the Columbia basin was analyzed in relation to road densities and
integrity ratings for other resources (forest, range, hydrology). Forest clusters with the
highest integrity ratings for aquatic organisms were associated with low road densities;
low integrity ratings corresponded with moderate or higher road densities. The range
cluster having the highest aquatic and composite integrity also had mostly low road
densities. The relations between road densities and integrity ratings for other range
clusters were more variable, however (FEMAT 1993, Henjum and others 1994, Lee and
others 1997). The correlation of basin or subbasin integrity is not total, suggesting the
variables and interesting mechanisms are complex and nonuniform. Such data sug-
gest that criteria be developed to examine the role of roadless areas in conservation
strategies and permit assessing the risks taken when roadless blocks that are signifi-
cant features at the landscape level are further intersected by roads.

• Does the distribution of roadless areas contribute to the ecological integrity of
forested ecosystems?

• Does a conservation strategy that includes roadless areas need to be spatially
explicit?

The distribution and the desirability of having well-distributed roadless area systems
pose interesting scientific challenges. Historical trends significantly influenced the extent
and distribution of roadless areas. Logging progressed from easily accessible, low-
elevation forests to more difficult, high-elevation terrain; thus the remaining road-less
areas tended to be at high elevations. We are unaware of a systematic analysis of this
issue. Criteria that include assessing how well some roadless areas represent certain
native ecosystems should be considered. This is especially the case at lower elevation
sites that historically have seen the greatest harvesting effort and attendant road build-
ing. If the goal is to have a system of reserves consisting of representative, relatively
undisturbed habitats, then roadless areas and the habitat types within them should be
distributed over major ecoregions and be derived logically.

• Do corridors connect the high-quality roadless areas?

Biodiversity is, in simplest terms, the variety of life and its processes (Keystone Center
1991). Recent syntheses (Heywood and Watson 1995) emphasize the reciprocal rela-
tion between biodiversity—conceived as genetic and species diversity—and ecosystem
function. The many species representing the biodiversity of an area play roles neces-
sary for ecosystem function and, importantly, are the source of the variation enabling an
ecosystem to adapt to change. The processes of a healthy, functioning ecosystem in
turn support the many species. Appreciating the reciprocity means that biodiversity can
be taken as a natural measure of the ecosystem as a whole and thus can integrate the
many concerns listed.

Some species may play more important roles than others in the normal functioning of an
ecosystem. Keystone species, for example, may define the major structural elements of
an ecosystem as Douglas-fir does for forests in the Pacific Northwest, or they may—by
virtue of their position in a complex trophic structure—act to maintain the diversity as
keystone predators do for herbivores. The many species that do not seem to serve an
important role in an ecosystem constitute a reservoir of potential adaptation to change.
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Because an ecosystem cannot predict change, the very diversity of species acts as a
hedge against it. Thus, biodiversity is important to long-term ecosystem function, and
human activities that decrease biodiversity can impair it. Our working hypothesis is,
then, that measures of biodiversity provide the best integrative assessment of the
effects of roads on ecosystems.

Forest roads create corridors that not only permit invasion of alien, weedy species, but
also permit entry of predators, including humans, to the forest environment and affect
wildlife populations. Limited studies have shown that roads allow exotic species into
areas where they historically have been absent or where appropriate habitat was not
available (Parendes, 1997). Clearly, these secondary effects are promoted by the
existence of roads but are not due to the roads themselves; however, the increase in
human access to remote areas allowed by roads has a far more significant effect on
native populations. High road densities are associated with a variety of negative human
effects on some wildlife species. Black bear populations are inversely related to road
density in the Adirondacks (Wisdom and others 2000). Increases in hunting pressure,
particularly illegal hunting, have the potential to impact populations. Moose and caribou
are particularly vulnerable to this kind of predation (Scott and Servheen 1985). Such
connectivity will be important for endangered species where the gene pool is already
limited, such as in the case of the Florida panther (Puma concolor corgi), and where
gene exchange between populations in adjacent habitat may help species viability
(Shrader-Frechette 1995). Connectivity also is important for species having large home
ranges, and road avoidance or risk from road related mortality constitutes an additional
threat to the populations, or may lead to undesirable, even dangerous animal-human
interaction, as may be occurring with mountain lion (Felis concolor) populations in
southern California.

Whenever forest roads are built, modified habitat and changes in animal behavior will
lead to changes in risk to viability and distribution and even local extirpation in wildlife
populations. Road avoidance behavior is characteristic of large mammals such as elk,
bighorn sheep, grizzly bear, caribou, and wolf. Avoidance distances of 100 to 200 yards
are common for these species. Road usage by vehicles and humans has a significant
role in determining road avoidance behavior. In a telemetry study of black bear move-
ments, interstate highways were almost never crossed, and roads with low traffic volume
were crossed more frequently than roads with higher traffic volumes (Wisdom and
others 2000.). It appears that in some cases, male bears may actually be using roads
as travel corridors (Young and Beecham 1986, Zager 1980). Wolves in Wisconsin are
limited to areas with overall mean road densities of 0.07 miles per square mile. Some
studies have shown that the existence of a few large areas of low road density, even in a
landscape of high average road density, may be the best indicator of suitable habitat for
large vertebrates (Wisdom and others 2000.).

• Are roadless areas important to the conservation of high-quality aquatic and
terrestrial habitats?

Again drawing on the Columbia River basin assessment, fish with strong populations
occurred more frequently in areas with lower road densities. Supplemental analysis fur-
ther showed that increasing road densities and their attendant effects were associated
with declines in the status of four non-anadromous salmonid species. Fish seem to be
less likely to use highly roaded areas for spawning and rearing and, where found, are
less likely to have strong populations. Patterns based on empirical analysis of 3,327
combinations of known species status and subwatershed conditions are consistent and
unmistakable, though limited primarily to forested lands administered by the Bureau of
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Land Management and Forest Service. Although unroaded areas are significantly more
likely to support strong populations, strong populations are not excluded from roaded
watersheds. Possible reasons for this coexistence are that, in general, increased short-
or long-term watershed and ecological risks are associated more with entering an un-
roaded area than with proceeding continuously with management activities in roaded
areas to upgrade, maintain drainage, or close or obliterate existing roads (Lee and
others 1997). The empirical evidence is correlational and, when the causes for the
above observations are fully established, a more complex picture is likely to emerge.

At a more local scale, hydrologic and geomorphic interactions are a potential conse-
quence of road building and presence that can involve altered flow regimes, increased
sedimentation, local failures with local and “downstream” consequences for streams,
riparian areas, and vegetation cover. For example, the FEMAT (1993) analysis stats,
“Management activities in roadless areas will increase the risk of aquatic and riparian
habitat damage and potentially impair the capacity of Key Watersheds to function as
intended...[while]...most timber-suitable roadless acreage can be harvested either dir-
ectly from existing roads or from helicopters.” Further, “if all timber-suitable roadless
remains unroaded in Option 9, then the estimated reduction for the total regional prob-
ably sale quantity is less than 0.2 percent.”  In terms of aquatic effects, the Columbia
basin assessment summaries include the following statements: “Roads provide access,
and the activities which accompany access magnify the negative effects on aquatic
systems beyond those solely due to roads.”  Among other findings, the assessment
“...subwatersheds supporting strong populations were found on Forest Service admin-
istered lands (75 percent) and a substantial number (29 percent) are located within
designated Wilderness areas and National Parks.”  Thus, the data “...clearly show
increasing absence and decreasing proportion of strong [fish] populations with in-
creasing density for some subgroups” (FEMAT 1993). Other studies found that the
length of road segments connected to the stream network at stream crossings or gully-
debris slide tracks amounted to a 40-percent extension of the stream network length in
a Cascade Range watershed (Jones and others, in prep; Wemple 1999).

High-quality terrestrial habitats may be affected by the potential for invasion of exotic
plants and animals that can displace or threaten native populations; that is, affect bio-
diversity, which can be increased by roads. Migrating populations of rare amphibians
may be killed during road use; disease and pathogens are spread more rapidly and
widely if roads are present (Kiester and Slatkin 1974). The preponderance of the nega-
tive findings in many scientific studies also suggests that the potential for ameliorating
or minimizing the unwanted effects exists, even if it has not been made a prime objective
historically. Lastly, some positive ecological results may follow (though they are propor-
tionately less significant) that roads create edge environments exploited by small mam-
mals, can sustain some desirable species, and provide useful niches. Maintaining an
optimum balance is a function of the long-term magnitude of road networks; for the
present system, the need for additional niches and habitats is difficult to demonstrate.

A full scientific view of the data on roadless areas cannot stop at the local scale, but
must ultimately view the presence of roaded and roadless areas in a landscape context
and be able to draw the distinction between a large road network and small roadless
areas or large roadless areas and a small road network. Again drawing on the Columbia
basin assessment, we note that “while unroaded areas are significantly more likely
to support strong populations, strong populations are not excluded from roaded
watersheds.... the scale of the subwatershed (8000 ha on average) at which strong
populations are identified may mask potential disconnects between the real locations
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of strongholds and roads. The significance of the impacts and benefits will be affected
and must withstand rigorous scientific approaches over a spectrum of possibilities and
of scales” (Lee and others 1997).

Social, aesthetic, and economic values of roadless areas—The interaction between
roadless areas and people’s aesthetic and spiritual beliefs about the landscape probably
affects people’s perceptions in many different ways. We know that passive or “nonuse”
values include “existence” and “bequest” value. Existence value pertains to things,
places, or conditions people value simply because they exist, without any intent or ex-
pectation of use. Bequest value pertains to a desire people may have to allow others,
such as future generations, to receive benefit from a resource (Peterson and Sorg
1987, Randall and others 1979). The issues are as follows:

• People assign significant passive-use value to national forest landscapes or
attributes.

• Forest Service road policies or management actions affect passive-use values.

People do assign passive-use (nonuse) value to natural resources, and passive-use
value may exceed the active-use value served by road access to the resource. Invasion
of roads will reduce some aspects of passive-use value in natural areas. Likewise, ob-
literation of roads may increase such value. Building roads into roadless areas may,
however, serve values that require access, and obliterating roads may obstruct values
and uses that require access, so tradeoffs need to be considered. Though not univer-
sally shared, a strong value is doubtless attached to the continued existence of wilder-
ness and roadless areas, including those in national forests.

The relation between roadless areas and recreation on national forests is highly com-
plex. Research findings are limited and uneven on the issues of direct, indirect, and
secondary effects on recreation of altering the national forest road system. Indirect
evidence and related research provide the following insights:

• Roads provide corridors of access to various national forest sites, settings, and
visual and aesthetic experiences; in fact, almost all recreation in national forests
depends to some degree on road access.

• Roads provide access to remote areas and wilderness but at the same time can
reduce opportunities for solitude elsewhere.

• The amount of roading and the amount of recreation use are positively correlated,
sometimes leading to heavy concentrations of use, and roads may be the only
means of enjoyment for persons with some forms of disability.

• Demand for forest recreational opportunities continues to grow regionally and
nationally.

• Placement, scale, class, and setting of roads can greatly affect the quality of scenic
views of national forests and access to outstanding vistas.

The three most highly ranked uses of lands administered by the Forest Service and
Bureau of Land Management in the basin today are timber, fishing, and hunting. Pro-
jected uses by 2045 will be motor viewing and day and trail use; this for an area where
70 percent of the unroaded areas of >200,000 acres occurs in the lower 48 states
(Cordell and Bergstrom 1991, Tarrant and others 1999).
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• Does a roadless area preclude needed access for public services and resources as
well as conservation management?

Roadless areas not already congressionally withdrawn (for example, as a designated
wilderness area) total about 34 million acres in national forests. Of these, 9 million
acres have been identified as suitable for timber production. Management practices
and natural resource use may suggest strong reasons for entry into the 9 million acres
(Coghlan and Sowa 1997). Timber harvesting using roadless approaches in these areas
would lead to greater reliance on helicopter logging systems, which increase logging
costs. The FEMAT study (1993) suggests that in key watersheds, the reduction in tim-
ber volume would be about 0.3 percent, and reduction by prohibiting entry into existing
roadless areas not congressionally withdrawn in all areas considered by FEMAT (that is,
the range of the northern spotted owl) would be 6 percent.

For the interactions of grazing rights, grazing access, and roads, essentially no scien-
tific information exists analyzing the ecological, administrative, or economic effects of
roads on administering the Forest Service range management program, and the synthe-
sis in the main report did not uncover data specific to the relation of roadless areas and
grazing practices (Peterson and Sorg 1987).

That improved road access leads to increased efficiency and effectiveness of fire sup-
pression activities is a long-held tenet of fire fighting. Much of the effectiveness of past
fire suppression policies probably can be attributed to increased access for ground
crews and equipment, particularly under weather and fuel situations where fire behavior
is not severe. Under the severe conditions associated with intense, rapidly spreading
fires, the value of forest roads for access or as fuel breaks is likely to be minimal. How-
ever, quantification of these effects in published research in the United States is mini-
mal. But it should be noted that indirect effects of increased access have increased the
role of human-caused ignitions, and this is particularly true in areas of expansion of
urban and rural development into wildland interfaces.

Roadless areas: conclusions—The scientific literature provides a framework of gen-
eral principles regarding the nonuse values of present roadless areas and may even be
extended to apply to areas where road decommissioning may recreate roadless areas.
Such values include areas (1) having significant amounts of interior habitat for many
forest species now being observed under the “survey and manage” concept of the
Northwest Forest Plan, (2) maintaining connectivity of habitat for species having large
home-ranges, (3) valuing the existence of forest “reserves” that permit the continued
functioning of representative habitat types in a state of least human disturbance, and (4)
becoming aware that forest-stream interactions seem to confer somewhat stronger fish
viability in areas of low to no road densities. At present, no science-based analytical
models, formulas, tables, or handbooks are available that the manager can use to apply
the general principles to specific decisions, though pilot efforts are now underway by
the USDA Forest Service to develop such tools. Such tools will provide methods that
permit judgments about offsetting benefits and impacts from road building and usage,
which suggests that we will have the means at hand to decide on an agreed on mix of
roaded vs. roadless areas in national forests.
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The Forest Service of the U.S. Department of Agriculture is dedicated to the principle
of multiple use management of the Nation’s forest resources for sustained yields of
wood, water, forage, wildlife, and recreation. Through forestry research, cooperation
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Hermaphroditic, demasculinized frogs after exposure
to the herbicide atrazine at low ecologically
relevant doses
Tyrone B. Hayes*, Atif Collins, Melissa Lee, Magdelena Mendoza, Nigel Noriega, A. Ali Stuart, and Aaron Vonk

Laboratory for Integrative Studies in Amphibian Biology, Group in Endocrinology, Museum of Vertebrate Zoology, Department of Integrative Biology,
University of California, Berkeley, CA 94720-3140

Communicated by David B. Wake, University of California, Berkeley, CA, March 1, 2002 (received for review December 20, 2001)

Atrazine is the most commonly used herbicide in the U.S. and
probably the world. It can be present at several parts per million in
agricultural runoff and can reach 40 parts per billion (ppb) in
precipitation. We examined the effects of atrazine on sexual
development in African clawed frogs (Xenopus laevis). Larvae were
exposed to atrazine (0.01–200 ppb) by immersion throughout
larval development, and we examined gonadal histology and
laryngeal size at metamorphosis. Atrazine (>0.1 ppb) induced
hermaphroditism and demasculinized the larynges of exposed
males (>1.0 ppb). In addition, we examined plasma testosterone
levels in sexually mature males. Male X. laevis suffered a 10-fold
decrease in testosterone levels when exposed to 25 ppb atrazine.
We hypothesize that atrazine induces aromatase and promotes the
conversion of testosterone to estrogen. This disruption in steroi-
dogenesis likely explains the demasculinization of the male larynx
and the production of hermaphrodites. The effective levels re-
ported in the current study are realistic exposures that suggest that
other amphibian species exposed to atrazine in the wild could be
at risk of impaired sexual development. This widespread com-
pound and other environmental endocrine disruptors may be a
factor in global amphibian declines.

In the last 10 years, a great deal of attention has focused on the
global presence of endocrine-disrupting contaminants in the

environment (1, 2). Similarly, a great deal of attention has
focused on global amphibian declines (3, 4). In the case of
amphibian declines, efforts focus on identifying causes (5),
whereas for endocrine disruptors, the ‘‘causes’’ have been iden-
tified and studies focus on identifying effects of endocrine
disruptors in the environment (6–11).

Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-
triazine) is the most commonly used herbicide in the U.S. and
probably the world. The U.S. Department of Agriculture reports
that more than 30,000 tons (60 million pounds) are used annually
in the U.S. alone (12). Atrazine has been used for over 40 years
and currently it is used in more than 80 countries. Despite its
widespread intensive use, atrazine is considered safe because of
its short half-life and negligible bioaccumulation and biomagni-
fication (13). Also, atrazine seems to have very few effects on
adults and reportedly induces abnormalities and deformities only
at very high doses. As a result of the high doses required to
produce deformities, it has been suggested that ‘‘direct toxicity
of atrazine is probably not a significant factor in recent amphib-
ian declines’’ (14). Here, we test the hypothesis that atrazine may
interfere with metamorphosis and sex differentiation at ecolog-
ically relevant low doses via endocrine-disrupting mechanisms.

Materials and Methods
Animal Breeding and Larval Care. We report results from two
experiments that used frogs from two separate sources. Adults
from Exp. 1 were from a long-term captive colony maintained at
the University of California, Berkeley, whereas adults from Exp.
2 were obtained from Nasco (Fort Atkinson, WI). In both
experiments, three females and three males were injected with

human choriogonadotropin (1,000 international units) 6 h before
harvesting gametes. Eggs were manually stripped from the
female and fertilized in vitro in 0.3 � modified mammalian
Ringer’s solution by using the sperm obtained from the dissected
testes of the three males. The embryos were allowed to hatch.
After 4 days, the larvae were all mixed and netted into tanks 5
at a time repeatedly, until all tanks contained 30 larvae. Larvae
were reared in 4 liters of aerated 10% Holtfreter’s solution (15)
and fed a solution of ground Purina rabbit chow daily. Food
levels were adjusted as the animals grew to maximize growth.

Dosing. In Exp. 1, we exposed larvae to atrazine at nominal
concentrations of 0.01, 0.1, 1.0, 10.0, and 25 parts per billion
(ppb), whereas the second experiment used 0.1, 0.4, 0.8, 1.0, 25,
and 200 ppb atrazine. Concentrations were confirmed by two
independent laboratories (PTRL West, Richmond, CA, and the
Iowa Hygienic Laboratory, Univ. of Iowa, Iowa City, IO). All
stock solutions were made in ethanol (10 ml), mixed in 15-gallon
containers, and dispensed into treatment tanks. Controls were
treated with ethanol such that all tanks contained 0.004%
ethanol. Water was changed and treatments were renewed once
every 72 h. Each treatment was replicated 3 times with 30
animals per replicate (total of 90 animals per treatment) in both
experiments. All treatments were systematically rotated around
the shelf every 3 days to ensure that no one treatment or no one
tank experienced position effects. Experiments were carried out
at 22°C with animals under a 12-h�12-h light�dark cycle (lights
on at 6 a.m.). Animals were exposed throughout the entire larval
period, from hatching [Niewkwoop–Faber (NF) Stage 48 (16)]
until complete tail reabsorption (NF Stage 66). In all experi-
ments, all treatments and analyses were conducted blindly with
color-coded tanks and treatments and number-coded specimens.

Gross Measurements. At metamorphosis (complete tail reabsorp-
tion—Niewkwoop–Faber Stage 66), the date was recorded for
each animal. Each animal was weighed to the nearest 0.002 g on
a Mettler AT 261 Delta Range balance and its total length was
measured to the nearest 0.5 mm. Animals were anesthetized in
0.2% benzocaine (Sigma), assigned a unique identification num-
ber, fixed in Bouins’ fixative, and preserved in 70% ethanol until
further analysis.

Gonadal Analysis. Initially, the sex of all individuals was deter-
mined based on gross gonadal morphology (Fig. 1). Sex identi-
fication was confirmed by histology for 10 animals per tank.
Further, histological analysis was conducted on all animals for
which the sex was ambiguous when determined by gross mor-

Abbreviation: ppb, parts per billion.
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phology. All histology was conducted according to Hayes (17).
In brief, tissues of interest were dissected and dehydrated in
graded alcohols, followed by infiltration with histoclear and
paraffin. Sections were cut at 8 �m and stained in Mallory’s
trichrome stain.

Laryngeal Size. Serial transverse histological sectioning was con-
ducted on the larynges of 10 males and 10 females from each
replicate from all treatments in both experiments. Histology was
conducted as described above. To estimate the size of the larynx,
the M. dilator laryngis was measured. We used the largest
cross-sectional area (transverse section) as a measure of muscle
size. Initially, 10 sections were taken from 100 animals (distrib-
uted over all treatments from Exp. 1) until a region approxi-
mately one-third through the larynx was repeatedly determined
to be the largest section. For the final analysis this region was
identified by shape. Thus, similar sections were measured for
each individual. Images of this section from each animal were
recorded with a Sony DKC-5000 and analyzed with METAMORPH
software (version 2.75, Universal Imaging, Media, PA).

Adult Treatments. Newly metamorphosed animals were too small
to obtain enough plasma to measure hormone levels. Thus,
studies of effects of atrazine on hormone levels focused on
adults. For adult studies, males and females were obtained from
a long-term captive colony at University of California, Berkeley.
Adults were maintained under the same light and temperature
cycles as described for larvae. Animals were acclimated in 10%
Holtfretter’s solution for 5 days and then exposed to 25 ppb
atrazine. Water was not aerated, animals were fed Purina trout
chow daily, and water was changed and treatment renewed every
72 h. Animals were treated for 46 days. At the end of the
exposure, animals were killed by decapitation, and the blood was
collected. Plasma was collected and stored frozen until analysis.

RIA. For testosterone analysis, plasma was extracted with diethyl
ether and dried under nitrogen. All samples were reconstituted
in PBS with gelatin (PBS-g). Hormone assays were conducted as
described in Hayes and Licht (18). Testosterone antisera were
obtained from Endocrine Sciences (Calabasas, CA) and were
validated for several species including Xenopus laevis. Plasma
from controls and treated animals was assayed in the same assay
at 3 doses and the assay was repeated 3 times. Intraassay
variation was 1.0%, and interassay variation was 1.3%.

Statistical Analysis. Statistical analysis was conducted with the aid
of SYSTAT software (SPSS, Chicago). Sex ratios were analyzed by
using the G test with Wilkin’s g- adjustment as described in
Hayes and Menendez (19). Similarly, mortality was analyzed by
using the G test. Time to metamorphosis and size (length and
weight) at metamorphosis were analyzed by using ANOVA with
treatment, tank, and sex (sex nested within tank and tank nested
within treatment) as independent variables. In addition, we
conducted correlational analyses to determine whether laryn-
geal size correlated with time to metamorphosis, size, or atrazine
dose. Also, we scored all animals as to whether they were greater
or less than the mean laryngeal size for controls and then
conducted a G test to determine whether the number of affected
animals in the treatment group changed with atrazine treatment.
Finally, we used Kendall’s ranked coefficient to determine
whether the percentage of below-average animals varied with the
dose of atrazine.

Results
Mortality, Development, and Growth. At the doses tested, atrazine
exposure had no effects (P � 0.05) on mortality, time to
metamorphosis, length, or weight at metamorphosis (not
shown).

Effects on Primary and Secondary Sex Differentiation. Males and
females were sexually differentiated at metamorphosis based on
gonadal morphology and histology (Fig. 1). At all doses tested
(except 0.01 ppb), atrazine produced gonadal abnormalities. Up
to 20% of the animals (16–20%) had multiple gonads (up to 6
in a single animal) or were hermaphrodites (with multiple testes
and ovaries; Fig. 2). These abnormalities were never observed in
control animals in the current experiments or in over 10,000
observations of control animals in our laboratory over the last 6
years.

Control males had larger larynges than females at metamor-
phosis, but males exposed to atrazine (�1 ppb) had reduced
larynges (both studies; Fig. 3 A and B). When we examined the
proportion of ‘‘below-average’’ animals against dose, we found
a threshold effect at 1 ppb (both studies; Fig. 3C), but Kendall’s
rank coefficient suggested a dose effect with increasing propor-
tions of affected males associated with increasing atrazine doses
(P � 0.01; Fig. 3D).

We hypothesized that the effects of atrazine were caused by a
disruption of steroidogenesis (20–27). Further, we showed that
sexually mature males suffered a 10-fold decrease in plasma
testosterone (Fig. 4).

Discussion
Although data from two experiments are reported here, these
studies have been repeated four times, including an unpublished
report and a study submitted to the U.S. Environmental Pro-
tection Agency (28). In total, atrazine exposure at these levels
has been replicated 51 times by our laboratory with similar
results. We chose X. laevis for these studies, because it is a well
studied laboratory model for which the effects of sex steroids are
well known. Exposure to exogenous estrogen in this species
results in 100% females (29, 30), whereas androgens increase
laryngeal growth but do not affect gonadal differentiation (30,

Fig. 1. Gonads of a control postmetamorphic male (A and C) and female (B
and D) X. laevis. A and B show the entire dissected kidney–adrenal–gonadal
complex preserved in Bouins’ fixative. C and D show 8 �m of transverse
cross-sections through the animals’ right gonad stained with Mallory’s
trichrome stain. [Bar � 0.1 mm (A and B) and 10 �m (C and D)]. FB, fatbody; K,
kidney. Arrows (in A and B) show the anterior and posterior ends of the
animals’ right gonads. The yellow color in A and B is a result of fixation in
Bouins’ fixative. Without fixation, the gonad is transparent. The ovary is
distinguished by its greater length, lobed structure, and melanin granules.
Although some specimens’ ovaries lack pigment (especially atrazine-treated
animals), testes never have melanin in this species. Histologically, the ovary is
distinguished by the ovarian vesicle (hole in the center) along its entire length
and the internal ring of connective tissue (in blue). Note the melanin granules
(black) in the connective tissue in D.
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31). Thus, endpoints for detecting sex steroid-like or antagonistic
effects are well defined for this species. The current findings
suggest that atrazine inhibits testosterone and induces estrogen
secretion.

Previous studies have suggested that atrazine is an endocrine
disruptor, but these effects have been observed in a single strain
of rat or were produced only at high doses (32–38). In fact, no
published studies have addressed effects of atrazine at concen-
trations considered safe in drinking water or safe for limited
human exposure—3 and 200 parts ppb, respectively (39). Also,
until now, the potential endocrine-disrupting effects of atrazine
have not been examined in amphibians, although teratogenesis,
mortality, and growth effects have been examined at high doses
(14, 40–45). In the cited amphibian studies, deformities, acute
toxicity, or physiological impairments were not detected below
atrazine doses of 47.6 ppm.

Disruption of steroidogenesis by atrazine has been reported in
mammals (20–26) and reptiles (27), however. Several of these
studies reported the induction of aromatase and an increase in
estrogen. Here, we suggest that the same mechanism may explain
the effects observed in X. laevis. An induction of aromatase may
result in the decrease in androgens (as androgens are the
substrate for aromatase). The loss of masculine features, such as
the decreased laryngeal size, may be a result of the decreased
androgens, whereas the induction of ovaries may be a result of
increased estrogen synthesis and secretion. The possible com-
mon mechanism underlying the abnormal sexual development in
the current study and reproductive abnormalities in reptiles and
mammals has significant implications for environmental and
public health. The effects observed in mammals were dismissed
as a concern for public health because the exposure levels were
very high (20–26, 32–38). The effective doses in the current
study, however, demonstrate the sensitivity of amphibians rela-
tive to other taxa, validate the use of amphibians as sensitive
environmental monitors�sentinels, and raise real concern for
amphibians in the wild. The effects on the gonads in the current

study were produced at 0.1 ppb, which was more than 600 times
lower than the dose required to induce aromatase in human
adrenocortical carcinoma (25) and placental choriocarcinoma
studies (25–26) and 30,000,000 times lower than the dose re-
quired to produce reproductive effects in rats (24).

Furthermore, the current data demonstrate the importance of
considering endocrine-regulated endpoints in assessing the po-
tential impact of pesticides on amphibians. Reported teratogen-
esis, growth inhibition, and mortality in amphibians in response
to atrazine were not considered environmental concerns because
of the high doses required to produce these effects (40). Effects
in the current study, however, occurred at levels 10,000 times
lower than the dose required to produce effects in amphibians
in these previous studies (40–45). Allran and Karasov (14)
reached the conclusion that atrazine was probably not a signif-
icant factor in amphibian declines based on their studies of
toxicity, deformities, and effects on feeding and ventilation in
leopard frogs that did not produce noticeable effects below 3
ppm. The current data show that negative effects on sex differ-
entiation occur at doses 30,000 times lower than effective doses
reported by Allran and Karasov. The Allran and Karasov study,
however, examined a different species and different endpoints.

The current data raise new concerns for amphibians with
regards to atrazine. Effective doses (0.1 ppb for the production
of hermaphrodites and 1 ppb for reduction in laryngeal size) are
ecologically relevant. The recommended application level of

Fig. 2. An atrazine-treated hermaphrodite. The specimen shown was
treated with 1 ppb atrazine. A shows the entire dissected kidney–adrenal–
gonadal complex. B–E show 8 �m of transverse cross-sections (stained with
Mallory’s trichrome stain) through the areas indicated by the lines in A.
[Bar � 0.1 mm (A) and 25 �m (B–E)]. FB, fatbody; K, kidney; O, ovary(ies); T,
testis(es). Note the absence of pigment in the ovaries, which was typical of
hermaphrodites.

Fig. 3. Results of measurements of the left laryngeal muscle (M. dilator
laryngis) in control males and females compared with atrazine-treated ani-
mals. In Exp. 1 (A), atrazine (�1 ppb) reduced laryngeal size in males but did
not affect females. Doses of 0.01 and 0.1 ppb did not have a significant effect.
In Exp. 2 (B), 0.1–0.8 ppb atrazine did not have a statistically significant effect
on laryngeal size but again, exposure to �1 ppb atrazine significantly reduced
laryngeal size in males (P � 0.05). Laryngeal size was greater in animals from
Exp. 2 compared with Exp. 1, suggesting a population difference in the
absolute size of the larynges, but the relative sizes (male to female and
atrazine-treated compared with controls) were similar within each experi-
ment. C and D show two interpretations of the data by using analysis of the
proportion of above-average males for both experiments. Atrazine exposure
(�1 ppb) significantly decreased the proportion of males that were at or above
the mean for control males (G test; P � 0.05) and suggested a threshold effect
at 1.0 ppb in which 80% of the exposed males were below average (C).
Kendall’s rank coefficient analysis (P � 0.01), however, suggested a relation-
ship between dose and the proportion of affected males with a decrease in the
proportion of normal males with increased dose (D). Note that control males
were normally distributed with exactly 50% of the individuals above the mean
in both experiments.
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atrazine ranges from 2,500,000–29,300,000 ppb (46), the allow-
able contaminant level for atrazine in drinking water is 3 ppb
(39), and short-term exposures of 200 ppb are not considered a
health risk. Atrazine can be as high as 21 ppb in ground water,
42 ppb in surface waters, 102 ppb in river basins in agricultural
areas, up to 224 ppb in Midwestern streams, and up to 2,300 ppb
in tailwater pits in Midwestern agricultural areas (47, 48).
Atrazine can be found in excess of 1 ppb in precipitation in
localities where it is not used and up to 40 ppb in rainfall in
Midwestern agricultural areas (49–51). Further, Davidson et al.
(52) recently reported that at least one species (Rana aurora)
may be affected by aerial transport of agrichemicals. They
showed that declines and extirpations of R. aurora populations
were strongly correlated with areas that were downwind of
agricultural activity. Furthermore, Cory et al. (53) showed that
agrichemicals can be transported aerially and accumulated in
amphibians’ tissues. Thus, the likelihood that wild amphibians
are exposed to 0.1 ppb or even 1 ppb atrazine is extremely high.

Furthermore, atrazine is typically applied when the soil is
tilled, such that levels are highest during spring rainfall (13). This
pattern of use puts amphibians at great risk, because the highest
atrazine levels coincide with the breeding season for amphibians.
Throughout areas where atrazine is used, atrazine levels peak
while larval amphibians are at critical developmental stages.
Also, depending on the species, amphibians breed in every
possible freshwater microhabitat—from temporary pools, irri-
gation ditches, and flooded fields, to streams, rivers, lakes, and
other permanent sources of water. The current data raise the
question of the threat of atrazine, in particular, and of pesticides,
in general, to amphibians in the wild. Low-dose endocrine-
disrupting effects, which have not been addressed extensively in
amphibians, are of special concern in this regard. If such effects
do occur in the wild in other species, exposed animals could
suffer impaired reproductive function. The described effects are
all internal and may go unnoticed by researchers—unlike mor-
tality and external malformations. Thus, exposed populations
could decline and even go extinct without any recognition of the
developmental effects on individuals. Already, it has been
suggested that pesticides may play a role in amphibian declines
(3, 52, 54, 55). Also, Reeder et al. (56) found that atrazine
exposure may be associated with intersexual cricket frogs in the
wild in the Illinois. Because the P value in the Reeder et al. study
was 0.07 and because no laboratory data were available, they
concluded that ‘‘[w]hether atrazine accounts for findings of
intersexuality is less clear’’ (ref. 56, p. 265). We believe that the
current data strongly suggest a connection between atrazine
exposure and intersexuality. Combined with the decreases in
dissolved oxygen, pH, and available food sources (phytoplank-
ton, periphyton, and macrophytes) caused by atrazine (45), this
common contaminant could be a contributing factor in amphib-
ian declines. Ongoing investigations of the effects of atrazine on
other species and amphibians in the wild will assess the realized
role of this widespread compound in amphibian declines.
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Ziegler, T. (SEH, Bonn), pp. 145–150.
55. Hayes, T. B. (1999) in Ecotoxicology in Reptiles and Amphibians, eds. Linder,

G. Sparling, D. & Bishop, C. (Soc. Environ. Toxicol. Chem., Pensacola, FL),
pp. 573–594.

56. Reeder, A. L., Foley, G. L., Nichols, D. K., Hansen, L. G., Wikoff, B., Faeh,
S., Eisold, J., Wheeler, M. B., Warner, R., Murphy, J. E. & Beasley, V. R. (1998)
Environ. Health Perspect. 106, 261–266.

5480 � www.pnas.org�cgi�doi�10.1073�pnas.082121499 Hayes et al.

View publication statsView publication stats

https://www.researchgate.net/publication/11407437


Effectiveness of Road Ripping in Restoring Infiltration 
Capacity of Forest Roads1 

 
Charles H. Luce2 
 
 
Abstract:  Many forest roads are being closed as a step in watershed restoration.  
Ripping roads with subsoilers or rock rippers is a common practice to increase the 
infiltration capacity of roads prior to closure.  When considering the effectiveness of 
ripping for reducing runoff and erosion and the potential reduction in slope stability by 
saturating road fills, it is important to know how ripping changes the infiltration capacity 
of forest roads. Hydrographs from simulated rainfall on 1-m x 1-m plots were analyzed to 
find the saturated hydraulic conductivity, an indicator of infiltration capacity.  I examined 
saturated hydraulic conductivity for three treatments on two different soils. One road was 
built in a soil derived from the metamorphic belt series geology of northern Idaho, a soil 
noted for its high rock fragment content.  The second road was built in a sandy soil 
derived from decomposed granitics of the Idaho batholith.  On each soil, five plots were 
installed on a road prior to ripping, and nine plots were installed on the same road 
segment following ripping, four covered with a heavy straw mulch and five without.  
Three half-hour rainfall events with intensities near 90 mm/hr were simulated on each 
plot.  Results show that ripping increases hydraulic conductivities enough to reduce risk 
of runoff but does not restore the natural hydraulic conductivity of a forested slope.  The 
unripped road surfaces had hydraulic conductivities in the range of 0-4 mm/hr, whereas 
ripped roads were in the range of 20-40 mm/hr after the second event.  Surface sealing 
and tilled soil subsidence processes are important in reducing the hydraulic conductivity 
of the soils with repeated wetting.  Subsidence appears to be important on the granitic 
soil, whereas surface sealing was more important on the belt series soil. 
 
Key Words:  road closure, infiltration, runoff 
 
 
Introduction 
 
Natural surface runoff in most forests is restricted to channels and nearby areas.  
Construction of forest roads substantially alters the hillslope hydrology by causing 
surface flow in areas far from established channels.  Overland flow from forest roads can 
carry sediment eroded from the road surface, extend channel systems (Montgomery, 
1994, Wemple, 1994), and increase the probability of landslides (Sidle et al., 1985).  
Watersheds with dense road networks commonly experience increased sedimentation and 
peak flows. 
 
                                                           
1 Preprint of Luce, C.H., 1997, Effectiveness of Road Ripping in Restoring Infiltration Capacity of Forest 
Roads, Restoration Ecology, 5(3): 265-270 
2USDA Forest Service Rocky Research Station, 316 E Myrtle, Boise, ID  83702 
Phone: 208-373-4382;   Fax: 208-373-4391  E-mail:cluce@fs.fed.us 
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To reduce watershed degradation by roads that are no longer needed, many roads are 
being closed and obliterated. Methods to carry this out vary from simple closure with an 
earth berm at the road entrance to complete recontouring of the surface.  One of the more 
popular methods is ripping, where a bulldozer drags rock rippers or subsoilers through 
the road to break up the compacted layers forming the road.  This method produces a 
result similar in appearance to plowing and is meant to enhance infiltration to reduce 
runoff and flow concentration.  The loosened surface deters further vehicle access, and 
the improved seedbed enhances revegetation.  Vegetation, in turn, maintains infiltration 
capacity, stabilizes the road prism, and protects against erosion. 
 
Several researchers have examined the problem of surface soil compaction in reclaiming 
roads, mined lands, and degraded rangeland.  Some of the early research on roads 
examined plant densities following various treatments.  Kidd and Haupt (1968) examined 
effectiveness of scarification to a 12-inch depth and other factors on growth of grass 
species on recently closed logging roads.  Scarification followed by seeding increased the 
number of surviving plants per unit area but did not change the percentage ground cover 
relative to no scarification. 
 
Ripping and related activities are an important part of reclaiming mined lands, and there 
is substantial literature on the effectiveness of various treatments for mine reclamation.  
Most studies have examined the effectiveness of soil amendments and plant selection in 
achieving appropriate plant cover (see for example Farmer et al., 1974).  Ripping is 
considered so fundamental that few studies have addressed it directly.  Verma and 
Thames (1978) point out that deep chiseling (a specific tillage technique similar to 
ripping but shallower) is effective in preventing runoff and erosion on relatively flat 
slopes.  They also point out that the effect is temporary, usually less than one year, and 
that chiseling must be used in conjunction with other treatments.  
 
Gifford (1975) reviewed a few studies on the effectiveness of ripping in decompacting 
rangeland soils.  The articles reviewed there showed that deep ripping could greatly 
decrease runoff from natural events, while shallow ripping with little surface disturbance 
had little effect.  The papers reviewed also suggested that effectiveness of ripping 
treatments on rangelands decreases over time. 
 
Agricultural operations and the reactions of soil to tillage have been under scrutiny for 
centuries.  Two processes examined by contemporary researchers, soil crusting (also 
called surface sealing) by rainfall and tilled soil subsidence, are important to freshly tilled 
mineral road soils.  Among authors who have measured the development of crusts on 
soils during rainfall are Mohammed and Kohl (1987), Loch and Foley (1994), Sharma et 
al. (1981), Jennings et al. (1987), and Bosch and Onstad (1988).  High-energy raindrop 
impact drives the process by breaking apart aggregates on the surface and redistributing 
the fine particles to fill pores, thereby reducing the saturated hydraulic conductivity of 
the surface layer.  This process seems most important in soils with enough clay content to 
form aggregates that are otherwise water stable. To study the effects of soil settlement on 
four freshly tilled soils, Onstad et al. (1984) examined bulk density, saturated hydraulic 
conductivity, and random roughness height while applying 15.2 cm of water with no 
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raindrop impact energy (using furnace filters).  They found that dry bulk density rose 
quickly, and saturated hydraulic conductivity dropped quickly, as water was added.  Soil 
settlement is a well-known problem in regions of silty and sandy soils because of their 
low cohesion under saturated conditions. 
 
Tilled agricultural soils typically have saturated hydraulic conductivities in the range of 
2-30 mm/hr, whereas mildly disturbed forest soils (bare mineral soil, no compaction) 
have conductivities in the range of 60-80 mm/hr (Luce, 1995).  These figures suggest that 
ripping may not entirely restore the hillslope hydrology.  Roads generally have saturated 
hydraulic conductivities less than 4 mm/hr, so a tilled soil still represents an 
improvement. 
 
Given these insights, one must seriously question the degree of hydrologic recovery 
provided by ripping.  If the purpose of the ripping is, in part, to prevent surface runoff, it 
must increase the infiltration capacity of the soil.  Infiltration capacity at a particular time 
is a function of soil properties and the soil moisture content at that time.  Saturated 
hydraulic conductivity is a reasonable standard for comparing infiltration capacity among 
soils or treatments, as it is independent of soil moisture and represents the infiltration 
capacity of a soil near saturation.  This study examined the response of saturated 
hydraulic conductivities of roads to ripping. 
 
 
Methods 
 
Saturated hydraulic conductivities were measured on an unripped road, a ripped road, and 
a ripped road with a heavy straw mulch application, on two soils during three sequential 
simulated rainfall events.  The three sequential simulated rainfall events were used to 
determine hydraulic conductivity changes with added water and rainsplash.  The first soil 
was derived from metasedimentary belt series parent materials.  Belt series soils have 
high rock fragment content and high fine content (Figure 1). Plasticity indexes for road 
soils in the belt series soils range from 5-10%, and clay content ranges from 18-25% of 
the fraction finer than 4 mm (unpublished data, Idaho Panhandle National Forests).  The 
second soil was derived from Idaho batholith granitics.  Most of the road material came 
from alluvial deposits of the South Fork of the Salmon River.  These materials were 
sandy with some rock fragments and low fines (Figure 1).  Plasticity indexes for road 
soils on the South Fork Salmon River road range from 0-10% (unpublished data, Payette 
National Forest).  The mulch was added to reduce the raindrop kinetic energy impact 
important to the surface sealing processes and to determine the result of wetting only on 
soil consolidation.  This provided a control to see whether surface sealing contributed to 
a decline in saturated hydraulic conductivity following ripping. 
 
Ripping on the belt series road was accomplished using a Caterpillar D-9 bulldozer with 
three 4-foot ripping teeth spaced 2.5 feet apart.  Small, 8-inch “wings” were welded to 
the  
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Figure 1: Particle size distribution for the two soils for all particles smaller than 20 mm.   Steeper parts of 
the graph indicated areas of high relative frequency.  The belt series soil shows a bimodal distribution, 
peaking in gravels (> 2 mm) and silts (< 0.05 mm).  The granitics are sandier, peaking in the coarse sand to 
fine gravel region ( < 3 mm and > 0.5 mm). 
 
 
bars about 1 foot from the tip to promote fracture in the soil.  The resulting ripped soil 
was well fractured and turned over to a depth of roughly three feet.  On the granitics, a 
large Gallion road construction grader with two-foot ripping teeth with two foot spacing 
was used.  The resulting ripped soil had large, flat clods, between 3 and 4 inches thick 
and 8-14 inches wide jumbled in a well tilled sand.  The clods were formed from the 
original road surface, and the material underneath fractured more completely.  The depth 
of tilled material was between 2 and 2.5 feet.  Saturation overland flow was not observed 
from the rainfall simulations used here, so the lack of depth did not affect the results 
printed here.  Mulch was added such that the soil underneath was not visible, a loading 
much greater than typically applied for erosion control. 
 
The hypothesis was that the belt series soil would exhibit a modest increase in hydraulic 
conductivity with ripping; that the protection of the rock fragments would yield only a 
minor decrease over the course of the rainfall due to surface sealing; and that the matrix 
of cohesive fines would prevent tilled soil settling.  It was further expected that the 
granitic soil would increase modestly in hydraulic conductivity with initial ripping; 
decrease slightly with increased rainfall due to settling, and show no difference in 
decrease when mulch was added. 
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For each treatment, 1-m by 1-m plots were constructed with sheet metal boundaries and a 
trough at the downslope end to collect runoff.   On each soil, five plots were installed on 
a road prior to ripping, and nine plots were installed on the same road segment following 
ripping, four covered with a heavy straw mulch and five without. 
 
A modified Purdue rainfall simulator provided rainfall for the sprinkling infiltrometer 
plots.  The rainfall simulator oscillates a downward-pointed irrigation sprinkler nozzle 
through a small arc to cover the plot and immediately surrounding area with spatially 
uniform rainfall.  Measurements of rainfall energy under a similar simulator (Foltz et al., 
1995) suggest that the rainfall kinetic energy was about half that of natural rainfall.  
However, Mohammed and Kohl (1987) successfully used a similar design and nozzle to 
observe surface sealing on agricultural soils.  Rainfall was applied at approximately 90 
mm/hr to each plot during three 30-minute rainfall events.  The first event was conducted 
under existing soil moisture conditions, the second event was carried out roughly 20 
hours later, and the third event was typically started within 45 minutes of completing the 
second event.  The high rainfall intensity and short interval between storms are not meant 
to simulate potential storm occurrences but are used to find the average saturated 
hydraulic conductivity of the plot.  Sprinkling infiltrometers require that the precipitation 
intensity exceed the highest saturated hydraulic conductivity on the plot.  Past 
experiences with forest soils and the potential of a ripped road to meet these hydraulic 
conductivities suggested that 90 mm/hr would be appropriate.  Actual rainfall intensity 
for each event was measured at the beginning and end of each event using a sheet metal 
plot cover.  Timed runoff samples were collected in 1,000-ml bottles.  
 
Runoff hydrographs were analyzed by the method of Luce and Cundy (1994) to find 
infiltration parameters for Philip’s (1969) equation, including saturated hydraulic 
conductivity and sorptivity.  The method is essentially a curve fitting procedure for a 
kinematic wave model of Hortonian overland flow (Cundy and Tento, 1986; Luce and 
Cundy, 1992).  The curve fitting procedure uses a genetic algorithm, which robustly finds 
the optimum fit for three variables simultaneously and makes it possible to detect 
changes in saturated hydraulic conductivity independent of routing effects and changes in 
moisture content and depression storage that occur over time.   
 
Bulk density and moisture content were measured with a calibrated nuclear densiometer.  
Between two and four measurements were taken on the surface within or adjacent to each 
plot before and after each rainfall event. 
 
The treatments, plots, soils, and events constitute a full-factorial ANOVA design.  There 
were three treatments, two soils, with three events as repeated measures and five 
replicates (plots) for each cell in the design.  Analysis consisted primarily of planned 
comparisons within this ANOVA design.   
 
 
Results and Discussion 
 
Hydraulic conductivities for all soils, treatments, and events are summarized in Figure 2.  
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Figure 3 shows the variation within the treatment for each soil.  Prior to ripping, the roads 
were nearly impervious.  Saturated hydraulic conductivities for the roads fell in the range 
of 0-12 mm/hr (Figure 3).  These values agree well with other observations (Reid, 1981; 
Luce and Cundy, 1994). 
 
The saturated hydraulic conductivity of a ripped road following three rainfall events was 
significantly greater than that of the road surface prior to ripping (p(Kp=Kr3) = 0.005 for 
granitics, and p(Kp=Kr3) < 10-6 for the belt series).  Results varied greatly from plot to 
plot, but most saturated hydraulic conductivities after the third rainfall event on a ripped 
road were in the range of 22-35 mm/hr for the belt series and 7-25 mm/hr for the 
granitics.  These conductivities are modest compared to the saturated hydraulic 
conductivity of a lightly disturbed forest soil of 60-80 mm/hr (Luce, 1995).   The increase 
in conductivity probably represents significant gains in terms of reducing runoff, 
however.  For example, snowmelt, which was observed ponding on the South Fork road 
prior to ripping, would most likely infiltrate with the road in a ripped condition because  
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Figure 2: Average hydraulic conductivities by treatment and rainfall event.  Prior to ripping there is no 
statistical difference between the granitics and belt series.  The increase in hydraulic conductivity following 
ripping was statistically significant and significant relative to probable rainfall.  Mulching following 
ripping protected the belt series soil from surface sealing, but did not prevent the collapse of the granitic 
soil.  Following collapse, the differences between the ripped and ripped and mulched granitic soil are not 
statistically significant. 
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Figure 3: Distribution of saturated hydraulic conductivities by treatment across all events.  P = prior to 
ripping, R = ripped, M = ripped and mulched. 
 
snowmelt rates seldom exceed 15 mm/hr.  Snowmelt rates measured during the peak 
snowmelt season of 1986 at the Central Sierra Snow Lab never exceeded 4 mm/hr 
(Tarboton et al., 1995).  Precipitation-duration-frequency information for northern and 
central Idaho show that the 1-hr 100-yr event is between 25 and 33 mm/hr (Miller et al., 
1973).  This indicates that ripping provides some protection for rare events as well. 
 
Hydraulic conductivity values for the ripped treatment on the granitic soil decreased 
about 50% with added rainfall (p(K1=K2) = 0.00015).  This corresponded to field 
observations of soil settlement and large clods of soil created by the fracture of the road 
surface dissolving under the rainfall.  Figure 4 shows bulk density responses to 
treatments and rainfall,  including the large increase in bulk density with the first rainfall 
event on the granitics (p(ρrg0 = ρrg45) = 0.000094).  Both results compare well with those 
of Onstad et al. (1984). 
 
While not evident in Figure 2 or the statistics, the saturated hydraulic conductivity of the 
ripped belt series soils also dropped from its initial value.  Initially, and for much of the 
first event, the ripped plots on the belt series soil showed no runoff.  During these 
periods, runoff from higher areas flowed to low areas and into macropores.  On some 
plots, runoff from nearly the entire plot could be seen draining into a single macropore 
for short periods.  The macropores were formed during the ripping by fracturing of large, 
weak, brittle boulders.  Trenching revealed that the ripping process had changed the soil  
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Figure 4:  Dry bulk density of soil near the surface by treatment and cumulative rainfall applied to the plot.  
Density is statistically constant prior to ripping on both soils.  Following ripping the belt series maintained 
a constant density, while the density of the granitics rose after the first event.  After mulching the density 
increase of the granitics was again statistically significant, and the increase in density for the mulched belt 
series soils was only marginally significant. 
 
from a matrix and clast-supported fabric to a partly open work fabric (Selby, 1993) 
leaving a few large voids.  Erosion of fine sediment and small gravel eventually clogged 
these macropores.  Most macropores clogged within the first 30-minute rainfall.  This is 
one process described by Mohammed and Kohl (1987) as important in surface sealing.  
Because of the nearly binary response of the plot runoff to macropores at this scale, the 
fitting algorithm interpreted this process as a high depression storage and fit the hydraulic 
conductivity to the final 10-15 minutes of high flow on the hydrograph.  The hydraulic 
conductivity during the last 10-15 minutes differed little from the hydraulic conductivity 
for the next rainfall event.  Comparison of the amount of rainfall applied in 15 minutes, 
about 0.04 m to the porosity times the ripped depth, 0.40 m, suggests that saturation 
overland flow was not observed, and that the response was due to a change in the 
infiltrating surface.  Saturation overland flow would yield runoff rates close to the rainfall 
rate; this situation was not recorded.   
 
Examination of what happens when the mulch is applied supports these observations.  
The straw mulch absorbs the kinetic energy of the raindrops and prevents splash erosion.  
Under the mulch one would expect little transport of sediment and little surface sealing, 
but soil settlement should be the same as under unprotected conditions.  The effect on 
hydraulic conductivity is striking.  The belt series soil responded by maintaining a high 
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hydraulic conductivity through all three events (p(K1 = K2 = K3) = 0.51).  The hydraulic 
conductivities for the granitic soil dropped to values similar to those of the ripped 
condition without mulch for the second and third events (p(Kr(2,3) = Km(2,3)) = 0.203).  The 
bulk density of the granitics under a heavy mulch increased significantly (p(ρmg0 = ρmg45) 
= 0.03), much as it did without the mulch.  A less significant rise in bulk density also 
occurred in the belt series soil (p(ρmb0 = ρmb45) = 0.07), but it is not clear why.  Only 
minor settling was observed in the field. 
 
Although it was not quantified, water flowing from the mulched plots was visibly cleaner 
than that flowing from the ripped plots.  This observation fits with conclusions of many 
other studies (e.g., Burroughs and King, 1989) that reduction of the rainfall impact 
reduces erosion. 
 
Little information exists on the durability of infiltration increases beyond these few initial 
rainstorms.  Gifford (1975) reviewed several studies where the effect of ripping 
compacted rangelands decreased over a period of years, and similar behavior would be 
expected for roads.  Anecdotal observations of roads ripped in earlier years revealed that 
after one winter, the surfaces were nearly as solid and dense as the original road surfaces.  
Near the South Fork Salmon River plots, dry bulk densities of a road ripped one year 
earlier were similar to the final (after third event) densities measured on the ripped and 
mulched plots.  At this site, tree planters had difficulty inserting hoedads, normally an 
effective instrument, to dig small holes.  Hand watering was necessary to keep the trees 
alive because of the low infiltration capacity and porosity. 
 
Where a contractor had inadvertently incorporated some of the organic layer from the 
surrounding forest soil during the ripping operation, the ripped road retained its 
looseness.  In mining and rangeland rehabilitation, endeavors similar to road 
rehabilitation, soil amendments are commonly used to increase soil organic content.  
Several studies (Skujins and Richardson, 1984; Hudson, 1994; Page-Dumroese et al., 
1990; Sidle et al., 1993; Aguilar, 1992) highlight the importance of organic matter 
content for soil productivity, structure, and erosion protection.  In those studies, organic 
matter was amended as topsoil, sludge, or surface mulch that later decomposed.  Direct 
incorporation of composts may be necessary to prevent tilled soil settlement. 
 
 
Conclusions and Recommendations 
 
These results support the hypothesis that both soils increased in hydraulic conductivity 
immediately following ripping.  I hypothesized that the belt series soil would retain most 
of this initial increase, whereas the granitic soil would lose hydraulic conductivity over 
time.  However, the hypothesis that the rock fragments in the belt series soil would 
prevent surface sealing was not supported.  Fines eroded from between fragments were 
sufficient to clog macropores.  The combination of cohesive fines and large voids 
supported by fragmented clasts yielded little soil settlement.  On the granitics, the 
hypothesized soil settling was observed under both mulched and unmulched conditions, 
which led to a decrease in hydraulic conductivity following the initial increase, as 
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expected. 
 
Ecological restoration of forest roads and watersheds requires improved vegetative cover 
and improved infiltration for forest road surfaces.  These findings suggest that ripping 
can be a reasonably effective step in the restoration process.  Even considering the effects 
of settling and surface sealing, ripping increases hydraulic conductivities modestly -- 
enough, perhaps, to prevent runoff and erosion from most rainfall and snowmelt events.  
These increases do not represent “hydrologic recovery” for the treated areas, however, 
and a risk of erosion and concentration of water into unstable areas still exists.  These 
continuing risks must be considered in the design of the restoration project so that  runoff 
does not drain to streams or unstable hillslopes.  While the roughness of the seedbed is 
increased and traffic reduced, the increases in porosity are slight enough that only very 
hardy plants may initially take advantage of the improved surface. 
 
The findings on soil settlement and surface sealing highlight the fact that freshly tilled 
road soils are sterile and poorly structured.  Ripping and  subsoiling alone provide only 
temporary and marginal improvements.  Amended organic matter would likely enhance 
both the short-term effectiveness and durability of gains in porosity and infiltration 
capacity, greatly accelerating restoration of the road’s hydrologic and ecological 
function. 
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Silviculture

Composition and Structure of Reproduction in Group 
Selection Openings after 20 Years in a Southern 
Appalachian Mixed-Hardwood Forest
W. Henry McNab,  and Theodore M. Oprean III
W. Henry McNab (henry.mcnab@usda.gov), USDA Forest Service, Southern Research Station, 1577 Brevard Road, Asheville, NC 28806, USA. 
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Pisgah Forest, NC 28768, USA.

Abstract
Following harvests by even-aged methods in mixed-hardwood forests, desirable oak (Quercus spp. L.) reproduction can be quickly overtopped 
by shade-intolerant pioneer species. In a long-term, operational-scale study of uneven-aged management by group selection, we inventoried 
10- and 20-year-old reproduction following two harvest entries in a mature, dry-mesic southern Appalachian upland hardwood stand. Our study 
objectives included evaluating the species composition and structure of reproduction in relation to opening size (0.05 ha to 0.41 ha), position in 
openings (center or edge), uneven-aged diameter structure, and evidence supporting the delayed oak dominance hypothesis. Opening size had 
no effect on reproduction from either entry. After 10 years (but not 20) yellow-poplar (Liriodendron tulipifera L.) stem density and basal area were 
greater in opening centers; oaks were greater at edges. Position did not affect red maple (Acer rubrum L.) or other tolerant species. Diversity 
significantly increased between 10 and 20 years, suggesting evidence supporting the delayed oak dominance hypothesis. Early results from 
this study suggest that small openings can be used to regenerate desirable midtolerant and intolerant species in Appalachian mixed-hardwood 
stands on intermediate quality sites where uneven-aged stand structure is important for timber management and other goals such as visual 
appearance and early successional habitat.

Study Implications: Periodic harvests of small groups (0.05 to 0.41 ha) of mature trees in dry-mesic Appalachian oak-dominated, mixed-
hardwood stands, followed by site preparation and competition release treatments to control undesirable shade tolerant species, can result in 
openings stocked with desirable shade midtolerant and intolerant reproduction after 20 years. Centers of openings will be dominated by yellow-
poplar, but oak reproduction can be most prevalent around the periphery. Group selection is a flexible method of uneven-aged management that 
can be used to meet regeneration objectives and related goals such as early successional habitat and visual quality.
Keywords:   dominance hypothesis, group selection, opening size, Quercus, self-thinning

Gap-based partial cutting practices have been proposed as an 
appropriate silvicultural system to address multiple manage-
ment objectives of visual quality, habitat, regeneration, resili-
ency, biodiversity, and sustainability of ecosystems in many 
forest types in North America (Coates and Burton 1997), 
which includes the Central Hardwood Region (CHR) of the 
eastern United States. There, oaks are both characteristic and 
keystone canopy species with high economic and habitat value 
in the mixed-hardwood forests (Fralish 2004). However, re-
cruitment and development of midtolerant oak reproduction 
following harvests has decreased in the CHR likely because 
of altered historical disturbance regimes during the 1900s 
(such as suppression of wildland fire) that have favored tol-
erant species (Abrams 2003, Nowacki and Abrams 2008) and 
stand regeneration by clearcutting that favors fast-growing in-
tolerant species, such as sweetgum (Liquidambar styraciflua 
L.) (Johnsen and Krinard 1988) or yellow-poplar (Brashears 
et al. 2004). The regeneration ecology of oaks is well known 
(Johnson et al. 2002); advance oak reproduction must develop 
a large root system before meaningful height growth is initi-
ated and maintained (Sander 1971). The multilayered forests 

of the southern Appalachians section of the CHR consist of 
nearly 100 predominantly cold-deciduous hardwood species 
that can be classified in two groups: desirable, which are large, 
shade intolerant canopy species that are well formed and can 
have high commercial and/or wildlife habitat value, or undesir-
able, which are typically small, shade tolerant species that are 
poorly formed and/or have little commercial value, but may 
provide soft mast for wildlife (Della-Bianca and Beck 1985). 
Depending on available light resources admitted through can-
opy openings to the forest floor, advanced reproduction of de-
sirable oaks cycles through alternating phases of growth, top-
dieback, and basal resprouting (Runkle and Yetter 1987). The 
combination of small canopy openings resulting from death 
of single trees, combined with the middle canopy of shade tol-
erant species, hinders development and growth of desired ad-
vance reproduction of intolerant species into the canopy on 
dry-mesic sites (Della-Bianca and Beck 1985).

It has long been known that small canopy openings result-
ing from single-tree selection favors regeneration by shade 
tolerant species in the southern Appalachians (Frothingham 
1931, Della-Bianca and Beck 1985). Frothingham (1931), 
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however, first suggested that larger openings resulting from 
group selection harvests could favor intolerant species. Group 
selection has been studied extensively in central and northern 
parts of the CHR and elsewhere to investigate effects of gap 
size, orientation, substrate, and age on composition and struc-
ture on reproduction of oaks and other desired species (Zhu 
et al. 2014, Kern et al. 2017). Studies of group selection have 
not been conducted in the southern Appalachians, however, 
which has environmental conditions and species composition 
different than elsewhere in the CHR (Cook et al. 1998).

Group selection research has shown that small openings 
(<0.05 ha) promote shade tolerant species and large openings 
(>0.40 ha) favor intolerant species; oak reproduction, which 
is semitolerant of shade as juveniles, occurs most frequently in 
intermediate-sized openings (Lhotka 2013). In intermediate 
and large openings, rapidly growing pioneer species present 
the primary source of competition to slowly growing advance 
oak reproduction following harvests in much of the CHR 
(Jenkins and Parker 1998, Lhotka 2013). Oliver (1978) ob-
served that second- and third-decade self-thinning in pioneer-
dominated stands can allow emergence of slower growing, 
intermediate oaks as codominants, and proposed the delayed 
oak dominance hypothesis. The hypothesis has been specif-
ically tested by Steiner et  al. (2018) and observed from in-
ventory data in bottomland (Johnsen and Krinard 1988) and 
upland stands (Hilt 1985), but little studied elsewhere.

The purpose of this article is to summarize 10- and 20-year 
responses of reproduction resulting from two entries in a 1988 
study of group selection harvests in a southern Appalachian 
mixed-hardwood forest. Objectives of this study were strongly 
influenced by results from a long-term study of single-tree se-
lection in an adjacent stand showing lack of desirable repro-
duction of mid and intolerant species (Della-Bianca and Beck 
1985) and favorable results from a group selection study in 
northern hardwoods (Leak and Filip 1977). Initial objectives 
of this study were associated primarily with questions regard-
ing uneven-aged management, particularly in relation to argu-
ments by Roach (1974) concerning application and sustain-
ability of the group selection method in hardwood forests: (1) 
Will group selection result in a balanced (i.e., reverse J-shaped 
curve) stand structure? (2) What size opening is needed for 
regenerating intolerant species, particularly oaks? Two add-
itional study objectives were included during the second har-
vest entry: (3) Does position in openings affect composition 
and structure of reproduction? (4) Is evidence available in sup-
port of the delayed oak dominance hypothesis?

Methods
Site and Vegetation Description
The Frothingham group selection study was installed in the 
Boyd Branch watershed of the Bent Creek Experimental 
Forest, a special use area in the Pisgah Ranger District of 
the Pisgah National Forest, in western North Carolina 
(35.489°N, –82.645°W) (Figure 1). The subtropical/continen-
tal climate consists of short, mild winters (mean January tem-
perature: –14.0°C) and warm, humid summers (mean July 
temperature: 22.3°C). Precipitation averages 1,220 mm an-
nually and is distributed uniformly among seasons; snowfall 
averages 280 mm annually. The 29.9 ha study area occupies a 
low-elevation (720–850 m) shallow, east-facing cove with soil 
moisture regimes ranging from submesic to subxeric. Soils 

are deep (>100 cm), predominantly Ultisols (Evard, Cowee, 
Toecane series) in residuum on gentle slopes and Inceptisols 
(Tusquitee series) in colluvium on steep slopes and in narrow 
bands adjacent to perennial streams. The study area is part 
of a larger tract previously used for subsistence farming by 
the Boyd family during the mid to late 1800s (Nesbitt 1941). 
Although none of the study area had been cultivated, it was 
likely an open-canopy woodlot with an herbaceous layer of 
native grasses and tree and shrub basal sprouts, which was 
burned periodically to promote browse for grazing by live-
stock. Except for the regional demise of American chestnut 
(Castanea dentata [Marsh.] Borkh.) in the 1920s, resulting 
from a blight fungus (Cryphonectria parasitica [Murrill] 
M.E. Barr.), there are no records of other human-related dis-
turbances, such as commercial timber harvests. Predominant 
vegetation on middle and lower slopes consists of a high can-
opy (30 m) of merchantable mixed hardwoods primarily of 
midtolerant to intolerant oaks (black [Q.  velutina Lam.], 
chestnut [Q.  montana L.], scarlet [Q.  coccinea Muenchh.], 
white [Q. alba L.], and northern red [Q. rubra L.]) and hickor-
ies (mockernut [Carya tomentosa Sarg.] and pignut [C. glabra 
Miller]); intolerant yellow-poplar occurs primarily on mesic 
soils along streams and also as scattered individuals through-
out. Middle and lower canopies are dominated by small, 
shade tolerant, generally unmerchantable mixed hardwoods 
including red maple, sourwood (Oxydendrum arboretum L.), 
flowering dogwood (Cornus florida L.), blackgum (Nyssa 
sylvatica Marsh.), and witch hazel (Hamamelis virginiana L.). 
Common tall (>2 m) evergreen shrubs include rosebay rhodo-
dendron (Rhododendron maximum L.) on moist sites and 
mountain laurel (Kalmia latifolia L.) on dry sites.

Preharvest Stand Sampling
In winter 1988, advance reproduction (height < 1.37 m) and 
small trees (diameter breast height (dbh) ≥ 1 cm to 15.2 cm) 
were inventoried by species and diameter on 0.004 ha sam-
ple plots systematically distributed throughout the stand at 
the rate of 2.5 plots per ha. All large trees (>15.2 cm dbh) 
were inventoried individually by species and dbh in a total 
cruise of the study area. Tree diameters ranged to a max-
imum of 89 cm and approximated the balanced distribution 

Figure 1.  The Frothingham group selection study area showing openings 
for the first entry (1988) and the second entry (2005). (Map created by 
H. McNab using MicroSoft Paint software.)
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of an uneven-aged stand, although mixed-species stands of 
eastern hardwoods are typically even-aged because of their 
stratified structure associated with shade tolerance (Oliver 
1980). The prestudy inventory of advance reproduction and 
trees in the study area revealed a mean total basal area of 
29.3 m2/ha distributed among 20 species (Table 1). Five spe-
cies of oaks (listed below) and yellow-poplar characterized 
the overstory. The small component of shortleaf pine (Pinus 
echinata Mill.), a conifer intolerant of shade and requiring 
exposed soil for best seed germination, is evidence of past 
land use for subsistence agriculture before this tract was ac-
quired for inclusion in the national forest, around 1920. This 
species composition of mixed-hardwoods and scattered coni-
fers corresponds well with the extensively occurring Southern 
Appalachian Oak Forest terrestrial ecosystem CES202.886, 
which occurs on mountainous landscapes from central 
Virginia to south-western North Carolina (NatureServe 
2020). In 1988, mean age of dominant and codominant red 
oaks was 51 years (n = 8, range 33–86 years) and 69 years 
(n = 27, range 21–155 years) for white oaks. Oak site index 
averages approximately 24 m (range 22–27 m, 50-year base). 
Culmination of mean annual volume growth of dry-mesic 
hardwood stands averages 3.04 m3/ha/year at approximately 
90 years (USDA Forest Service 1994). Except for a narrow 
band of mixed mesophytic hardwoods along a perennial 
stream and on xeric sites along a ridge crest, the study area 
was relatively uniform in species composition and structure 
of vegetation was treated as a single stand.

Timber Harvests and Herbicide Site Preparation
The Frothingham study was established in 1988 to investigate 
group selection as a corollary to an adjacent long-term study 
of single tree selection (Della-Bianca and Beck 1985). Briefly, 
the study design specified management by area control with 
openings ranging in size from 0.10 ha to 0.40 ha. Openings 
were widely distributed on sites with acceptable regeneration 
potential, damaged canopy trees or poor stocking of ma-
ture trees; rotation length is 60 to 80 years and entry cycle 
is 10 to 15 years. Two entries have been made, in 1988 and 
2005, when 14 and 24 openings were harvested, respectively. 
The 14 openings harvested in 1988 averaged 0.10 ha (range 
0.05–0.14 ha); size of the 24 openings harvested in the 2005 
entry averaged 0.29 ha and ranged from 0.13 ha to 0.41 ha. 
For both entries, all merchantable pulp wood and saw tim-
ber was cut using chainsaws and skidded to landings using 
either a farm tractor (1988 entry) or forestry-type wheeled 
skidder (2005).

Site preparation consisted of herbicide and hand tools treat-
ment using cut stump and basal spray applications. Cut stumps 
were sprayed with a 50:50 ratio of triclopyr amine and water. 
Streamline basal spray was made with triclopyr ester mixed 
with mineral oil and bark penetrant additive at a 20% mix-
ture. All residual trees between 2.54 and 20 cm dbh were cut. 
The cut surface of stumps of red maple, sourwood, blackgum, 
yellow-poplar, mountain laurel, rhododendron, vines (primar-
ily oriental bittersweet [Celastrus orbiculatus Thunb.]), and 
exotic invasive species were sprayed with herbicide. Herbicide 
treatment of cut stumps was a standard method of site prep-
aration used by national forests and necessary to control ag-
gressive basal sprouting of tolerant species, which can quickly  
occupy a large proportion of growing space after harvests 
(Smith 1981, Fei and Steiner 2009). Within three growing sea-
sons after harvest selected desirable species (primarily oaks) 

were released from competition using streamline basal spray 
application of 20% triclopyr ester herbicide mixed with min-
eral oil and an added compound consisting of wetting agent, 
sticker, and bark penetrant. Release treatments targeted sprout 
clumps of the species specified for site preparation. Site prep-
aration and release treatments were applied by a contractor; 
field data were not collected on stems treated in the harvested 
openings.

Sample Plot Design and Data
Reproduction was inventoried once for each of the two entries: 
at 10 years after the 2005 entry and 20 years after the 1988 
entry. Two sample plots (circular 0.004 ha, 3.6 m radius) were 
established at two locations (hereafter positions) in each open-
ing: the center and edge. In a random direction from the center, 
each edge sample plot was placed so its boundary coincided 
with the boundary of the harvested opening. Edge plots were 
excluded and reselected that were adjacent to a logging road 
or that varied markedly in site conditions from the center plot, 
such as landform differences. Edge sample plots in the 2005 
openings were not excluded if they were adjacent to an open-
ing harvested in the 1988 entry. All tree reproduction ≥0.5 cm 
dbh was inventoried by species and 2.5  cm dbh classes in 
openings of each entry. Total height and dbh of several yellow-
poplar trees in the center and edge sample plots of each open-
ing were measured for development of a model for predicting 
total height of individual trees from inventory data. We selected 
yellow-poplar for height modeling because it is the predomin-
ant pioneer species on mesic and dry-mesic sites in the southern 
Appalachians and as such is the primary competitor of oaks 
and intolerant species (Beck and Hooper 1986). Yellow-poplar 
grows rapidly in height soon after seed germination and pro-
vides a measure of size that oaks must attain to be a component 
of the newly developing stand (Beck and Della-Bianca 1981).

Age of the 1988 preharvest stand was estimated from ring 
counts on stumps from trees cut in the third entry, in fall 
2017. Oak stumps of various sizes were randomly selected 
in 12 openings and measured for diameter outside bark from 
the pith across the maximum and minimum stump surface 
dimensions. Stumps were identified by species and annual 
growth rings were counted in the field using a 10-power 
hand-held magnifier.

Species Groupings for Analysis
Tree species were classified in two primary groups (desirable 
or undesirable) associated with their traditional economic 
value (Della-Bianca and Beck 1985) and six secondary sub-
groups according to their habitat values (such as oaks) or 
focus of research interest (such as red maple, Abrams 1998) 
(Table 1). Desirable species are intolerant to midtolerant of 
shade, attain large size, form the overstory canopy and have 
commercial timber value; some (oak and hickory) are also im-
portant for wildlife because of their hard mast (acorn or nut) 
production. Undesirable species are shade tolerant, small, 
form the canopy midstory and have low commercial value, 
although many species produce soft mast used by wildlife. 
The desirable species group was further separated into four 
subgroups: red oak (subgenus Erythrobalanus), white oak 
(subgenus Leucobalanus), yellow-poplar, and other-desirable. 
The red oak subgroup included three species (ranked by af-
finity with decreasing soil moisture): scarlet < black < north-
ern red; the white oak subgroup included two species 
(chestnut < white). The five oak species were separated into  
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two subgroups because of their relative differences in shade 
tolerance as juveniles: red oak  <  white oak (Johnsen et  al. 
2002). Yellow-poplar was evaluated as a desirable subgroup 
because of its high commercial value and silvical characteris-
tics as an aggressive, long-lived, mesophytic, intolerant spe-
cies with wind-dispersed seeds that germinate best on mineral 
soil following disturbance of the forest floor. It is typically 
a pioneer species on heavily disturbed mesic sites where its 
high stem density and rapid growth can result in dense stands 
that retard growth of other species, but it can also persist as 
scattered individuals that become established in old-growth 
stands (Beck and Della-Bianca 1981). The other-desirable 
subgroup (hereafter desirable) includes minor species, primar-
ily white ash (Fraxinus Americana L.), sweet birch (Betula 
lenta L.), black locust (Robinia pseudoacacia L.), mockernut 
hickory, and pignut hickory.

The undesirable species group was separated into two 
subgroups: red maple and other undesirable. Red maple, a 
light-seeded species, was evaluated separately because of its 
unusual ecological attributes of high shade tolerance and 
relatively quick growth response to increased light, thereby 
allowing it to capture growing space in openings following 
stand disturbances and persist as a long-lived species as it as-
cends in the canopy (Abrams 1998). In addition, red maple 
occurs across a range of site qualities and following harvests 
can present strong competition to desirable reproduction as 
rapidly growing basal sprouts from stumps during early stand 
development (Steiner et al. 2018). The other-undesirable sub-
group (hereafter undesirable) includes shade tolerant spe-
cies: flowering dogwood, sourwood, blackgum, witch hazel, 
serviceberry (Amelanchier arborea [F.Michx.] Fernald), 
American beech (Fagus grandifolia Ehrh.), and American 
holly (Ilex opaca Aiton.) in the midstory that are small and 
poorly formed and have greater value as producers of soft 
mast for wildlife habitat than for timber products. In review, 
tree composition was classified first in two groups, desirable 
or undesirable, and then in six subgroups for data summary 
and analysis: red oak, white oak, yellow-poplar, desirable, red 
maple, or undesirable.

Statistical Analysis
There were no imposed experimental treatments in our study. 
Species composition and structure of tree reproduction were 
examined to evaluate their response to opening size and pos-
ition in openings. For the first entry (1988), openings were 
intentionally small (mean 0.10 ha, range 0.05–0.14 ha) to in-
vestigate minimum size required for establishment of intoler-
ant desirable species. For the second entry (2005) openings 
were larger (mean 0.29 ha, range 0.12–0.41 ha) to follow op-
erational national forest guidelines for uneven-aged manage-
ment using the group selection method (USDA Forest Service 
1994). Reproduction following the 1988 entry was inventor-
ied in 13 of the 14 harvested openings; one opening was des-
troyed by a logging skid road constructed for the 2005 entry. 
Twenty-three openings were harvested in the 2005 entry, of 
which 14 were sampled.

Regression was used to evaluate the distribution of tree 
stems per hectare by 5 cm dbh classes of the preharvest stand 
and combined reproduction resulting from the two harvest 
entries for evidence of a reverse “J-shaped” (negative expo-
nential) curve that is characteristic of uneven-aged stands 
(Leak and Filip 1977). Diameter distribution diminution quo-

tients (Q) were calculated using the regression method of Leak 
(1963). The response of reproduction to opening size and pos-
ition in openings was quantified by stem density (hereafter 
density), basal area and quadratic mean dbh (dbhq) of species 
subgroups for each entry. Quadratic mean dbh was calculated 
from plot stem density and basal area (Curtis and Marshall 
2000). Density and basal area of subgroups were standardized 
as relative percent values of sample plot totals by center and 
edge positions and overall (pooled center and edge positions) 
opening. Histograms of plot mean stem densities indicated a 
tendency toward positive skewed distributions. The arcsine-
square root transformation was used to approximate normal 
distributions (McDonald 2014). Untransformed means and 
standard deviations (sd) are presented in tables. A  relation-
ship between tree age and stump diameter outside bark was 
examined by oak subgroup using correlation and regression 
analysis. Correlation and linear regression were also used to 
examine relationships and test for effects of opening size on 
response variables of density, basal area and dbhq by species 
subgroup for pooled and nonpooled opening position (cen-
ter, edge) by reproduction cohort age. Regression analysis was 
used to evaluate effects of opening size alone (disregarding 
center and edge sample positions) and in combination with 
position on mean total height of yellow-poplar at each repro-
duction cohort age. One-way analysis of variance (ANOVA) 
was used to test for significant differences of opening sample 
position on density, basal area and dbhq by species subgroup of 
reproduction resulting from each entry. Statistical differences 
of density, basal area and dbhq response variables among the 
six subgroups of species were not informative for objectives of 
our study and were not evaluated. The delayed oak dominance 
hypothesis was examined by one-way ANOVA of individual 
species subgroup changes of stem density between the two 
harvest entries and community structure change of combined 
subgroups using a modification of the method presented by 
Solow (1993) based on Simpson’s index of diversity. Version 
3.5.1 of R was used for data analysis (R Development Core 
Team 2011). Significance was determined at the p = .05 level.

Results
Before the first entry, stem density of advance reproduction 
(height <1.37 m) on sample plots in the mature stand through-
out the entire study area consisted primarily of the red maple 
subgroup (69%), red oak (11%), and white oak (9%); yellow-
poplar was 2% (Table 1). The midstory (height ≥1.37 m and 
dbh <10 cm) consisted primarily of shade tolerant red maple 
and flowering dogwood in the undesirable species groups. 
The overstory was dominated by species in the two oak sub-
groups followed by yellow-poplar. The diameter distribution 
of the entire pretreatment stand displayed a reverse J-shaped 
curve approximated by a calculated Q of 1.24 (Figure 2A). 
Mean age of the two oak subgroups in 1988 was 66 years 
(n = 34, sd = 29 years, range = 21–155 years). For the white 
oak subgroup, tree age was correlated with stump diameter 
outside bark (dob) (n = 27, r = 0.669, p ≤ .001), expressed by 
the relationship

Age (years) = −8.35+ 1.26 (stump dob in cm)� (1)

with a standard error of estimate of 23.08 years. An age to 
stump dob relationship for the red oak subgroup could not 
be evaluated because the sample size was too small (n = 7).
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Opening Size and Position in Opening
Opening size was not significantly correlated with overall 
(pooled center and edge positions) mean relative density or 
basal area for any species subgroup in either of the two age 
classes of reproduction (not shown). Pearson correlation co-
efficients were relatively low for basal area of the 10-year-old 
red oak (r = –0.20) and white oak reproduction (r = –0.25) and 
were still lower for the 20-year-old reproduction: r = –0.07 for 
red oaks and r = –0.01 for white oaks. Correlation analysis 
of the effects of opening size based on nonpooled positions, 
however, indicated a significant relationship (r = 0.61, p < .05) 
of mean relative density for 10-year-old reproduction of the 
red oak subgroup in opening centers (not shown). Pearson’s r 
was not significant for similar correlations between opening 
size with mean relative density and basal area by position and 
reproduction age class for the other species subgroups.

Position in openings alone (without the influence of open-
ing size) significantly affected relative stem density and rela-
tive basal area of 10-year-old reproduction for the red and 
white oak subgroups and yellow-poplar (Table 2). Relative 
basal area was greater for the red oak (p < .05) and white oak 
(p < .05) subgroups at the edges of openings than in centers 
(Figure 3). In a reverse relationship, yellow-poplar basal areas 
were greater (p < .05) in centers compared with edges. Mean 
relative basal area between the center and edge positions were 
not significant different for the desirable, red maple and un-
desirable subgroups. In the 20-year-old openings the only sig-
nificant effect of position on species was for mean basal area 
of red maple, which was greater (p < .05) at the edge than at 
the center of openings (Table 2). In openings of both harvest 
entries, basal area and dbhq of overall species subgroups were 
significantly (p <  .01) greater in center compared with edge 
positions.

Mean height of yellow-poplar reproduction was not cor-
related with opening size across pooled sample positions 
for either the 10-year-old reproduction (x̅ = 2.35 m, n = 28, 
r = 0.59, p = .058) or at 20 years (x̅ = 6.67 m, n = 24, r = 0.12, 
p =  .713) (not shown). Analysis of variance, however, indi-
cated position in openings had a significant effect (p <  .01) 
on mean height of 10-year-old yellow-poplar reproduction 
(Figure 4). Mean total height was 3.1 m (n = 16, sd = 1.39 m) 
in the center of openings and 1.3 m (n = 12, sd = 1.20) at the 
edge, a difference of 1.8 m. For the 20-year-old openings of 

the 1988 entry, mean total height of yellow-poplar was 7.7 m 
(n = 12, sd = 3.29 m) in center compared with 5.7 m (n = 12, 
sd = 3.22 m) at edge positions, but the difference of 2 m was 
not significant (p = .14).

A quadratic multiple regression model was developed to 
evaluate the combined effects of opening size, position in 
opening and their interaction on mean total height of yellow-
poplar at each cohort age. For the 10-year-old yellow-poplar 
subgroup the best model (n = 28, R2 = 0.51, p = .0001) in-
cluded opening size (p  =  .005) and a categorical variable 
for position (p =  .0002); the interaction was not significant 
(p = .54):

Height (m) = 1.7745+ 14.2866 (size2)

− 1.8896 (edge position)
� (2)
where size is opening area in hectares squared and edge pos-
ition is 1 or 0 (for edge or nonedge position). Variation ex-
plained by position increased the level of significance of open-
ing size from p = .058 to p < .001 for the 10-year-old trees. 
Model (2) predicts mean yellow-poplar height at 10  years 
increases from 1.9 m to 3.9 m in opening centers as open-
ing size increases from 0.13 ha to 0.41 ha (Figure 5). The 
position coefficient indicates yellow-poplar height averaged 
1.9 m shorter at edges compared with centers of openings. 
A  similarly formulated model for height of the 20-year-old 
yellow-poplar saplings in the small 1988 openings was not 
significant (n = 24, R2 = 0.10, p = .32) and is not shown.

Species Composition and Structure
Mean total basal area of reproduction in the openings at 
10 years was 8.0 m2/ha and 14.1 m2/ha at 20 years, an in-
crease of 77%. (Table 2). Basal area of all species subgroups 
increased between 10 and 20 years, but none of the changes 
were significantly different. The overall percent increase of 
basal area between 10 and 20 years was less in opening cen-
ters (71%) compared with edges (92%).

Between the first and second entries, the overall mean basal 
area of yellow-poplar decreased from 67% to 47% (p = .17), 
and the desirable subgroup from 15% to 12% (p = .73) (Figure 
6). This total decrease of 23% was matched by a total increase of 
11% for the red and white oak subgroups (p = .57 and p = .70, 
respectively) and 12% for the combined red maple (p = .49) and 
undesirable subgroups (p =  .48). The mean increase of white 
oak basal area (7%) between the two entries was nearly double 
that of the red oak subgroup (4%). Twenty years after the first 
entry, the shade tolerant red maple subgroup was less than in-
ventoried preharvest in the mature stand (4% versus 14%), 
but the undesirable subgroup occupied 17% in the regenerated 
openings compared with 5% in the preharvest stand.

Large trees (≥10  cm dbh class) in opening centers were 
dominated by the yellow-poplar subgroup and lesser stem 
densities in the two oak subgroups (Figure 7). Also present 
(not shown in Figure 7) in centers were species in the desir-
able subgroup (primarily sweet birch) consisting of 133 trees/
ha in the two smallest dbh classes. In the periphery of open-
ings, density of the yellow-poplar subgroup (152 trees/ha) 
was similar to stem density of the two oak subgroups (133 
trees/ha), particularly for white oaks. The undesirable sub-
group of species was represented in the edge position by 38 
trees/ha (primarily sourwood) in the 10 cm dbh class. All red 
maple stems were ≤7.5 cm dbh.

Figure 2.  Size class (diameter at breast height [dbh]) distributions of 
tree stem densities by age cohort in the study area. (A) Inventoried and 
predicted stem densities for mature trees preharvest and reproduction 
postharvest.* (B) Log10-transformed preharvest mature stand. (C) Log10-
transformed reproduction in the combined 1988 (20 years old) and 2005 
(10 years old) openings. *Reproduction combines 1988 and 2005 harvest 
openings.
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Analysis of the two species groups combined as a commu-
nity of reproduction, rather than individually as subgroups, re-
vealed a significant change of dominance between the first and 
second decades of development (Table 3). Simpson’s index of 
diversity increased (greater diversity) significantly (p = .035) 
for the openings overall, from 0.603 to 0.704. Diversity of 
species groups did not change at opening edges (p  =  .141) 
but increased significantly in centers (p = .002). Although the 
diversity index of the preharvest stand was greater than for 
the 20-year reproduction (0.881 versus 0.782), the preharvest 
and postharvest communities could not be statistically com-
pared because of an incompatible data structure used for the 
mature stand inventory.Ta
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Figure 3.  Effects of position in opening and trends of opening size on 
relative basal area of reproduction for six species subgroups 10 years 
after the 2005 entry. Relative basal area of species subgroups followed 
by an asterisk (red oaks, white oaks, yellow-poplar) were significantly 
(p < .01) influenced by position in the opening.

Figure 4.  Box-and-whisker plots of yellow-poplar mean height of 
reproduction in relation to center and edge positions in openings at 10 
and 20 years of age. The lower and upper whiskers of each box represent 
the minimum and maximum mean heights of trees in openings, the box 
ends are the 25 and 75 percentiles of mean heights, the solid line in the 
box is the median, and the dashed line is the mean tree height. Mean 
heights were significantly different (p < .01) between center and edge 
positions for both cohort ages of yellow-poplar reproduction.
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Figure 5.  Inventoried and predicted mean total height of 10-year-old 
yellow-poplar reproduction in relation to the combined effects of opening 
size and center or edge positions.

Stem density of the combined reproduction subgroups in 
openings of both entries (Figure 2C), which attained a max-
imum dbh of 20  cm, was nearly six times greater than for 
the preharvest mature stand (Figure 2A). The regression of 
log10-transformed stems per hectare graphed as a function of 
5 cm dbh classes for the pooled two cohorts of even-aged re-
production in the 1988 and 2005 entries displayed the linear 
form of a balanced distribution (Figure 2C). The regression 
value of Q (1.92) for the two combined age classes of repro-
duction was significant (p < .01, R2 = 0.999).

Discussion
Following the failure of long-term management by single tree 
selection to recruit desirable reproduction in stands of upland 
Appalachian oaks (Della-Bianca and Beck 1985, Keyser and 
Loftis 2013), the Frothingham study was established in an 
adjacent stand to evaluate group selection harvests to achieve 
that goal. Before the first entry basal area composition of 
the mature stand consisted largely of approximately similar 
amounts of oaks (36%) and yellow-poplar (31%) (Table 1). 
Twenty years after the first entry postharvest reproduction 
composition in the small (0.10 ha) openings matched that pre-
sent in the preharvest stand, except for absence of shortleaf 
pine, which was a remnant artifact of previous woodlot land 
use. Species basal area, however, shifted to dominance by 
yellow-poplar (47%) over oaks (20%), which can be partly 
attributed to a different disturbance regime following fed-
eral land acquisition associated with reduced woodland 
burning, and livestock grazing in particular. For example, 
the ranking of tree species favored by cattle for browsing 
(red maple < oaks <  yellow-poplar) was likely a contribut-
ing factor resulting in reduced presence of yellow-poplar and 
increased establishment and survival of oaks (Biswell and 
Hoover 1945). Although mean stem densities ranged widely 
among the 13 openings of the 1988 entry and 14 openings of 
the 2005 entry, the diameter structure of reproduction for the 
combined openings displayed the (log10-transformed) reverse 
J-shaped curve of a balanced, uneven-aged stand (Figure 2C).

Opening sizes ranged from 0.05 ha to 0.41 ha for the 27 
openings inventoried in the two entries of our study. We 
found no significant correlations of opening size alone with 
stem density or basal area of reproduction for any of the two 

species groups, a result that differs from findings reported in 
other group selection studies in mixed-hardwood forests. In 
a study of three opening areas (0.02, 0.16, 0.46 ha), 48 years 
after harvests in mixed upland oak stands, Lhotka (2013) re-
ported greatest stem densities of yellow-poplar in the largest 
openings, oak in intermediate sizes and shade tolerant spe-
cies in the smallest size. Minckler and Woerheide (1965) also 
reported greater densities of yellow-poplar in large openings 
(diameter greater than height of the surrounding stand) and 
oaks in smaller openings (diameter less than height of the ad-
jacent stand). In a group selection study of six opening sizes 
(0.015–0.503 ha) in bottomland mixed-hardwood stands of 
South Carolina, Collins and Battaglia (2008) reported no 
optimum size for enhancement of oak reproduction but re-
ported greater stem densities in the largest openings. Zhu 
et al. (2014), in a global metastudy, concluded there was no 
consistent optimum opening size favorable for oak reproduc-
tion. In agreement with Zhu et  al. (2014), we were unable 
to determine an opening size most favorable for oak repro-
duction. It is evident from results of our study, however, that 
reproduction of desirable intolerant species, including oaks, 
can be obtained in openings as small as 0.05 ha in dry-mesic 
mixed-hardwood stands.

Position had a greater effect than opening size on density 
and basal area of several species subgroups, particularly oaks 
(Table 2). Density of oak reproduction was greater at edges of 
openings, compared with centers, which agrees with 10-year 
results from a group selection study reported by Holladay 
et  al. (2006). In our study, stem density and basal area of 
white oaks were strongly associated with position and were 
five times greater at edges of openings than in centers. The 
red oak subgroup showed a similar relationship with opening 
position for density, but a weaker association with basal area. 
Shade-intolerant yellow-poplar was the dominant species in 
the centers of all openings. Distribution of the shade-tolerant 
undesirable group of species was not significantly associated 
with either the periphery or center of openings. Our findings 
agree with other studies reporting variable distribution of spe-
cies in openings, likely as a response primarily to reduction 
of light resulting from shading by other species (Gottschalk 
1994). In agreement with our results, Dale et al. (1995) and 
Collins and Battaglia (2008) reported greater density and 
basal area of oak reproduction at edges of openings than 
centers. As we observed and consistent with what has been 
observed elsewhere in the CHR, yellow-poplar can be the pri-
mary competitor to oak in group selection openings on dry-
mesic sites, particularly in the center of openings (Smith 1977, 
Weigel and Parker 1997, Iverson et al. 2017). Trends of com-
position changes between 10 and 20 years (Figure 6), how-
ever, indicate decreasing density of yellow-poplar and reduc-
tion in the desirable subgroup primarily by sweet birch and 
black locust, as Beck and Hooper (1986) reported for a mesic 
clearcut site. During this 10-year interval basal area of the 
other subgroups approximately doubled, particularly for the 
undesirable subgroup of shade tolerant species. Noteworthy 
during this period were increases in relative basal area of the 
two oak subgroups, particularly by white oaks (from 5% to 
12%) (Figure 6), which occurred in nearly all openings and 
particularly among trees of large dbhq (>10 cm) at edge posi-
tions (Figure 7). Although large oaks at edge positions were 
sparse (133/ha), we suggest this trend of reproduction de-
velopment could be preliminary evidence in support of the  
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delayed oak dominance hypothesis (Oliver 1978). Self-
thinning by a pioneer species during the stem exclusion stage 
of stand development, however, is an alternative, simple ex-
planation for changes of relative basal area occurring at a 
young age in the long-term development (100+ years) of 
this stand (Figure 6). The uneven-age diameter distribution 
pattern of the even-aged stems shown in Figure 7, however, 
offers a preview of their possible future composition in the 
Frothingham study area. Our second-decade results agree 
with early development dynamics of similar stands reported 
by Beck and Hooper (1986) at 20  years. Information on 
older development of mesophytic clearcut stands is sparse in 
the southern Appalachians, but 60-year results from a burned 
and salvage-cut old-growth forest (Della-Bianca 1983) sug-

gest that much of our study area could eventually be dom-
inated by a composition of yellow-poplar and mixed oaks, 
similar to the preharvest stand (Table 1).

Testing the delayed oak dominance hypothesis was an ob-
jective of our study, but we were unable to satisfactorily (stat-
istically) accomplish that. Because a long-term study over a 
complete rotation would be required for a conclusive con-
firmation of the hypothesis, we were uncertain about the type 
of convincing supporting evidence needed from our short-
term observations because results differed by opening pos-
ition. Assuming that trees ≥10 cm form the intermediate and 
higher canopy in the 20-year-old openings, the opening cen-
ters were dominated by a 3:1 ratio of yellow-poplar to oaks 
(Figure 7). The predicted transition rate for change of crown 
class is low for oaks (Ward and Stephens 1994). This suggests 
little shift in species composition in the centers of openings 
of the future stand unless unfavorable climatic conditions 
(such as drought) results in slower growth or high mortality 
of yellow-poplar on submesic sites (Hilt 1985) or application 
of intermediate management treatments, such as crop tree 
release (Miller et al. 1994). At the edges of openings, how-
ever, the mean ratio of large (≥10 cm) yellow-poplar to oaks 
was approximately 1:1 and is likely to remain at that level 
or slowly change in favor of oaks with future stand develop-
ment, which is in agreement with the hypothesis. In our study, 
however, site preparation and competition release treatments 
using herbicide three years after harvest were likely a contrib-
uting factor favoring the codominance of oaks with yellow-
poplar, particularly around the edges of openings. Although 
a tenet of the hypothesis (shifting species dominance) has 
been addressed in a few studies in mixed-hardwood stands 
conducted during the stem exclusion stage (Morrissey et al. 
2008), we found only one study that specifically addressed 
the hypothesis. Steiner et  al. (2018) examined regenerated 
oak-red maple stands midway through rotations and reported 
variable support for the hypothesis among three ecoregions 
in central Pennsylvania and across a range of site qualities. 
They reported oaks were replacing red maple in the central 
Appalachian Mountains, particularly on dry-mesic sites, but 
the reverse was apparent in other ecoregions and on higher 
quality sites. Although we found no significant change in sub-
group dominance (expressed as stem density) between the 
two age classes of reproduction in our study, changes in the 
total tree community were significant, which we suggest pro-
vides tentative support for the oak dominance hypothesis.

Figure 6.  Proportion of total tree basal area ≥2.5 cm diameter breast 
height (dbh) by species subgroup in the mature mixed-hardwood stand 
before the first entry and in the regenerated openings after 10 years and 
20 years.

Figure 7.  Distribution by 2.5 cm diameter breast height (dbh) classes 
of predominant species subgroups consisting of large trees (≥10 cm 
dbh) at the opening center and edge of 20-year-old reproduction of oak 
and yellow-poplar subgroups. Not included at the opening centers of 
the desirable subgroup were 133 stems/ha in the 10 and 12.5 cm dbh 
classes and at the edges of the undesirable subgroup were 38 stems/ha 
in the 10 cm dbh class.

Table 3.  Mean (standard deviation) Simpson’s diversity index of the 
preharvest, mixed-hardwood stand and reproduction cohort ages 
resulting from two harvest entries by position in the group selection 
openings of the Frothingham group selection study area.

Position in 
Opening

Preharvest 
Stand

Harvest Entry (Cohort Age) p*

2005 (10 years) 1988 (20 years)  

Center N/A** 0.429 (0.174)*** 0.622 (0.108) .002

Edge N/A 0.602 (0.221) 0.702 (0.098) .141

Overall 0.881 0.603 (0.147) 0.704 (0.782) .035

*p determined from F statistic resulting from one-way analysis of variance 
of harvest entry date by position in opening.
**N/A, not applicable because of sampling design.
***Larger values of Simpson’s index are associated with greater species 
diversity.
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The response of reproduction in relation to the herbicide 
site preparation and followed three years by competition re-
lease treatments could not be evaluated because controls were 
lacking. As reported by Smith (1981) in mixed-oak stands of 
the central Appalachians, the herbicide treatments undoubt-
edly provided some benefit to survival and growth of repro-
duction in the preferred oak subgroups at 20 years of age and, 
hence, increased tentative support for the dominance hypoth-
esis particularly in the periphery of openings during the near 
future. In our hypothesis tests, the chronosequence design of 
our study likely reduced sensitivity of the analysis to detect 
significant temporal changes of oak reproduction dynamics 
relative to yellow-poplar during the second decade of growth. 
Our results agree with findings reported by Beck and Hooper 
(1986) on permanent plots showing continued self-thinning 
of yellow-poplar and high survival of oaks after two decades 
of development in a clearcut, mixed cove hardwoods stand 
on a mesic site. Continued development of reproduction in 
the harvested openings suggests future composition like that 
of our preharvest stand (Table 1). Results from a long-term 
study of a severely burned and clearcut old-growth stand of 
cove hardwoods suggests initial dominance by yellow-poplar 
through 60 years for the Frothingham study with increasing 
codominance by oaks and a midstory of tolerant species 
(Della-Bianca 1983). Although previous influences of land-
scape scale fire and grazing have changed during the past cen-
tury, other climate-related disturbance events (and possibly 
more intense than before) over the long rotation of these for-
ests will continue to influence species composition.

Composition of reproduction varied widely among open-
ings. Field observations suggested species distributions could 
be strongly affected by factors not quantified in our study, such 
as site quality, exotic species and disturbance during timber 
harvest. In the 1988 entry, for example, mesophytic yellow-
poplar dominated the 12 openings that were located on dry-
mesic slopes or on mesic sites along drainages. However, re-
production of yellow-poplar was absent from an opening on 
a ridge crest, possibly because of the likely xeric moisture re-
gime there and lack of nearby seed sources. Dominant repro-
duction at that ridge site consisted of the oak subgroups, par-
ticularly chestnut oak, and hickories together with red maple 
and the undesirable subgroup. In another small opening on a 
mesic site harvested in 1988, the canopy was dominated by 
the nonnative, shade intolerant, light-seeded, tree-of-heaven 
(Ailanthus altissima [Mill.] Swingle) with a few yellow-poplar 
trees in the intermediate and codominant crown classes. This 
was a surprising finding because yellow-poplar had been 
“outcompeted” by an exotic species, for which there was no 
known seed source in the vicinity of the Frothingham study 
area and because tree-of-heaven is dioecious. Rebbeck et al. 
(2017) reported similar invasion by this exotic species fol-
lowing timber harvest in closed oak forests of southern Ohio.

Unusual site conditions resulting from harvesting possibly 
contributed to variation of reproduction in some openings of 
our study. For example, the mean ratio of yellow-poplar to 
oak density of reproduction in our study was 12:1 in centers 
and 2:1 at edges. In one of the 2005 openings, however, the 
ratio was 68:1 in the center and 0.29:1 at the edge. The low 
yellow-poplar to oak edge ratio in this second-entry open-
ing could have resulted from a combination of two factors: 
edge effects from increased light admitted from an adjacent 
first-entry harvest that stimulated development of advance 

oak reproduction and lack of forest floor disturbance, which 
could have reduced but not eliminated germination of new 
and stored yellow-poplar seeds (Clark 1970). This opening 
was adjacent to a permanent logging access road that al-
lowed felling of several mature perimeter trees into the open-
ing edge followed by removal of the butt log with minimal 
soil disturbance from harvest equipment. The combination of 
a thick layer (~1 m) of logging slash from several large tree 
crowns and lack of soil disturbance in this edge sample plot 
apparently resulted in successful intraspecific competition 
within a large cluster of oak reproduction (observed present 
before the second entry) rather than interspecific competition 
with a dog-hair thicket of yellow-poplar saplings, which was 
present in the opening center. Sander and Clark (1971) also 
observed that basal sprouts from oak advance reproduction 
crushed by logging residues can emerge and grow rapidly 
in height.

The response variable of yellow-poplar height was sig-
nificantly, directly associated with opening size only in the 
presence of center or edge position and only for the relatively 
large openings formed during the 2005 harvest (Figure 5). 
The quadratic effect of opening size in our model agrees with 
Sander and Clark (1971) who provided a curvilinear relation-
ship of the area shaded by the adjacent forest in relation to 
opening size. Where timber production is a regeneration pri-
ority, Sander and Clark (1971) suggest a minimum opening 
size of 0.2 ha to reduce edge effects on growth of intoler-
ant species. In agreement with our results, Smith (1977) re-
ported better height growth of yellow-poplar as opening size 
increased from 0.018 to 0.45 ha and better growth in centers 
of openings compared with edges.

Several design issues weakened findings from our study. 
A design with increased power to detect effects of opening 
size could have resulted from harvest of replicated fixed areas 
rather than variable sizes, as in our study. Lack of preharvest 
inventories in openings reduced our ability to assess com-
petition with focal species (oaks) by specific shade tolerant 
competing species, such as red maple. In retrospect, sampling 
edges of openings in a random direction increased variability 
of inventory data and did not allow testing of effects of as-
pect on reproduction, which was significant in the CHR north 
of the Ohio River (Weigel and Parker 1997, Morrissey et al. 
2008). In the central Appalachians, however, Smith (1977) re-
ported no effect of aspect on reproduction. We avoided pla-
cing edge samples next to logging roads to reduce effects of in-
creased side light on reproduction in openings. Except for the 
instance mentioned above, however, we failed to note if edge 
plots sampled in the second entry were adjacent to openings 
created by the first entry. Also, an estimate of site index from 
each opening could have been useful to account for variation 
in some response variables, such as basal area of the yellow-
poplar subgroup. Finally, our study used a chronosequence 
design to detect temporal trends of reproduction development 
at two stand ages, which introduced site and climatic related 
variation that would not have been present with permanent 
plots established in the first entry. We suggest the deficiencies 
in our study should be considered for addressing in future in-
vestigations, particularly increased sample size using perman-
ent, paired center/edge plots on cardinal directions.

Effects are unknown concerning the herbicide release treat-
ment three years after harvest on growth of desirable spe-
cies, primarily the oak subgroups. Given the rapid growth of 
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yellow-poplar observed in this study and the characteristic-
ally slow height growth of small oak reproduction, benefi-
cial effects of the herbicide release treatment could have been 
minimal, particularly in opening centers with high seedling 
densities yellow-poplar. The site preparation herbicide treat-
ment of stumps, however, was apparently beneficial because 
red maple and other prolifically sprouting species (sour-
wood) were minor components of the inventoried reproduc-
tion; Smith (1981) reported similar results from herbicide 
site preparation treatments in West Virginia. The efficacy of 
herbicide release treatments on targeted reproduction devel-
opment has not been widely evaluated in group selection har-
vests and could be a subject of evaluation in the next entry of 
the Frothingham group selection study.

Results from our study suggest group selection can be 
used to regenerate mature, mixed-hardwood stands with 
reproduction of desirable intolerant species, primarily with 
yellow-poplar but also with a small component of oaks. 
Stand management by group selection, however, requires 
additional administrative investment compared with con-
ventional even-aged methods. For example, the harvesting 
access road system will be used for each entry and should 
be designed before the first entry to avoid disturbances to 
existing regenerated openings in future entries, which oc-
curred in one opening of the Frothingham study. Detailed 
mapping of opening locations is desirable for distribution 
of harvests throughout the stand to meet wildlife habitat 
and visual objectives. Minimum sizes of openings must be 
considered for economics of harvest operations. For ex-
ample, based on predicted crown sizes, an opening of 0.05 
ha could include one tree in an oak subgroup with dbh of 
152  cm or approximately 12 trees averaging 30  cm dbh 
(Bechtold 2003). Conventional opening size is a width 
about twice the height of the adjacent forest (Miller et al. 
1994). Forest height in the Frothingham study area aver-
aged about 33 m, resulting in an opening width of 66 m 
and size of about 0.34 ha. Larger opening sizes are con-
sidered patch clearcuts but achieve the same management 
objective of an uneven-aged stand structure consisting of 
three or more cohort ages (Miller et  al. 1994). In central 
Appalachian mixed-hardwood stands, Smith (1981) recom-
mended 0.20 ha as the minimum size to obtain satisfactory 
density of oak reproduction and adequate diversity of other 
desirable intolerant species. Additional information on im-
plementation of uneven-aged management using the group 
selection method in Appalachian oak stands is provided by 
Miller et al. (1994).

Conclusions
Preliminary results from this long-term study show repro-
duction in 10- and 20-year-old openings consisted largely of 
intolerant yellow-poplar and lesser, about equal amounts of 
midtolerant oaks and tolerant undesirable species. Opening 
size, which ranged from 0.05 to 0.41 ha, had no effect on 
stem density or basal area of reproduction in any of the six 
subgroups of species. Position in openings, however, strongly 
affected species composition of reproduction with yellow-
poplar dominating centers and codominating edges with oaks. 
During the second decade of reproduction development, basal 
area of the yellow-poplar and desirable subgroup (largely 
sweet birch and black locust) decreased while the proportion 
of other species subgroups increased, particularly oak and 

undesirable species subgroups. Our results suggest that com-
position of reproduction in openings as small as 0.05 ha can 
consist of desirable intolerant species, but the administration 
and economics of operational harvesting of only small open-
ings could be questionable. Although an abundance of small 
openings could affect economics of harvesting using group se-
lection, their distribution within stands could be important to 
achieve nontimber management goals, such as aesthetics and 
wildlife habitat. Also, we reported that stem diameters of 10- 
and 20-year-old even-aged reproduction followed a balanced, 
uneven-aged distribution, which was a technical concern by 
some early opponents of group selection. Early results from 
this long-term, operational-scale study suggest that group se-
lection can be a viable method of uneven-aged management 
in dry-mesic southern Appalachian mixed-hardwood forests.
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-­‐‑
traction  of  farming  and  the  rise  of  plantation  forestry  in  the  20th  century,  the  struc-­‐‑
ture  and  function  of  southern  forests  continues  to  evolve.  Climate  change  represents  

st  

Key Findings 

  
-­‐‑

  

beetle.
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8.1 Historical Perspective

resulted  in  abandonment  of  large  areas  of  crop  and  pasture  lands.  Some  of  the  aban-­‐‑
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forests  for  soybean  and  other  crop  production.  Much  of  this  timberland  reduction  oc-­‐‑

-­‐‑

8.2 Southeastern Forest Types 

-­‐‑

2
-­‐‑

est  management  could  be  used  to  cope,  adapt,  or  mitigate  negative  impacts.  

Atlantic  and  East  Gulf  Coastal  Plain.  
-­‐‑

-­‐‑

varies  as  does  the  potential  impacts  on  trees  species.  Several  dendrochronological  
-­‐‑
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and  potential  future  droughts,  may  be  a  major  impact  on  the  distribution  of  some  

These  forests  cover  much  of  the  high  elevation  areas  of  the  

systems,  the  high  elevation  forests  of  the  southern  Appalachian  ecosystems  are  at  
o

  and  
elevations  in  North  Carolina  and  harboring  federally  threatened  animal  species,  includ-­‐‑

-­‐‑
ability  has  increased.  If  these  trends  continue,  they  could  lead  to  substantial  change  in  
the  structure  and  function  of  future  southern  Appalachian  forests.  

In  addition  to  determining  biodiversity,  climate  variability  also  controls  forest  
-­‐‑

-­‐‑

-­‐‑

-­‐‑
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to  have  been  of  centuries-­‐‑scale  duration  in  the  time  period  4,000  to  1,000  years  before  

-­‐‑

spp.

Piedmont.  The  Piedmont  region  lays  southeast  of  the  Appalachian  region  and  stretches  

-­‐‑

-­‐‑

less-­‐‑diverse  forests  may  be  more  susceptible  to  insect  and  pathogen  pests,  and  that  

change  scenarios  considered.  Conversely,  under  those  projections  the  biomass  of  chest-­‐‑
-­‐‑

2

2  increases  the  productivity  of  the  canopy  loblolly  pine  and  

2

2

2

Coastal  wetland  forests.  
Coastal  Plain  and  maritime  ecosystems  and  are  responsive  to  changes  in  climate  and  
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-­‐‑

-­‐‑

-­‐‑

-­‐‑

mangrove

Figure 8.1   Mixed conifer and deciduous Piedmont forest in the southeastern USA.
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-­‐‑

coastlands  to  mangrove  dominated  shores,  due  to  climatic  changes,  may  also  lead  to  

Climate  change  poses  some  immediate  and  long-­‐‑term  threats  to  the  health,  func-­‐‑

-­‐‑

in  Mississippi,  particularly  in  counties  dominated  by  pines  in  the  southern  part  of  the  
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8.3 Changes in Forest Type Across the South

-­‐‑

-­‐‑

The  combination  of  future  climate,  soils,  and  land  cover  may  not  resemble  anyplace  

-­‐‑

soils  of  the  southeastern  mountains  and  Piedmont  are  more  similar  to  each  other  than  

response  to  changes  in  SE  climates.  

models  themselves  do  not  predict  the  future  locations  of  tree  species,  as  they  do  not  

-­‐‑

o

-­‐‑
o o -­‐‑

o
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-­‐‑

8.4 Current and Projected Forest Stresses 

function  of  climate  or  climate  change,  but  indirectly  a  function  of  climate  impacts  on  

Wildfires 

-­‐‑
-­‐‑

2

-­‐‑
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-­‐‑

reduce  fuel  moisture  due  to  increased  evaporation  and,  therefore,  increase  the  threat  

reduces  soil  moisture,  tree  productivity  and  fuel  loading  could     despite  the  

precipitation  are  less  certain  than  those  for  air  temperature.  Projected  precipitation  

higher  in  many  subtropical  and  mid-­‐‑latitude  ecosystems  outside  the  SE.  This  reduced  

Hurricanes 

-­‐‑

-­‐‑
lion  m3  of  timber  estimated  at  a  value  of  $1.4  billion  to  $2.4  billion  dollars.  Impacts  are  

forests  also  can  also  be  impaired.  



Forests and Climate Change in the Southeast USA               175

-­‐‑
eter  ratios,  height,  spacing,  recent  thinning,  and  impacts  of  previous  disturbance  on  

composition  may  also  impact  the  degree  of  damage  from  hurricanes.  Therefore,  stand  

forest  managers  to  reduce  hurricane  impacts.

P.  taeda

-­‐‑

-­‐‑

-­‐‑
est  composition.  

Insects 

-­‐‑

-­‐‑

impact  the  amount  of  insect  caused  damage  under  future  climate  conditions  includ-­‐‑
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change  may  also  impact  insect  success.  Although  it  is  one  of  the  principle  drivers  of  ris-­‐‑
2

2

-­‐‑

-­‐‑
-­‐‑

soil  nitrogen  concentrations  from  sites  that  largely  survived  the  drought.  In  addition  to  

climatic  conditions  also  made  these  stands  the  most  susceptible  to  mortality  once  those  
conditions  changed.  In  combination,  insects,  drought,  and  nitrogen  deposition  ulti-­‐‑

-­‐‑
cline  seem  clear,  forest  managers  have  historically  not  been  taught  to  consider  vigorous  

Elevated Atmospheric CO2 

2 2  could  
2

2
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also  the  basis  of  plant  photosynthesis.  Given  that  plant  photosynthesis  is  not  saturated  
2 2

2  

8.5 Ecosystem Services

Southeastern  forests  have  been  a  major  source  of  ecosystem  goods  and  services  for  
-­‐‑

ics  and  climate  may  change  the  value  of  and  need  for  some  ecosystem  services,  but  an  
-­‐‑

2,  and  part  of  a  

Forest Productivity and Carbon Sequestration 

Figure 8.2   Red spruce (Picea rubens Sarg.) mortality in western North Carolina due to a combination 
of drought, southern pine beetles, and acid rain.
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-­‐‑

2  increase  and  
-­‐‑

-­‐‑
ter  13%  of  regional  greenhouse  emissions  in  soils  and  long-­‐‑lived  forest  products,  such  

Forest Water Resources 

-­‐‑
-­‐‑



Forests and Climate Change in the Southeast USA               179

-­‐‑

-­‐‑

-­‐‑

-­‐‑

Figure 8.3   Revised Universal Soil Loss Equation predictions of soil erosion areas within the Uwharrie 
National Forest by 2030.
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8.6 Adaptation and Mitigation Options

-­‐‑
spheric  carbon  enrichment,  as  long  as  precipitation  does  not  decline  or  air  temperature  

2  ben-­‐‑

regional  timber  harvests  that  come  from  the  northern  reaches  of  the  region.  This  may  

-­‐‑

There  are  a  variety  of  other  adaptation  strategies  to  address  climate  trends  and  

Figure 8.4   Forest model predictions of increased carbon sequestration (measured at net primary 
productivity, NPP) in the northern sections of the southern USA due to increasing air temperature by 
the end of this century.
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be  important  in  developing  forest  management  regimes  and  increasing  stand  produc-­‐‑

2  enrichment  may  be  further  enhanced  by  improved  genetics,  bioen-­‐‑
gineering,  use  of  marginal  agricultural  land  for  tree  production,  and  more  intensive  

-­‐‑
-­‐‑

-­‐‑

-­‐‑

-­‐‑

Figure 8.5   Interactions of climate (e.g., drought), biological (e.g., insects) and abiotic (e.g., fire or acid 
rain) can combine to cause forest mortality. The interactive stresses may be related (e.g., drought and 
fire) or unrelated (e.g., drought and acid rain). Any single stress may not have caused the mortality, 
but as climate change continues the potential for more frequent, more severe, and synergistic stress 
increases.
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-­‐‑

Improved  understanding  of  climate  change  impacts  and  adaptation  options  are  only  
-­‐‑

-­‐‑
-­‐‑

application  of  these  tools.  

Figure 8.6   Web-based tools such as TACCIMO (Template for Assessing Climate Change Impacts and 
Management Options) are increasingly being used to easily translate scientific knowledge into the hands of 
the land manager.



Forests and Climate Change in the Southeast USA               183

8.7 Conclusions
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-­‐‑
traction  of  farming  and  the  rise  of  plantation  forestry  in  the  20th  century,  the  struc-­‐‑
ture  and  function  of  southern  forests  continues  to  evolve.  Climate  change  represents  

st  

Key Findings 

  
-­‐‑

  

beetle.
  

  
2

  

8.1 Historical Perspective

resulted  in  abandonment  of  large  areas  of  crop  and  pasture  lands.  Some  of  the  aban-­‐‑
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forests  for  soybean  and  other  crop  production.  Much  of  this  timberland  reduction  oc-­‐‑

-­‐‑

8.2 Southeastern Forest Types 

-­‐‑

2
-­‐‑

est  management  could  be  used  to  cope,  adapt,  or  mitigate  negative  impacts.  

Atlantic  and  East  Gulf  Coastal  Plain.  
-­‐‑

-­‐‑

varies  as  does  the  potential  impacts  on  trees  species.  Several  dendrochronological  
-­‐‑
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and  potential  future  droughts,  may  be  a  major  impact  on  the  distribution  of  some  

These  forests  cover  much  of  the  high  elevation  areas  of  the  

systems,  the  high  elevation  forests  of  the  southern  Appalachian  ecosystems  are  at  
o

  and  
elevations  in  North  Carolina  and  harboring  federally  threatened  animal  species,  includ-­‐‑

-­‐‑
ability  has  increased.  If  these  trends  continue,  they  could  lead  to  substantial  change  in  
the  structure  and  function  of  future  southern  Appalachian  forests.  

In  addition  to  determining  biodiversity,  climate  variability  also  controls  forest  
-­‐‑

-­‐‑

-­‐‑

-­‐‑
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to  have  been  of  centuries-­‐‑scale  duration  in  the  time  period  4,000  to  1,000  years  before  

-­‐‑

spp.

Piedmont.  The  Piedmont  region  lays  southeast  of  the  Appalachian  region  and  stretches  

-­‐‑

-­‐‑

less-­‐‑diverse  forests  may  be  more  susceptible  to  insect  and  pathogen  pests,  and  that  

change  scenarios  considered.  Conversely,  under  those  projections  the  biomass  of  chest-­‐‑
-­‐‑

2

2  increases  the  productivity  of  the  canopy  loblolly  pine  and  

2

2

2

Coastal  wetland  forests.  
Coastal  Plain  and  maritime  ecosystems  and  are  responsive  to  changes  in  climate  and  
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-­‐‑

-­‐‑

-­‐‑

-­‐‑

mangrove

Figure 8.1   Mixed conifer and deciduous Piedmont forest in the southeastern USA.
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-­‐‑

coastlands  to  mangrove  dominated  shores,  due  to  climatic  changes,  may  also  lead  to  

Climate  change  poses  some  immediate  and  long-­‐‑term  threats  to  the  health,  func-­‐‑

-­‐‑

in  Mississippi,  particularly  in  counties  dominated  by  pines  in  the  southern  part  of  the  
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8.3 Changes in Forest Type Across the South

-­‐‑

-­‐‑

The  combination  of  future  climate,  soils,  and  land  cover  may  not  resemble  anyplace  

-­‐‑

soils  of  the  southeastern  mountains  and  Piedmont  are  more  similar  to  each  other  than  

response  to  changes  in  SE  climates.  

models  themselves  do  not  predict  the  future  locations  of  tree  species,  as  they  do  not  

-­‐‑

o

-­‐‑
o o -­‐‑

o
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-­‐‑

8.4 Current and Projected Forest Stresses 

function  of  climate  or  climate  change,  but  indirectly  a  function  of  climate  impacts  on  

Wildfires 

-­‐‑
-­‐‑

2

-­‐‑
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-­‐‑

reduce  fuel  moisture  due  to  increased  evaporation  and,  therefore,  increase  the  threat  

reduces  soil  moisture,  tree  productivity  and  fuel  loading  could     despite  the  

precipitation  are  less  certain  than  those  for  air  temperature.  Projected  precipitation  

higher  in  many  subtropical  and  mid-­‐‑latitude  ecosystems  outside  the  SE.  This  reduced  

Hurricanes 

-­‐‑

-­‐‑
lion  m3  of  timber  estimated  at  a  value  of  $1.4  billion  to  $2.4  billion  dollars.  Impacts  are  

forests  also  can  also  be  impaired.  
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-­‐‑
eter  ratios,  height,  spacing,  recent  thinning,  and  impacts  of  previous  disturbance  on  

composition  may  also  impact  the  degree  of  damage  from  hurricanes.  Therefore,  stand  

forest  managers  to  reduce  hurricane  impacts.

P.  taeda

-­‐‑

-­‐‑

-­‐‑
est  composition.  

Insects 

-­‐‑

-­‐‑

impact  the  amount  of  insect  caused  damage  under  future  climate  conditions  includ-­‐‑
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change  may  also  impact  insect  success.  Although  it  is  one  of  the  principle  drivers  of  ris-­‐‑
2

2

-­‐‑

-­‐‑
-­‐‑

soil  nitrogen  concentrations  from  sites  that  largely  survived  the  drought.  In  addition  to  

climatic  conditions  also  made  these  stands  the  most  susceptible  to  mortality  once  those  
conditions  changed.  In  combination,  insects,  drought,  and  nitrogen  deposition  ulti-­‐‑

-­‐‑
cline  seem  clear,  forest  managers  have  historically  not  been  taught  to  consider  vigorous  

Elevated Atmospheric CO2 

2 2  could  
2

2
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also  the  basis  of  plant  photosynthesis.  Given  that  plant  photosynthesis  is  not  saturated  
2 2

2  

8.5 Ecosystem Services

Southeastern  forests  have  been  a  major  source  of  ecosystem  goods  and  services  for  
-­‐‑

ics  and  climate  may  change  the  value  of  and  need  for  some  ecosystem  services,  but  an  
-­‐‑

2,  and  part  of  a  

Forest Productivity and Carbon Sequestration 

Figure 8.2   Red spruce (Picea rubens Sarg.) mortality in western North Carolina due to a combination 
of drought, southern pine beetles, and acid rain.
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-­‐‑

2  increase  and  
-­‐‑

-­‐‑
ter  13%  of  regional  greenhouse  emissions  in  soils  and  long-­‐‑lived  forest  products,  such  

Forest Water Resources 

-­‐‑
-­‐‑
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-­‐‑

-­‐‑

-­‐‑

-­‐‑

Figure 8.3   Revised Universal Soil Loss Equation predictions of soil erosion areas within the Uwharrie 
National Forest by 2030.
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8.6 Adaptation and Mitigation Options

-­‐‑
spheric  carbon  enrichment,  as  long  as  precipitation  does  not  decline  or  air  temperature  

2  ben-­‐‑

regional  timber  harvests  that  come  from  the  northern  reaches  of  the  region.  This  may  

-­‐‑

There  are  a  variety  of  other  adaptation  strategies  to  address  climate  trends  and  

Figure 8.4   Forest model predictions of increased carbon sequestration (measured at net primary 
productivity, NPP) in the northern sections of the southern USA due to increasing air temperature by 
the end of this century.
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be  important  in  developing  forest  management  regimes  and  increasing  stand  produc-­‐‑

2  enrichment  may  be  further  enhanced  by  improved  genetics,  bioen-­‐‑
gineering,  use  of  marginal  agricultural  land  for  tree  production,  and  more  intensive  

-­‐‑
-­‐‑

-­‐‑

-­‐‑

-­‐‑

Figure 8.5   Interactions of climate (e.g., drought), biological (e.g., insects) and abiotic (e.g., fire or acid 
rain) can combine to cause forest mortality. The interactive stresses may be related (e.g., drought and 
fire) or unrelated (e.g., drought and acid rain). Any single stress may not have caused the mortality, 
but as climate change continues the potential for more frequent, more severe, and synergistic stress 
increases.
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-­‐‑

Improved  understanding  of  climate  change  impacts  and  adaptation  options  are  only  
-­‐‑

-­‐‑
-­‐‑

application  of  these  tools.  

Figure 8.6   Web-based tools such as TACCIMO (Template for Assessing Climate Change Impacts and 
Management Options) are increasingly being used to easily translate scientific knowledge into the hands of 
the land manager.
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