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Abstract Recent growth in the frequency and severity of
US wildfires has led to more wildfire smoke and increased
public exposure to harmful air pollutants. Populations
exposed to wildfire smoke experience a variety of negative
health impacts, imposing economic costs on society.
However, few estimates of smoke health costs exist and
none for the entire Western US, in particular, which
experiences some of the largest and most intense wildfires
in the US. The lack of cost estimates is troublesome because
smoke health impacts are an important consideration of the
overall costs of wildfire. To address this gap, this study
provides the first time series estimates of PM2.5 smoke
costs across mortality and several morbidity measures for
the Western US over 2005-2015. This time period includes
smoke from several megafires and includes years of record-
breaking acres burned. Smoke costs are estimated using a
benefits transfer protocol developed for contexts when ori-
ginal health data are not available. The novelty of our
protocol is that it synthesizes the literature on choices faced
by researchers when conducting a smoke cost benefit
transfer. On average, wildfire smoke in the Western US
creates $165 million in annual morbidity and mortality
health costs.
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Introduction

In 2015 the International Association of Wildland Fire IAWF)
issued a joint-position statement on wildfire costs,' which
argued in-part that the “true costs of wildfires is much higher
than the public is aware of, and much higher than currently
accounted for by government assessments” (IAWF 2015,
p. 16). This underestimate is because damage assessments
often ignore many costs of wildfires (e.g., preparedness
expenditures, degradation of ecosystem services and water
quality, and negative health effects, etc.). As discussed
elsewhere (Kochi et al. 2010; Richardson et al. 2012),
economic costs associated with wildfire smoke exposure are
an important, but regularly over-looked cost of wildfire.
Because smoke from wildfires can travel great distances
over short time periods, the health of large numbers of
people can be affected, imposing (largely unquantified)
economic costs on society.

The lack of smoke cost estimates is particularly trou-
blesome in the Western US where climate change, ongoing
drought, and continued fuels build-up have led to an
increase in the frequency and severity of wildfires, includ-
ing the growth of “megafires” or those burning at least
100,000 acres of land (US Global Change Research Pro-
gram 2014).? Population centers in the West such as Los
Angeles, Albuquerque, and Las Vegas are being exposed to
greater amounts of wildfire smoke for longer periods of time
(Spracklen et al. 2007). Not only are there no published

! “Reduce Wildfire Risks or Pay More for Fire Disasters,” April 16,
2015. Developed and supported by the IAWF, Association for Fire
Ecology, and The Nature Conservancy.

2 For our purposes here, we define the Western US as the 11-state
contiguous region consisting of Washington, Oregon, California,
Idaho, Montana, Nevada, Utah, Arizona, Colorado, Wyoming, and
New Mexico.
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records of mortality and morbidity smoke health costs for
the Western US as a whole, but it is largely unknown how
these costs vary from year to year, from state to state, or
how they co-vary with acres burned.® Addressing these
outstanding issues can aid policymakers and wildland fire
managers as they make decisions based on a more complete
accounting of wildfires’ total costs on society.

This study makes two contributions to our understanding
of smoke health costs. First, it provides the first-ever time
series estimates (2005-2015) of smoke health costs across
the entire Western US. The analysis also includes cost
heterogeneity by state and population, annually. Second, a
benefits transfer protocol is developed for estimating US
smoke costs in the absence of original health data. While
ours is not the first benefits transfer application to wildfire
smoke (e.g., Rappold et al. 2014; Jones et al. 2016), it is the
first to synthesize to a wider environmental management
audience the relevant air quality, epidemiology, and eco-
nomics literatures on choices faced by smoke cost
researchers. By articulating the choices faced by research-
ers, we hope to motivate the regular inclusion of smoke
impacts in wildfire damage assessments and policy deci-
sions. We see this work as a starting point for discussions
on how to proceed with estimating regional wildfire smoke
costs, recognizing that this represents a first attempt at
tackling this issue in the Western US, though with a definite
need for more original site-specific studies to help further
improve smoke cost estimates.

Protocol for Estimating Wildfire Smoke Costs

We estimate wildfire smoke costs in the Western US using a
benefits transfer protocol, described in this section. Benefits
transfer is a more accessible alternative to estimate wildfire
smoke costs when original health data are unavailable to the
researcher due to factors such as constrained budgets,
expertize barriers to entry, or the sheer absence of health
data in certain contexts. Based in the economics literature,
benefits transfer uses existing data to inform decisions in a
different setting or context (Rosenberger and Loomis 2003).
The idea is to estimate economic values in one setting or
context by transferring available information from studies
already completed in another location or context. Here, the
benefits would refer to the foregone costs of reducing or
mitigating wildfire smoke health impacts. For wildfire
smoke health cost estimates, this entails transferring infor-
mation on health impacts of smoke from the epidemiology

3 There are several studies of smoke costs for specific areas or cities in
the West (e.g., Richardson et al. 2012; Moeltner et al. 2013; Jones
et al. 2016), but none that aggregate over the entire region and over
time.

@ Springer

literature and the costs of various health outcomes from the
economics literature. While applications remain limited in
total, this approach has been used for decades to estimate
smoke health costs in the US and globally (e.g., Hon 1999;
Rittmaster et al. 2006; Martin et al. 2007; Rappold et al.
2014; Jones et al. 2016).

In general, economists measure the cost of wildfire
smoke as being equal to the smoke-induced change in
health outcomes over some population of interest multiplied
by the per unit cost associated with this change, or, math-
ematically,

Cost of Smoke Exposure = (AHealth) x (Unit Value)

(1)
where A symbolizes change. In a benefits transfer approach
to estimating equation (1), existing concentration response
(CR) functions from the epidemiology literature that map
changes in air pollution concentrations to changes in health
outcomes are used to determine AHealth. Unit values
include medical expenses, lost wages, averting expenses,
and disutility (i.e., value of pain and suffering). Willingness
to pay (WTP) is a comprehensive measure of unit value
because it includes all costs associated with changes in
health, and is preferred by economists for this reason
(Freeman et al. 2014).* Cost of illness (COI) is the most
commonly used unit value, but is a bad proxy because it
does not allow for averting behavior nor does it capture the
value of disutility (Richardson et al. 2012).

There are many decisions that must be made when
conducting a smoke benefit transfer that non-economists
(and many economists) may not be familiar with. Therefore,
before delving into the specifics of the benefits transfer
approach employed here to estimate Western US smoke
costs, we articulate and discuss more broadly a general-
izable protocol for estimating smoke costs. We see value in
articulating the so-called “choices of the analyst” within a
protocol framework for at least two reasons.

First, there have historically been many different
approaches to conducting smoke cost benefits transfers,
each predicated on different choices of the analyst. For
example, some studies have used CR functions from the
urban air pollution literature (e.g., Ruitenbeek 1999; Butry
et al. 2001; Rittmaster et al. 2006; Martin et al. 2007), while
at least one study has focused on wildfire-specific CR
functions (Jones et al. 2016). There is similar heterogeneity
in terms of unit values, with some studies using a mixture of
urban air literature derived WTP and COI values (e.g.,

4 WTP to avoid wildfire smoke exposure can be obtained from several
sources, including, observations of costly actions individuals take
during a smoke event (e.g., purchases of air purifiers or face masks),
public surveys of people exposed to wildfire smoke, or public surveys
of the general public that ask respondents how much they would be
willing to pay for various hypothetical reductions in smoke exposure.
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Cardoso de Mendonga et al. 2004; Rittmaster et al. 2006;
Martin et al. 2007), while others use only wildfire-specific
WTP values (Richardson et al. 2012; Jones et al. 2016).
Other differences also exist in the literature in terms of
sources of air quality data, modeling approaches, and
identification of smoke exposures. Different researchers
make different choices for a variety of reasons: data avail-
ability, context, appropriateness of transferred values, etc.
However, these choices have consequences for smoke cost
estimates (Kochi et al. 2010), and articulating those can
increase transparency and help establish a common base of
understanding.

Second, despite decades of published smoke cost benefits
transfer, there is no published guide, protocol, or “cook-
book” that can be pointed to as a starting point for the
wildfire social scientist or human dimensions scholar.’
Given calls by the IAWF and others for more research on
smoke health costs, we see a protocol as a particularly
helpful way to motivate research in this area by lowering
the barrier to entry for non-experts. Instead of continuing
down a path where it may be unclear why different
researchers take different benefits transfer approaches to
estimating smoke costs, we seek through our protocol to
systematize for the first time (and to the extent possible) the
range of choices available to the wildfire researcher based
on a short syntheses of the relevant epidemiology, air
quality, and economics literatures.

The basic idea of the protocol, described below, is to
provide a guide for estimating smoke exposure costs when
original health data are unavailable. This can be achieved by
determining the duration and intensity of smoke exposure
over some population of interest, using existing CR
functions to determine the smoke-induced health impacts,
and applying unit values to estimated changes in health.
The protocol described below is intended for US con-
texts only, though could be modified for use in other
countries. Furthermore, it is by no means exhaustive
in its inclusion of the many nuances or complexities that
one will find in the smoke research literature. Instead, its
novelty is in its presentation and discussion of the
key decisions that researchers will confront in practice
with relevant citations provided for those seeking more
information.

In the sections that follow, the benefits transfer protocol
is framed as a series of five decisions that researchers will
confront when estimating smoke exposure costs. After
presenting the decisions, the protocol is summarized and

5 The extant literature contains explanations of particular choices

made for particular smoke cost assessments, but generally does not
explain the range of choices available (including those paths not taken)
or the strengths or weaknesses of different decisions. Since benefits
transfer can be highly sensitive to the choice of inputs, we see utility in
discussions of choices of the analyst.

applied to estimate wildfire smoke health costs in the
Western US for the time series 2005-2015.

Protocol Decision #1: Air Pollution Exposure Estimates

The starting point for estimating smoke exposure costs is to
estimate air pollution exposures in areas impacted by
wildfire smoke. There are three commonly used techniques
in the wildfire literature: (i) employing monitored pollution
concentration data; (ii) employing predictions from mod-
eled data, and; (iii) combining modeled and monitored data
together. We begin with a discussion of the monitored data
approach.

Monitored data consists of actual observations of air
pollution levels taken from air quality monitoring stations.
This can provide a proxy for air pollution exposures
experienced by a population located near the site. Exposures
for individuals located further away from the monitoring
site can be estimated using spatial interpolation techniques
such as Kriging, inverse distance weighting, or Voronoi
Neighbor Averaging.” Two primary sources of monitored
air pollution data in the US are the US EPA Air Quality
System (AQS) and the federally-managed Interagency
Monitoring of Protected Visual Environments (IMPROVE)
program.

AQS data represent the most comprehensive source of
data and come from a network of over 4000 stations spread
out across all 50 US states, tribal areas, and several US
territories. Data are available for CO, ozone, SO2, NO2,
PM10, and PM2.5.” Wildfire smoke is known to contain
parts of all of these pollutants, though PM2.5 is probably
the most harmful to public health (Adetona et al. 2016).
IMPROVE provides daily-averaged data on PM10, PM2.5,
and SO2 pollutants in ~110 national parks and wilderness
areas across a majority of US states. While fewer total
numbers of people are adversely affected by smoke in rural
areas (since they are outside major population centers),
IMPROVE data are nonetheless important if one is inter-
ested in capturing rural, in addition to urban, effects of
smoke.

One major limitation of the monitored data approach is
that the proxy it provides is rather crude and of low spatial
resolution. Differences in geography, weather and wind
patterns, land use, and behavioral patterns between the

S Kriging, inverse distance weighting, and Voronoi Neighbor Aver-
aging are examples of proximity-based assessments or statistical
interpolation techniques, which are premised on the idea that an
individual’s exposure is a weighted function of their distance from
monitoring sites.

7 CO =carbon monoxide; SO, = sulfur dioxide; NO, = nitrogen
dioxide. PM10 and PM2.5 are particulates less than 10 microns and
2.5 microns in diameter, respectively. By comparison, an average
strand of human hair is 40-50 microns in diameter.

@ Springer
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monitoring site and an individual’s location, among other
things, may lead to biases in pollution exposure estimates,
as demonstrated by Bravo et al. (2012).

Modeled data overcomes this limitation by incorporating
characteristics of air pollution (e.g., chemical properties,
dispersion, weather, land use) and fire ecology (in wildfire-
specific models) that may cause exposure differences
between areas near and far from monitoring sites. For these
reasons, modeled data can provide more accurate exposure
estimates than monitored approaches (Ozkaynak et al.
2013). Popular air quality models in the wildfire literature
include CMAQ, WRF-Chem, HYPSPLIT, and BlueSky.
Rappold et al. (2014) provide a wildfire example.

A third technique for estimating pollution exposure is a
hybrid model which incorporates modeled and monitored
data with satellite-based aerosol optical depth data. Di et al.
(2016) provide a non-wildfire example and Johnston et al.
(2012) provide a wildfire application. This approach can
provide continuous estimates of daily air pollution expo-
sures at high spatial resolutions, though it is generally
limited to PM pollutants only.

Each technique has its own set of strengths and weak-
nesses. Employing monitored data is advantageous because
it uses actual observations and does not require air quality
modeling expertize, which can involve a steep learning
curve. Additionally, publically-available air quality benefits
transfer software such the US EPA’s BenMAP-CE reduce
the learning curve required for spatial interpolations. For
example, in BenMAP-CE, monitored pollution data can be
spatially interpolated with just a few clicks of the mouse.
However, monitored data may suffer from biases. Modeled
data can provide more accurate estimates, but can be tech-
nically challenging for non-experts to grasp, though mod-
eled smoke products are now publically-available (e.g.,
NOAA Smoke Forecasting System), providing an acces-
sible alternative to originally-estimated predictions. Another
advantage of modeled data is that it can provide near “real-
time” estimates of smoke-induced changes in air quality,
whereas AQS monitored data have lags of 6—18 months,
delaying the availability of smoke exposure cost estimates.

Which technique is employed is a decision that
researchers will have to confront. Economists have tended
to use monitored data in their analyses of wildfire smoke
health costs (e.g., Martin et al. 2007; Moeltner et al. 2013;
Jones et al. 2016), while others have focused on air quality
modeling or modeled/monitored hybrid models (e.g.,
Johnston et al. 2012; Rappold et al. 2014; Reid et al.
2016a). The accuracy of the selected approach at estimating
actual pollution exposures experienced by individuals will
determine the accuracy of the smoke cost estimates. How-
ever, increased accuracy comes at a cost (e.g., time, finan-
cial, expertize). While there is no “best choice” approach to
take, the following guidance might be helpful. Those

@ Springer

without expert knowledge or access to air quality models
might consider starting with monitored data because it is
relatively straightforward to work with and can provide a
first-approximation of smoke exposure. If the focus of the
analysis is on urban areas, monitored data are also generally
abundant in these areas across multiple geographically-
dispersed stations, hence providing a reasonable source of
pollution data that is also likely to approximate modeled
results. For those interested in analyzing rural areas or other
areas where monitored data is sparse, non-existent, or
otherwise unavailable, air quality models are probably more
appropriate. Additionally, if the researcher is interested in
accuracy, above all else, appropriately modeled data is
recommended, but improvements in accuracy over mon-
itored data will depend on many factors (e.g., less accuracy
gained if monitoring stations are abundant, more accuracy
in areas with diverse terrain or many buildings/structures,
more accuracy in areas with different micro-climates, etc.).

Protocol Decision #2: Identification of Smoke Event
Periods

After identifying sources of air pollution exposure esti-
mates, the next step is to identify periods of time over which
wildfire smoke affected pollution concentrations—i.e., the
“smoke event period”. If modeled data of wildfire smoke or
results of smoke-product models are used, then the smoke
event periods have already been determined. For example,
the BlueSky model of the US Forest Service can be used to
calculate downwind smoke concentrations from a fire event.
Researchers using modeled data that provides smoke-
specific exposures can skip to “protocol decision #4”. For
those using monitored data or general air quality modeled
data that are not necessarily tied to wildfires (e.g., CMAQ),
the smoke event period must be identified.

Identifying smoke event days can be difficult with
monitored data because smoke plumes are constantly
shifting in size and direction according to weather and wind
patterns, injection height, fuel load, and geography. Just
because a population center is close to the flame zone does
not mean that it will experience a smoke event, and likewise
prevailing winds may produce significant impacts many
hundreds of miles away from the flame zone. A smoke day
can be followed by a clear day, followed again by another
smoke day.

To determine smoke event periods, several approaches
have been used. One approach defines an event period as a
day in which the average pollution concentration exceeds
some extreme percentile (e.g., 99th, 95th) of all data points
in a given time series and the elevated concentration can be
attributed to wildfire smoke based on media reports, ima-
gery, etc—see Jones et al. (2016) and Johnston et al. (2011)
for two examples. This approach may produce reasonable
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estimates of event periods if the cause of air quality spikes
can be defensibly attributed to wildfire smoke. However, a
binary identification strategy of smoke periods (Yes/No)
will likely miss subtle smoke impacts that raised pollution,
but not by enough to switch a No to a Yes. Thus, smoke
cost estimates from this approach are likely to be con-
servative lower bounds on actual costs.”

A second approach is to use the NOAA/NESDIS Hazard
Mapping System (HMS) Fire and Smoke Product, which
uses smoke dispersion models, weather inputs, and location
of wildfires to produce a daily spatial mapping of
PM2.5 smoke location. The HMS has been used in several
studies of wildfire (e.g., McNamara et al. 2004; Schroeder
et al. 2008), including a recent application to smoke health
costs (Jones 2017). Using GIS analysis, the HMS product
can be used to identify days on which smoke was predicted
to be over a monitoring site, and hence, could have affected
monitored air pollution on that day. There are some lim-
itations and caveats of the HMS product (see Rolph et al.
2009 and Stein et al. 2009), but NOAA experts have indi-
cated that the smoke product estimates are considered
conservative depictions of smoke areas.

A third approach used in at least one study is high-
frequency Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite imagery data of daily smoke plume
locations (McCoy S., Zhao X (2015) Wildfire and infant
health. Unpublished paper, University of Pittsburgh).
Monitoring sites with a visibly confirmed smoke plume on
top of them are said to experience a smoke event period.
However, one limitation of this approach is that excessive
cloud cover can preclude the identification of smoke plumes
on some days.

Unfortunately, there is no best approach to identifying
smoke event periods that will be appropriate in all contexts.
However, we suggest that those without expert knowledge
in this area begin with the first approach: the extreme per-
centile exceedance method. This approach only requires
that a percentage be calculated using monitored air quality
data points, and is therefore fairly straightforward. It also
tends to produce more conservative estimates compared to
the other two approaches because health effects on low to
moderate smoke days will be missed. The HMS and
MODIS smoke products, while providing arguably more
robust event period estimates, also require more expertize,
such as GIS software and spatial calculation tools.

Regardless of which approach is used, the resulting
estimates only provide guidance that monitored air pollution
concentrations may have been impacted by wildfire smoke.
The question then becomes by how much did wildfire

8 Modeled predictions, on the other hand, can provide richer estimates
of smoke exposures from wildfires, allowing more minor air quality
impacts to be captured in the cost analysis.

smoke increase pollution concentrations above and beyond
normal daily levels?

Protocol Decision #3: The Smoke Event Counterfactual

Once a smoke event period has been identified, changes in
air pollution caused by smoke must be specifically isolated.
This information is a required input into CR functions,
which map changes in air pollution (APollut) to changes in
health (AHealth). The challenge in estimating the impact of
smoke on baseline pollution levels is to have a reference
point for what the pollution level would have been in the
absence of wildfire smoke—i.e., the “smoke event counter-
factual”. As previously mentioned, researchers using model
predictions that isolate (APollut) caused by smoke already
know the counterfactual (i.e., it's the difference between
observed concentrations during a smoke period and APol-
lut). In the absence of such information, researchers will
confront some additional choices.

Unfortunately, counterfactuals constructed from mon-
itored data will be somewhat uncertain because of the data
challenges in separating “normal” air quality from smoke
during a fire event—all we observe are readings of total
pollution concentrations and not the smoke-only compo-
nent. However, various techniques can be used to approx-
imate the counterfactual. One simple approach is to assume
that in the absence of smoke, the present would have looked
similar to the past. In other words, air pollution levels
measured today at a particular site are comparable to those
from the same site measured this time last year, which are
comparable to the same day the year before, and so on.
Since wildfire smoke tends to be seasonal and often an
annual event, this counterfactual would likely include the
contributions of fire smoke to historical background
concentrations.

Variations on this approach which might provide more
convincing counterfactuals would be to average over the
past 7 days, past month, or other defensible time period.
This would help smooth estimates that would otherwise be
biased due to large-scale weather events, weekends, or
holidays. Researchers interested in constructing counter-
factuals based on historical data should see discussions in
Jones et al. (2016) and Johnston et al. (2011).

Counterfactuals could also be constructed using statis-
tical regression techniques where pollution levels during a
smoke event are predicted using non-smoke event con-
centration data after controlling for weather, geography,
other emissions sources, day of week, and other con-
founders of air pollution. We know of no studies using
regression techniques to construct a counterfactual, but
believe it to be a promising research area because it allows
for credible predictions to be made based on an analysis of
many historical data points.

@ Springer
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Counterfactuals are difficult to construct and the
approach needed is often case-specific, depending on data
availability, pollution and weather trends over time, etc.
However, we particularly like the historical data approach
for its simplicity and intuitive appeal (i.e., air quality today
would have looked similar to air quality this time last year
(or other relevant period) except for the presence of wildfire
smoke). This might be a reasonable place to start for ana-
lysts without expert knowledge.

Once the counterfactual has been approximated, the
wildfire-induced change to air pollution can be estimated as
the difference between the observed concentration during a
smoke event period and the counterfactual, producing an
estimate of APollut. Using estimates of APollut, the health
effect of wildfire smoke can be calculated using CR
functions.

Protocol Decision #4: Selection of Concentration-
Response (CR) Functions

The decisions presented thus far have provided a framework
for producing a set of numerical estimates of smoke-
induced changes in air pollution, or APollut. Wildfire smoke
models such as BlueSky and the NOAA Smoke Forecasting
System provide such estimates as predicted products: they
tell us the downwind pollution concentrations of wildfire
smoke. Monitored data can also provide estimates of
APollut as described in decisions #2-3.°

As a reminder, estimates of APollut are a necessary input
into CR functions, which allow one to answer the question:
what is the quantifiable health impact of smoke-induced
pollution? The decision incumbent upon the researcher is to
decide what CR functions to choose from the extant epi-
demiology literature. A distinction that one will sometimes
see in this literature is between CR functions estimated for
wildfire smoke events and those estimated for general urban
air pollutants. For purposes of estimating smoke costs,
Kochi et al. (2010) recommend that only wildfire-specific
CR functions are used. However, other work has found
negligible differences between the two (e.g., Seagrave et al.
2006; Hénninen et al. 2009). Given the rapid expansion of
the smoke epidemiology literature over the past few years
(for example, Reid et al. 2016b identified 103 wildfire-
specific CR functions in a recent analysis), coupled with the
fact that urban air dose-response functions generally reflect
low-level chronic exposure rather than high-level acute
exposure such as from wildfire smoke, leads us to

° Predictions from non-wildfire air quality models such as CMAQ
could also be used to estimate APollut following the framework in
decisions #2-3. The difference would be that instead of using obser-
vations from monitored sites, predicted pollution concentrations from
the model would be used to identify smoke event periods and to
construct counterfactuals, such as on a grid cell basis.
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recommend that researchers use wildfire-specific CR func-
tions, though we believe this to be an open line of inquiry in
light of the mixed literature in this area.

In choosing an appropriate CR function(s), we recom-
mend that researchers consider the following: (i) the simi-
larity of the CR function study population to the population
of interest in the cost analysis; (ii) level of CR function
bias—see Reid et al. (2016b); (iii) matching of CR function
health outcomes to available economic cost metrics; (iv)
reporting of empirical results and confidence intervals, such
as odds ratios or relative risks, and; (v) statistical sig-
nificance of CR function coefficients.'® In general, it is
important to choose CR functions from large, well-designed
studies of a large population that ideally measure many
health impacts over long durations. Appropriate expertize
here is important and we recommend discussions in Reid
et al. (2016b) as a starting point, and in particular, non-
experts might start by considering CR functions with low
bias as reported in Tables S1 and S2 in Reid et al. (2016b).
We also note that most wildfire-specific CR functions
capture short-term health impacts (e.g., days, weeks) rather
than long-term impacts (e.g., months, years), though there is
a recent push for more longer-term estimates (Reid et al.
2016b).

For further guidance, consider the following example. If
one is interested in estimating smoke costs in the Western
US in 2015, then using minimally biased CR functions
estimated for wildfires in the West around the same time
period would be appropriate. Health outcomes that wildfire
smoke are known to significantly affect and that have cost
metrics associated with them are also appropriate, such as
cardio-respiratory hospital admissions. Ideally, one would
use multiple CR functions for the same outcome obtained
from multi-site studies and pool the results in order to
reduce uncertainty and thereby improve the reliability of
health impact estimates (RTI International 2015). Sensitiv-
ity of estimated health impacts to choice of CR functions
can be investigated using a sensitivity analysis.

Protocol Decision #5: Unit Values

The final decision to be made is the choice of unit values
that will be used to value estimated health impacts. As
previously mentioned, there are two types of unit values:
WTP and COIL Economists strongly recommend using
WTP because it fully captures all the costs borne by an
individual exposed to wildfire smoke, including the value of
pain and suffering (Richardson et al. 2012; Freeman et al.
2014). COI is the most commonly used unit value, but does

10 For additional discussion on CR functions and their use in esti-
mating air pollution-related health effects, see Appendix C of RTI
International (2015).
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not allow for averting behaviors nor is it a comprehensive
measure of costs borne by individuals. For a listing of
several COI values used by the US EPA, see Appendix I of
RTI International (2015).

To our knowledge, there are at present only two wildfire-
specific WTP metrics and both were estimated in Western
US contexts (Richardson et al. 2012; Jones et al. 2016).
Richardson et al. (2012) find that southern California resi-
dents exposed to wildfire smoke are willing to pay $84.42/
day for a reduction in wildfire-induced symptoms. Jones
et al. (2016) find that residents of Albuquerque, New
Mexico have a WTP to avoid any wildfire smoke health
effect of $130.79, no matter the duration. Whether the
smoke health effect estimated is in symptom days or binary
(health effect vs. no effect) will determine the appropriate
WTP to transfer.

1. Air Pollution Exposure Estimates

e Monitored data

e Predictions from models

e Combinations of monitored and
modeled

o Considerations: tradeoff between
accuracy and costs (e.g., time,
financial, expertise)

A

2. Identification of Smoke Event Periods

We recommend that analysts use the WTP measure
because it fully captures all wildfire smoke exposure costs,
even those that the exposed individual may not be aware of
(Jones 2017). COI values can be used to supplement results
from using WTP metrics or for comparison purposes (such
as in Richardson et al. 2012), but should not be the only unit
values used.

Summary of Protocol

Figure 1 summarizes the benefits transfer protocol. Deci-
sions 1—4 are choices faced by the researcher for estimating
wildfire smoke health effects. Multiplying the health effect
by its associated unit value (decision 5) produces an esti-
mate of smoke exposure costs—see equation (1). Some
considerations that researchers should keep in mind at each

5. Unit Values
e Cost of illness (COI)
e Willingness to pay (WTP)
e Considerations: availability of

WTP values, limitations of
COlI

e Percentile thresholds

e NOAA/NESDIS Hazard Mapping >
System products

e Satellite plume imagery

Health Effect of
Wildfire Smoke

Wildfire Smoke

Health Costs
(AHealth)x(Unit Value)

e Considerations: data availability,
binary vs. continuous indicators

A4

3. Smoke Event Counterfactual
e Historical moving average
e Regression techniques
e Spatial interpolations
e Considerations: credibility, data
availability, other mitigators of air
quality

A4

4. Selection of CR Functions

e Case and population specific
Minimize bias
Match with available cost metrics
Significance of endpoints
Considerations: wildfire vs. urban air,
pooling, sensitivity analyses

Fig. 1 Benefits Transfer Protocol for Estimating Wildfire Smoke
Health Costs. Notes: this figure presents a protocol based on the five
key decision points that researchers must confront when conducting a
wildfire smoke cost benefits transfer. Analyses using monitored data
are likely to confront all five choices, whereas analyses using wildfire

modeled data will likely only confront decisions 1, 4, and 5. Choices
1-4 provide estimates of the health impacts of exposure to smoke.
Choice 5 values these changes. See the text for further discussion.
CR concentration response
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decision point are also presented. As a reminder, decisions 2
and 3 are only applicable when monitored data or modeled
data that includes non-wildfire pollution sources are used.

In the next section, we describe a tool that can be used to
implement the protocol using either monitored or modeled
data.

Using BenMAP-CE to Estimate Wildfire Smoke
Health Costs

While there are several approaches that could be used to
implement the smoke cost protocol we particularly like the
US EPA Benefits Mapping and Analysis Program-
Community Edition (BenMAP-CE) for several reasons.
First, BenMAP-CE is an open-source and publicly-available
air quality benefits transfer software. Second, it has been
specifically developed to estimate the health impacts and
economic value of changes in air quality at fine spatial
resolutions using rigorous estimation techniques. Third, it
can be straightforwardly modified to implement the smoke
cost protocol. Fourth, it can use monitored and/or modeled
data and has several built-in spatial interpolation features.
Finally, BenMAP-CE has been used to estimate and value
air quality-related health effects in several peer-reviewed
articles (e.g., Fann et al. 2011; Nowak et al. 2013; Kheirbek
et al. 2013), including at least three prior applications to
smoke (Douglass 2008; Rappold et al. 2014; Jones et al.
2016).

In BenMAP-CE, users can investigate health effects
associated with ozone or PM2.5. The software works by
first determining the change in ambient air pollution using
user-provided air quality data or model predictions. Next,
using results from existing CR functions (which are mod-
ifiable), population estimates from the US Census Bureau
(pre-loaded), and data on baseline rates of health outcomes
(pre-loaded) the program estimates the health effect asso-
ciated with the estimated change in air pollution over an
exposed population. These calculations are performed
according to a grid definition that breaks a geographic
region into areas of interest (e.g., 12 x 12km grid cells).
Health results can be pooled across CR functions for the
same outcome. Finally, WTP and COI unit values (also
modifiable) are applied to the health effects and Monte
Carlo simulations are used to quantify uncertainty around
mean incidence and economic values. Results can be spa-
tially aggregated or pooled across value estimates.'’

One appealing feature of BenMAP-CE is that the soft-
ware’s main functions are housed inside a GUI (graphical

' Additional background information is available in the BenMAP-CE
user manual and appendices (RTI International 2015) and in Davidson
et al. (2007).
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user interface), requiring no programming skills, increasing
the accessibility of the program. Moreover, the program’s
documentation is extremely extensive and choices made by
the US EPA developers are clearly explained.

Estimates of Wildfire Smoke Health Costs in the
Western US

We use BenMAP-CE to implement the previously descri-
bed benefits transfer protocol for estimating smoke costs in
the Western US over 2005-2015. Our study period includes
the top five worst US wildfire seasons by acres burned since
1960 and provides a long-time series to assess annual
variabilities in smoke costs. We briefly go through each
protocol decision and then provide the main results.

First, air pollution exposures were measured using AQS
and IMPROVE monitored data. We employed monitored
data to be consistent with prior smoke cost analyses in the
economics literature (e.g., Martin et al. 2007; Moeltner et al.
2013; Jones et al. 2016) and because we found it to be more
accessible than developing an air quality model. One
weakness of using monitored data is that our health impacts
may be biased as a result, potentially on the order of
+10-30% according to Bravo et al. (2012). Daily data on
FRM/FEM PM2.5 (AQS) and measured PM2.5
(IMPROVE) were collected for 511 and 105 Western
monitoring sites, respectively. Monitoring sites were drop-
ped from the analysis if they had fewer than 12 readings in a
year. This left 146 FRM/FEM sites and 101 IMPROVE
sites—see Fig. 2 for a map of monitoring site locations.
Spatial interpolation using Voronoi Neighbor Averaging
was selected in BenMAP-CE."?

Next, smoke event periods were identified using daily
NOAA/NESDIS HMS smoke products. We iteratively
overlaid the smoke product shapefiles with shapefiles of
FRM/FEM and IMPROVE monitoring sites and identified
points of intersection. This produced a listing of monitoring
sites and dates on which a wildfire smoke plume was pre-
sent above the site.

The counterfactual was constructed as a 95th percentile
moving-average of daily median PM2.5 levels for the 5
years prior to the study year, following Jones et al. (2016).
As previously mentioned, this approach is likely to result in
a conservative lower bound on actual health impacts and

12 Voronoi Neighbor Averaging uses an algorithm that interpolates air
quality at every population grid cell by first identifying the set of
monitors that best surround the center of the grid cell. It then calculates
an inverse-distance weighted average of data from the neighboring
sites. This interpolation method is commonly used in the BenMAP
application literature (e.g., Davidson et al. 2007; Ding et al. 2016) and
has been recommended over other methods (Chen et al. 2004).
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Fig. 2 Western US FRM/FEM
AQS and IMPROVE PM2.5
Monitoring Sites. Notes: this
figure presents the locations of
146 FRM/FEM AQS and 101
IMPROVE PM2.5 monitoring
sites included in the analysis of
Western US smoke costs. These
sites reported at least 12 PM2.5

A

Oregon

concentration readings per year
over 2005-2015. AQS air quality
system, IMPROVE interagency
monitoring of protected visual
environments, PM2.5 particular
matter less than or equal to 2.5
microns in diameter

A IMPROVE Sites

+  FRM/FEMAQS Sites

costs since we are potentially missing many subtle smoke
impacts.

PM2.5 CR functions recently estimated for entire Wes-
tern wildfire seasons and one estimated for wildfires glob-
ally were selected: (i) emergency room (ER) asthma visits;
(i1) ER all respiratory visits; (iii) hospital admissions (HA)
for pneumonia; (iv) HA for all respiratory illnesses; (v) HA
for asthma, and; (vi) all-cause mortality. Functions (i) and
(ii) are from Reid et al. (2016a), (iii)-(v) are from Delfino
et al. (2009), and (vi) is from Johnston et al. (2012). These
functions are for short-term health impacts only, though CR
functions for long-term impacts is an active area of research
(Reid et al. 2016b). Following Appendix C of the BenMAP-
CE user manual (RTI International 2015), the relative risks
reported in each study were converted into CR coefficients
that were then input into the software as “health impact
functions”. Impact functions were combined with built-in
data on baseline incidence rates and US Census Bureau
population estimates as described in Appendix D of the
BenMAP-CE user manual. In 2015, Western US states had
a population of 73,874,644.

A wildfire-specific WTP unit value of $130.79 from
Jones et al. (2016) was selected to value all morbidity health
impacts. On one hand, this value is appropriate because it
was estimated in a Western US context and because it
captures costs associated with any smoke-induced health
effect. On the other hand, using WTP values associated with

¢ %
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the particular morbidity outcomes considered here would be
more appropriate, but unfortunately, no such estimates
presently exist for wildfire smoke. Finally, to value mor-
tality health impacts a value of a statistical life (VSL)
estimate of $6.3 million from the US EPA was selected,
which is the same value routinely used to evaluate impacts
of the Clean Air Act (RTI International 2015)."* COI values
were not used since they are not the theoretically appro-
priate measure of wildfire smoke health costs, as previously
discussed.

We used version 1.1 of the program and inflation
adjusted all costs to 2016 dollars. FRM/FEM and
IMPROVE data were merged together and separate runs of
the program were conducted for each year, resulting in 11
total runs.

Smoke Health cost Results

For the first set of results, smoke health effects and costs
were pooled for all Western states (Table 1). ER visits are
the dominant health effect of smoke that we observe,

13 VSL is the dollar amount of money that a population of interest
would be willing to pay for a marginal change in the likelihood of
death. Equivalently, it is a metric of society’s willingness to pay for a
risk reduction benefit. By multiplying the VSL by estimated smoke-
induced mortality, we can capture the dollar costs associated with
wildfire smoke exposure.
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Table 1 Total wildfire smoke

health effects and costs for Health outcome

Total health effect (outcomes)

Smoke health costs (millions of $)

various health outcomes for the

ER all respiratory illnesses
Western US, 20052015

ER asthma

ER all other respiratory
HA all respiratory illnesses
HA asthma

HA pneumonia

HA all other respiratory
Mortality, all-cause
TOTAL*®

1436.4 (754.2, 2108.3)
812.4 (423.6, 1191.0)
624.0 (330.6, 917.3)
278.7 (105.4, 449.8)
94.7 (42.1, 146.4)
1104 (7.1, 211.8)
73.6(56.2, 91.6)

205.5 (37.8, 448.4)
1920.6 (897.4, 3006.5)

$0.19 ($0.10, $0.28)
$0.11 ($0.06, $0.16)
$0.08 ($0.04, $0.12)
$0.04 ($0.01, $0.06)
$0.01 ($0.01, $0.02)
$0.01 ($0.00, $0.03)
$0.01 ($0.01, $0.01)
$1812.51 ($333.40, $3954.89)
$1812.74 ($333.51, $3955.23)

Note: This table reports total health effects and total smoke health costs estimated in BenMAP-CE (v1.1) due
to wildfire smoke in the Western US over 2005-2015. Total health effects are in units of number of
outcomes and smoke health costs are in units of millions of US dollars ($). The mean value of the estimated
distribution is reported. The bottom 2.5th and top 97.5th percentiles of the estimated distribution are reported
in parentheses to provide information on the variance of total health effects and total health costs in the
Western US over 2005-2015. Health outcomes ER Asthma and ER All Other Respiratory overlap with ER
All Respiratory Illnesses. Health outcomes HA Asthma, HA Pneumonia, and HA All Other Respiratory
overlap with HA All Respiratory Illnesses. Mortality smoke costs based on US EPA VSL of $6.3 million
(2000%). Non-mortality health costs based on wildfire-specific WTP value of $130.79 (2014$) from Jones
et al. (2016). Reported total health costs are inflation adjusted to 2016 dollars (2016%$)

ER emergency room, HA hospital admissions, VSL value of a statistical life, WT'P willingness to pay

# for non-overlapping health outcomes only

followed by hospital admissions, and then mortality.
However, given the high cost associated with premature
loss of life, mortality health costs dominate. Wildfire smoke
over the study period produced 206 excess deaths (with the
2.5th percentile of the estimated distribution = 38; 97.5th
percentile = 448) at a cost of $1.8 billion or $165 million/
year, on average. The percentiles provide a measure of the
variance or ranges in the health effect estimates produced by
BenMAP-CE. Total morbidity health effects are largest for
ER all respiratory illnesses at 1436 excess visits (2.5th =
754; 97.5th =2108), costing $19 million or $1.7 million/
year, on average. In total, we estimate that over the
2005-2015 period wildfire smoke exposure led to 1921
excess adverse health outcomes (2.5th =897; 97.5th =
3007), resulting in $1.8 billion in health costs in the Wes-
tern US, averaging $165 million/year.

For the next set of results, we deconstructed the total
health effects into annualized totals per 100,000 people for
non-overlapping health outcomes—-ER visits, HA respira-
tory, and all-cause mortality (Fig. 3). Standardizing the
results into units of per 100,000 allows comparison across
geographic units with varying populations. Overlaid on the
health results is a time series graph of acres burned in the
Western US that we obtained from the National Interagency
Fire Center (NIFC). There is considerable heterogeneity in
health impacts from year-to-year, though health effects are
growing over time, particularly since 2010. The 2015
wildfire season saw the greatest number of smoke health
effects, with over 20 excess ER respiratory visits per
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100,000 across the Western US. However, by comparison
to other years, 2015 was not the worst wildfire season in
terms of acres burned in the West over the study period. In
fact, from Fig. 3, there is at best a tenuous relationship
between acres burned and smoke health effects. This illus-
trates a very important point, which is that health impacts of
smoke are not necessarily tied to regional wildfire severity.
We suggest extreme caution in linking smoke health costs
to acres burned.

Lastly, we further broke down the smoke cost results into
annualized per capita state-level averages for non-
overlapping outcomes (Fig. 4, panel a). While states such
as California, Arizona, and Washington have some of the
highest populations in the West, they experience some of
the lowest smoke health costs on a per capita basis. Instead,
sparsely populated Montana, Idaho, and Wyoming bear a
disproportional share of wildfire smoke costs. This is not
because we are capturing more averting behaviors in high-
population states (the same CR functions were applied to all
states), but because the combined duration and intensity of
smoke exposure was strongest in the upper Rocky Moun-
tain states during the study period. Montana, in particular,
experienced more high intense smoke event periods than
any other state.

Figure 4 also illustrates that most Western states have
seen dramatic increases in smoke costs, particularly over the
past couple of years. For example, between 2005 and 2015,
smoke costs have increased by 8586% in Idaho, 1498% in
Montana, and 1256% in Oregon. During the last 5 years in
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Fig. 3 Annual Wildfire Smoke
Health Effects (per 100,000) and
Acres Burned by Non-
Overlapping Outcomes for the
Western US, 2005-2015. Note:
This figure reports annual
wildfire smoke health effects
(per 100,000 population) and
acres burned for the Western US
over 2005-2015 for non-
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particular (2010-2015), we see smoke cost increases of
6749% in Nevada, 5443% in Idaho, and 5193% in Utah. In
fact, between 2010 and 2015, the entire Western US
experienced some growth in wildfire smoke costs, on
average by 2292%-see Fig. 4 (panel b).

In light of these findings, damage assessments ignoring
the dramatic growth in economic costs of smoke exposure
are omitting an important externality of wildland fire faced
by Western communities and businesses. In particular, our
results demonstrate the relative spatial and temporal chan-
ges in smoke costs over time and the poor association of
smoke costs and the size of the burn area. While these
results are based on a particular set of decisions (each with
its own set of weaknesses, strengths, and biases), we believe
that this exercise highlights the potential of the benefits
transfer protocol and BenMAP-CE for providing a more
standardized smoke cost framework. We encourage others
to use this protocol to conduct their own analyses so that
additional comparisons of relative changes in smoke
impacts across time and space can be performed in other
regions, time horizons, or across alternative health
outcomes.

Conclusions and Wildfire Policy Considerations

In this study, we provide the first-ever time series estimates
of wildfire smoke health costs for the Western US using a
benefits transfer protocol. In the aggregate, we estimate that
over the 2005-2015 period wildfire smoke exposure led to
$1.8 billion in health costs in the Western US, averaging

$165 million/year. For comparison purposes, national US
wildfire suppression costs (regional costs are unavailable) in
2010 were $809 million, indicating that smoke health costs
are sizeable compared to this commonly used metric of the
“costs” of wildfire. Smoke costs have increased substantially
since 2005, growing on average by 217%/year. Respiratory
ER visits are the largest health effect observed, though costs
are highest for all-cause mortality given its greater unit
value. We observe substantial annual variability in smoke
costs both within and across Western states. The upper
Rocky Mountain states of Montana, Idaho, and Wyoming
have borne the brunt of per capita smoke exposure costs
over 2005-2015. However, given climate change, con-
tinued fuels build-up, an aging population, and projections
for continued increases in pre-existing respiratory condi-
tions such as asthma, we anticipate a variable, but continued
upward trend in costs across the Western US as wildfire
events increase in severity and magnitude and as the
underlying population grows more vulnerable.

Researchers and analysts tasked with estimating smoke
costs in the US face many decision alternatives, each with a
different set of strengths and weaknesses. There is no sin-
gular “correct” or “recommended” way to conduct a smoke
cost benefits transfer, however, our protocol addresses some
of the commonly used approaches from the various epide-
miology, air quality, and economics literatures. In our
application to the Western US, a particular set of choices
were made, but this should not be taken as a blanket
endorsement of one choice set over another. Rather,
appropriate expertize, data availability, and study context
should ultimately determine which path is chosen.

@ Springer
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Fig. 4 Annual State-Level and A
Total per Capita Wildfire Smoke

Health Costs for Non- e
Overlapping Health Outcomes,
2005-2015. Panel a: Annual per
Capita Smoke Costs by State. Q-
Panel b: Annual Total Western I
US per Capita Smoke Costs. L —

Note: This figure reports annual VErEne
state-level (panel a) and total
(panel b) per capita wildfire
smoke health costs ($) over
2005-2015 associated with ER
visits for all respiratory illnesses,
HA for all respiratory illnesses,
and all-cause mortality. Health
costs were estimated in
BenMAP-CE (v1.1) using a
wildfire-specific WTP to avoid a
smoke health impact for
morbidity outcomes, and the US
EPA VSL for mortality

outcomes. Reported health costs
are inflation adjusted to 2016 o —-——J—.
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However, building a common base of understanding is
important, in our view, given increased interest in smoke
cost assessments in light of recent calls by the IAWF and
others. We see our protocol as a tool that can aid applied
wildfire researchers, while also serving as a discussion point
for future work. Additionally, this work represents only a
first attempt to understand the magnitude of health costs in
the Western US, but there is a definite need for more ori-
ginal site-specific studies to help improve these (and future)
estimates.

There are several important policy implications of this
work. First, there remains a need to recognize the full
magnitude of wildfire costs that can occur outside of the
flame zone. This should include the watershed effects of
post-fire flooding and debris flows that may threaten
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municipal drinking water supplies and water security (e.g.,
Adhikari et al. 2016). And, as emphasized here, this should
include understanding how wildfire smoke moves through
airsheds to impact health. Understanding the significant
magnitude of damages outside the flame zone is important
in the design and crafting of new institutional arrangements
to fund wildfire risk mitigation. Recognizing the full set of
wildfire-related costs expands the populations of bene-
ficiaries from wildfire risk mitigation actions, and thus may
expand the range of public support and financing mechan-
isms available. Second, the impossibility of a world without
wildfire smoke makes it unreasonable to ignore smoke
exposure costs as one-time or one-off events. Seasonal,
variable exposure to smoke over a lifetime may have long-
term economic consequences on society. Continued
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measurement of these impacts can motivate smoke man-
agement plans (to modify the intensity or duration of
smoke) and public health campaigns (to modify the public’s
exposure to smoke). Finally, prescribed burning presents a
dilemma for the rational policymaker. While it can reduce
fuel loads and lessen the intensity of future wildfires, it also
creates immediate smoke effects and associated costs.
Considering this tradeoff is important given the significant
consequences of smoke exposure.

Clear, empirical articulation and estimates of the eco-
nomic costs of smoke provides an important measure of the
public health externality created by wildfire. Ignoring
smoke health costs limits the usefulness of wildfire damage
assessments and benefit-cost analyses of contrasting fire
management approaches. This may lead to misguided
wildfire policy and underfunded mitigation budgets, creat-
ing a wicked cycle of reinforcing economic harm to com-
munities and businesses. At the same time, there is an
urgent need for more research on interventions to mitigate
the health impacts of smoke exposure. Understanding the
full costs of smoke impacts makes it easier to justify the
costs of such interventional research. This may be particu-
larly important for vulnerable populations (e.g., seniors,
children, those with pre-existing respiratory conditions)
who may be disproportionately affected by wildfire smoke
and hence would benefit the most from continued research.
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