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Classifying drivers of global
forest loss
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Global maps of forest loss depict the scale and magnitude of forest disturbance, yet
companies, governments, and nongovernmental organizations need to distinguish
permanent conversion (i.e., deforestation) from temporary loss from forestry or wildfire.
Using satellite imagery, we developed a forest loss classification model to determine a
spatial attribution of forest disturbance to the dominant drivers of land cover and land use
change over the period 2001 to 2015. Our results indicate that 27% of global forest loss
can be attributed to deforestation through permanent land use change for commodity
production. The remaining areas maintained the same land use over 15 years; in those
areas, loss was attributed to forestry (26%), shifting agriculture (24%), and wildfire
(23%). Despite corporate commitments, the rate of commodity-driven deforestation has
not declined. To end deforestation, companies must eliminate 5 million hectares of
conversion from supply chains each year.

L
eaders of nearly 450 companies recently
committed to zero deforestation in their
supply chains by 2020 to meet consumer
demand for deforestation-free products and
to improve corporate social responsibility

(1). Achieving these commitments requires trans-
parency of complex supply chains for agricultural
and forest products whose source locations are
obscured by multiple aggregators and distribu-
tors (2). Large, multinational companies cannot
determine the source of their supply beyond the
location of their direct supplier, usually a distribu-
tor; this reduces the effectiveness of deforestation
attribution and undermines a company’s ability
to take concrete action.
Companies, nongovernmental organizations,

and governments are looking increasingly to
data, maps, and tools to provide visibility on
deforestation risk. Published maps of tree cover
loss and gain derived from Landsat satellite ob-
servations (3) were a major step forward in con-
sistent and transparent forest area change
monitoring at a global scale. The launch of the
online Global Forest Watch platform (4) extended
the use and access of these data beyond the
scientific community to include decision makers
from governments, companies, and civil society
organizations working to design and implement
more effective forest policies.
However, the Hansen et al. dataset (3), up-

dated annually on Global Forest Watch, does
not distinguish permanent forest conversion
associated with a change in land use [i.e., de-
forestation (5)] from other forms of forest dis-

turbance that may be associated with subsequent
regrowth (i.e., forestry, shifting cultivation, wild-
fire). This not only limits its utility for corporate
decision-makers but also generates confusion
when global forest cover change statistics derived
from satellite imagery are compared directly
against global land use change statistics as re-
ported by governments in their national inven-
tories (6). Deforestation involves the abrupt
transition from land with trees to land without
trees with no subsequent regrowth; loss of forest
cover can also be associated with events such as

wildfires, or with direct human-induced land
use and land management practices such as
clearcutting or selective logging, plantation for-
estry, smallholder agroforestry systems, or tran-
sitional subsistence farming due to shifting
cultivation practices. As improvements in the
spatial and temporal resolution of satellite im-
agery enable detection of smaller and more
subtle changes to Earth’s land surface relative
to results from earlier monitoring efforts (7, 8),
more nuance is required in the attribution of
global forest change dynamics.
Using high-resolution Google Earth imagery

to visually classify nearly 5000 training sample
cells, we developed a decision-tree model that
predicts the most likely cause of forest distur-
bance at any 10 km × 10 km grid cell around the
world since the year 2000 (9). Categories were
assigned according to dominant disturbance
type (Fig. 1), with each representing a different
forest and land use dynamic: (i) commodity-
driven deforestation, defined by the long-term,
permanent conversion of forest and shrubland
to a nonforest land use such as agriculture (in-
cluding oil palm), mining, or energy infrastruc-
ture; (ii) shifting agriculture, defined as small- to
medium-scale forest and shrubland conver-
sion for agriculture that is later abandoned and
followed by subsequent forest regrowth; (iii)
forestry, defined as large-scale forestry operations
occurring within managed forests and tree
plantations with evidence of forest regrowth in
subsequent years; (iv) wildfire, defined as large-
scale forest loss resulting from the burning of
forest vegetation with no visible human conver-
sion or agricultural activity afterward; and (v)
urbanization, defined as forest and shrubland
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Fig. 1. Representative examples of Google Earth imagery used to train the forest loss classifi-
cation model. See (9) for more examples of training imagery.
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conversion for the expansion and intensification
of existing urban centers. Although urbaniza-
tion is considered a form of deforestation, we
included it as a separate class both to highlight
the loss of forest in lands typically considered
to be under urban use and because the set of
actors responsible for clearing urban areas is
distinct from those responsible for clearing forests
for commodity production. We considered only
direct drivers of forest disturbance, and we did
not attempt to link these to underlying drivers
such as demographic pressures or economic
markets (10). A separate validation sample of
1565 randomly selected 10 × 10 grid cells was
used to estimate map accuracy and proportions
of the five disturbance types from the total forest
disturbance area, both globally and by region.
Globally, 27 ± 5% of all forest disturbance

between 2001 and 2015 was associated with
commodity-driven deforestation (Table 1 and
Fig. 2). The rate of deforestation remained steady
across the 15-year period analyzed at approxi-
mately 5 Mha year–1 (Fig. 3A) with a geographic
shift away from Brazil toward tropical forests
elsewhere in Latin America and Southeast Asia
(Fig. 3B). Beyond deforestation, forestry rep-
resented 26 ± 4% of total forest disturbance
(Table 1), followed by shifting agriculture (24 ±
3%) and wildfire (23 ± 4%). An additional 0.6 ±
0.3% of forest loss was attributed to the intensifi-
cation and expansion of urban centers. The driver
attribution model’s overall accuracy was 89%,
with individual class accuracies ranging from55%
(urbanization) to 94% (deforestation) (table S4).
Drivers of forest loss varied regionally (Fig. 2).

In temperate and boreal forests, forestry and
wildfire were the dominant disturbance factors;
in tropical regions, shifting agriculture and
commodity-driven deforestation were preeminent.
In the Southeast Asian countries of Indonesia
and Malaysia, we identified widespread de-
forestation for agricultural expansion through

visual evidence of oil palm plantations. Across
Central and South America, forests were con-
verted to row crop agriculture and cattle grazing
lands. Shifting agriculture was the dominant
driver in sub-Saharan Africa.
The forestry class in Fig. 2 explicitly maps

sourcing regions for the global forest products
industry. These are concentrated in North
America, Europe, Russia, China, southern Brazil,
Chile, South Africa, and Australia. Most for-
estry activities in South America, the United
States, Europe, China, South Africa, and Australia
showed signs of tree plantations, as evidenced
by distinct rows of planted trees, whereas for-
estry activity in Canada and Russia contained
predominantly large clearcuts without visibly
distinct plantation rows (figs. S3 to S5). In
Southeast Asia, most forestry activity took the
form of low-intensity selective logging, especially
on the island of Borneo. All forms of forestry
were characterized by a dominant forest re-
growth signal in the years following loss.
Wildfire was a dominant cause of forest dis-

turbance in North America and Russia (Table 1
and Fig. 2). Wildfires in these regions were char-
acterized by large areas of forest burned in a
single year, then regenerating gradually over
time (fig. S5). This driver was also differentiated
from the others by the large disturbance size
and low population density typically associated
with wildfire events.
Other disturbances leading to forest loss (such

as insect outbreaks, wind and ice storms, flooding,
or rivers changing course) were not included
in our model. However, only 1% of all model
validation sample cells were attributed to a
cause other than the five included in our anal-
ysis. We conclude that these other forms of
disturbance are highly localized and temporally
restricted phenomena.
Forest loss due to urbanization represented

a small fraction (0.6 ± 0.3%) of total loss. More

than two-thirds of this loss occurred in the
eastern United States, and the remainder was
associated with expanding cities in China, Brazil,
Indonesia, and Australia, as well as considerable
low-density expansion across sub-Saharan Africa.
Regional class accuracies (tables S5 and S6)

reflect the extent to which our model could dis-
tinguish differences in regional land use and
land management patterns. Confusion among
classes occurred when spatial land use patterns
in a region were not sufficiently distinct from
one another or when there were too few areas
of a given class within a region to be adequately
represented in a training sample. For example,
forestry was associated with a distinct set of
spatial patterns in North America, and thus the
producer’s accuracy (i.e., absence of errors of
omission) was high (96%) for this class and re-
gion, whereas forestry in Southeast Asia showed
less distinct patterns of tree harvesting and re-
growth, resulting in a lower producer’s accuracy
(78%) for this class and region (table S6). Forest
plantations in Southeast Asia contained patterns
of loss and regrowth similar to those seen with
the expansion of new agricultural oil palm plan-
tations categorized within the commodity-driven
deforestation class. This was particularly true
for small-scale palm plantations that are planted
and grown at roughly the same spatial and tem-
poral scale as short-rotation wood fiber plan-
tations (fig. S3). In sub-Saharan Africa, shifting
agriculture is a widespread driver of forest dis-
turbance (Fig. 2). Spatial patterns that distin-
guish this class include small size of clearings;
the presence, timing, size, pattern, and location
of human-induced fire; and the eventual re-
generation of forest vegetation to a degraded
secondary state. However, spatial patterns of
commodity-driven deforestation in this region
appear almost identical to shifting agriculture,
but without the distinctive regrowth signal (fig.
S6). The similarity in spatial patterns between

Curtis et al., Science 361, 1108–1111 (2018) 14 September 2018 2 of 4

Table 1. Disaggregation of global and regional tree cover loss by driver for the period 2001 to 2015. Map-based estimates are based on Global Forest

Watch data (3) and a driver of tree cover loss from the current study. Sample-based estimates are based on the validation sample of 1565 randomly selected

10 × 10 grid cells from the current study. Uncertainty of sample-based estimates represents a 95% confidence interval.

Map-based estimates Sample-based estimates

Hansen et al. (3) Current study: Driver of tree cover loss Current study: Driver of tree cover loss

Region Tree cover

loss (Mha,

2001–2015)

Tree cover loss

(% of global total,

2001–2015)

Deforestation Shifting

agriculture

Forestry Wildfire Urbanization Deforestation Shifting

agriculture

Forestry Wildfire Urbanization

North America 70 21% 1% <1% 56% 40% 2% 2 ± 1% 1 ± 1% 48 ± 11% 48 ± 11% 1 ± 1%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Latin America 78 25% 56% 31% 13% 1% <1% 64 ± 8% 24 ± 7% 9 ± 3% <1 ± <1% <1 ± <1%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Europe 15 5% None <1% 99% 1% None None <1 ± <1% 95 ± 5% 5 ± 5% None
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Africa 39 13% 4% 92% 4% <1% <1% 2 ± 1% 93 ± 3% 4 ± 2% <1 ± <1% 1 ± 2%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Russia/China/

South Asia

64 20% <1% <1% 41% 58% <1% 2 ± 2% 1 ± 1% 38 ± 12% 59 ± 12% <1 ± <1%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Southeast Asia 39 13% 78% 9% 13% <1% <1% 61 ± 13% 20 ± 10% 14 ± 6% 2 ± 6% <1 ± <1%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Australia/

Oceania

10 3% 7% 10% 29% 53% 1% 8 ± 6% 10 ± 4% 19 ± 9% 62 ± 14% 1 ± <1%

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Global 314 100% 25% 21% 31% 22% <1% 27 ± 5% 24 ± 3% 26 ± 4% 23 ± 4% 1 ± <1%
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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these two classes resulted in low model accu-
racy for the commodity-driven deforestation
class in Africa; much of the commodity-driven
deforestation was misclassified as shifting agri-
culture (table S6). In northern forests, particu-
larly Russia, there are locations where wildfires
spread through previously logged areas or where
logging occurred after a fire event (fig. S5). In
these cases, attributing a single driver to such
areas proved difficult because patterns indica-
tive of multiple drivers were present in the same
cell, albeit in different years within the time
period analyzed (2001–2015).
The global scope of our analysis was designed

to assist corporations in identifying wood fiber
source regions and regions of deforestation due
to commodity agriculture. Although we accurately
mapped dominant classes of forest disturbance

globally, opportunities remain to disaggregate
landscapes further at regional and local scales.
For example, we did not map changes in forest
condition through time in landscapes domi-
nated by shifting agriculture; further differentia-
tion of primary from secondary forest clearing
within this land-use class could improve our
understanding of the differences between defor-
estation and degradation impacts (11). Differ-
entiating key drivers such as row crops from
pasturelands in South America, or tree planta-
tions from disturbed natural forests in Southeast
Asia (12), would allow for more specific supply
chain analyses to identify corporate risk and re-
sponsibility from commodity-driven deforestation.
Our methodology serves as a hybrid between

the accuracy and statistically unbiased estimates
achieved through a sample-based approach, as

favored by academic researchers (13, 14), and
the spatial comprehensiveness of a wall-to-wall
mapping approach (3) preferred by a wider var-
iety of practitioners and forest stakeholders.
The results identify where deforestation is oc-
curring; perhaps as important, they show where
forest loss is not deforestation. For most regions
and drivers, the map output can be used di-
rectly to quantify the proportion of forest loss
caused by each driver, because map-based esti-
mates fall within the confidence intervals of
sample-based estimates (table S7). Wildfire was
associated with nearly one-fourth of the world’s
forest loss; this type of loss is not likely to be
reduced easily through management interven-
tion. In contrast, deforestation across Central
and South America, Africa, and Southeast Asia
should be the geographic focus of corporate
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Commodity Driven Deforestation Shifting Agriculture Forestry Wildfire Urbanization Zero or Minor Loss

Fig. 2. Primary drivers of forest cover loss for the period 2001 to 2015. Darker color intensity indicates greater total quantity of forest cover loss.
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Fig. 3. Annual deforestation rates. (A) Annual worldwide tree cover loss from commodity-driven deforestation between 2001 and 2015. (B) Comparison of
annual commodity-driven deforestation in Brazil and the rest of the world between 2001 and 2015.
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efforts to eliminate deforestation from supply
chains, as well as international policies designed
to reduce greenhouse gas emissions from de-
forestation and forest degradation (15).
Our results indicate that policies designed to

achieve zero-deforestation commitments are not
being adopted or implemented at the pace
needed to meet 2020 goals (Fig. 3). In regions
dominated by forestry, felled trees enter wood
and fiber supply chains including paper, packag-
ing, and forest products. These areas should not
be included in themonitoring of zero-deforestation
commitments because they are not undergoing
deforestation, as defined by a change in land
use that prevents subsequent forest regrowth.
Instead, companies and governments can use
Fig. 2 as a wood fiber sourcing map to target
priority areas for certification efforts and supply
chain traceability. Identifying regions dominated
by shifting agriculture may be important for
identifying the extent to which this land use
contributes to forest degradation, and for food
supply chains where sourcing from smallholder
farmers is often a priority, but where slash-and-
burn practices may be leading to undesirable
impacts and corporate risk. Finally, our analysis
contributes to a more informed discussion about
forest conservation, restoration, and manage-
ment options globally by providing an enhanced
experience for the more than 2 million users of
the Global Forest Watch platform to understand

what is driving forest change around the world,
thus preventing a common misperception that
any tree cover loss shown on the map represents
deforestation (16).
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