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do show a response the shapes of these responses can be quite 
different (Swift and Hannon 2010, Toms and Villard 2015). 
How to detect such thresholds or sensitive zones has been 
a challenging problem but is critically important to ecosys-
tem management (Svancara et al. 2005, Ficetola and Denoël 
2009, Suding and Hobbs 2009, Rondinini and Chiozza 
2010, Samhouri et  al. 2010, Swift and Hannon 2010, 
Matthews et al. 2014).

Habitat destruction, resulting from human activities and 
environmental changes, has been recognized as one of the 
chief culprits of biodiversity loss and change over time (Foley 
et al. 2005, Jager et al. 2006). It is therefore not surprising  
that much of the research on ecological thresholds has 
focused on investigating threshold responses of biodi-
versity to habitat loss and fragmentation (Andrén 1994, 
Bascompte and Solé 1996, Fahrig 2003, Swift and Hannon 
2010, Richmond et al. 2015). For example, Richmond et al. 
(2015) report evidence of abrupt declines in forest bird 
species richness in Ontario, Canada with 4–45% of conif-
erous, deciduous or mixed wood forest cover remaining. 
Following an initial loss of species after habitat destruction, 
the extirpation process of local populations is accelerated by 
the compounding effect of habitat loss and fragmentation 
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Picking a leaf off a plant is unlikely to have any effect on the 
plant. How about two leaves? Or continuously picking off 
leaves till all the leaves are gone? Obviously, no plant can 
afford to lose all of its leaves, but is there a tipping point at 
which a plant can no longer afford to lose leaves? Similarly, 
is there a threshold by which a species can no longer afford 
to lose its habitat? There is growing theoretical and empirical 
evidence demonstrating ecological thresholds – an abrupt 
change in ecological phenomena (Muradian 2001, Groffman 
et al. 2006) and the mechanisms underlying such changes 
(Lande 1987, Bascompte and Solé 1996, Pan et  al. 2000, 
Huggett 2005, Radford et al. 2005, Andersen et al. 2009, 
Burdon et al. 2013). For example, Pan et al. (2000) report 
abrupt changes in the phosphorus-limited Everglades eco-
system in the United States where, at a certain phosphorus 
concentration level (11 ug l-1), a small change in phosphorus 
concentration leads to the collapse of the macroinvertebrate 
assemblage. Similarly, Radford et al. (2005) show evidence 
for a threshold response in species richness of woodland-
dependent birds to habitat cover in Victoria, Australia. 
Despite the growing evidence for ecological thresholds, 
species populations or assemblages may not always show a 
sudden response to change in their environment and if they 
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There is mounting evidence that many taxa respond in non-linear ways to perturbation (i.e. deviations from a natural 
trajectory brought on by an external agent), and many statistical, physical and ecological methods have been developed to 
detect the critical points or thresholds of perturbation. The majority of these methods define thresholds as the perturbation 
points causing abrupt ecological response, but in reality most species or ecosystems do not show a break point response 
but more gradual transitional change to perturbation. We develop a new method which delineates thresholds as a region in 
which the slope of the relationship between ecological response (y) and perturbation (x; e.g. habitat loss) is larger than 1: 
|dy/dx| 1, where both x- and y-axes are scaled to (0, 1) range. The lower end of threshold zones so defined is of particular 
ecological interest because it is the smallest x that may trigger impending catastrophic response to a small change in x. We 
derived two landscape models (edge length and the number of patches of species distribution) and two biodiversity models 
(endemics–area relationship and half-population curve) to test this method. We applied our zonal thresholding method to 
these four models fit to empirical data of two forest plots to detect thresholds of species distribution to habitat loss. The 
two landscape metric models predict that no species could tolerate more than 40% of habitat loss and these thresholds can 
be much lower for relatively rare species with occupancy  0.4 and for aggregated habitat loss compared to random habitat 
loss. The half-population model leads to a similar threshold level of 40% habitat loss. Overall, we suggest the maximum 
permissible habitat loss threshold to be between 0–40%, depending on the pre-disturbed occupancy (or abundance) of a 
species. This habitat loss threshold falls within the otherwise wide range of thresholds calculated from conventional meth-
ods. Our study contributes novel methods and models to quantify the effect of habitat loss on species distribution and 
diversity in landscapes with potential for conservation applications.
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(Bascompte and Solé 1996, Fahrig 2003, Swift and Hannon 
2010) which may eventually push the ecosystem to an alter-
native state (Scheffer et al. 2001). Methods to identify pos-
sible ecological thresholds are critical for designing robust 
habitat preservation and restoration plans to avoid or miti-
gate undesirable alternative ecosystem states (Fahrig 2001, 
Suding and Hobbs 2009).

A survey of the literature reveals that typical threshold 
relationships between habitat amount and environmen-
tal variables fall into three types according to their shapes  
(Fig. 1). The first type (type I), for simplicity, is character-
ized as a V-shaped (or L) threshold composed of two straight 
lines with different slopes (Fig. 1a) although in reality few 
ecological responses would show an abrupt breakpoint 
but a continuous (narrow) transitional zone (Fig. 1a). For 
instance, the probability of occurrence of spotted salamander 
and wood frog in vernal pools in eastern Massachusetts, USA 
respond to forest cover with a L-shaped threshold (Homan 
et al. 2004). The second type (type II) is an S-shaped thresh-
old, which is an asymptotic curve with a region of rapidly 
accelerating change in the slope (Fig. 1b). For example, sev-
eral herb and fern species show S-shaped responses to the 
change in habitat amount and two levels of fragmentation 
in Spain (Rueda et  al. 2015). The third type (type III) is 
a monotonically increasing or decreasing curve without an 
abrupt transition but a fast changing zone (Fig. 1c). For 
example, the species extinction curve caused by the loss of 
habitat is characterized by this type of threshold as species 
loss is initially slow but accelerates as habitat loss continues 
(He and Hubbell 2011).

There exist a large number of methods for identifying 
the different types of ecological thresholds (Table 1), includ-
ing those based on statistical inference (Chiu 2002, Toms 
and Lesperance 2003, Qian et al. 2003), methods that are 
introduced from physics (Gardner et al. 1987, Stauffer and 
Aharony 1994, Solé et  al. 2004) and ecological methods 
(Lande 1987, Bascompte and Solé 1996, Hill and Caswell 
1999, Parker and MacNally 2002, Homan et  al. 2004, 
Radford et al. 2005). All of these methods can, in principle, 
be applied to detect ecological thresholds in a diversity of 
ecological responses from population dynamics (e.g. sur-
vival, dispersal success, growth rate), to community metrics 
(e.g. species richness), to landscape metrics (e.g. number of 
patches, size of the largest patch) of species distribution.

While ecological thresholds are usually defined as ‘points 
or zones of abrupt change in relationships’ (Huggett 2005, 
Toms and Villard 2015), the identification of thresh-
olds varies from different types of response curves. For 
V-shaped thresholds, the point at which the two lines join 
is commonly defined as the threshold and several statistical 
methods have been developed to identify V-shaped thresh-
olds, for example, bent-cable regression (Chiu 2002), a 
nonparametric method based on the reduction of devi-
ance (Qian et  al. 2003), and piecewise regression (Toms 
and Lesperance 2003). Despite that point thresholds are 
easy to quantify, rarely do ecological responses have true 
point thresholds and even the V-shaped threshold is just a 
convenient approximation of a more general zonal thresh-
old as shown in Fig. 1a. Zonal thresholds are particularly 
conspicuous for S-shaped (Fig. 1b) or monotonic response 
curves (Fig. 1c).

The identification of threshold zones is important as 
it may enable resource managers to define the minimum 
and maximum critical points where abrupt ecological 
changes occur. The minimum point of a threshold zone 
has particular applied interest because it identifies the first 
threshold of concern. In contrast, the maximum point of 
a threshold zone, similar to the conventional critical point 
of V-shaped thresholds, identifies a point where envi-
ronmental perturbations have led to ecological changes 
that are not easily reversible. To identify the minimum 
(and maximum) threshold points, we first need to define 
threshold zones. The definition of threshold zones is a 
mathematically elusive question because most ecological 
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Figure 1. Three types of responses of ecological variables to the loss 
of habitat. The first type is V-shaped composed of two straight lines 
with different slopes (a). The second type is S-shaped which is 
asymptotic curve with a region of rapid change in the slope (b). The 
last type is a monotonically increasing curve without an abrupt 
transition but a fast changing zone (c). Red dashed lines indicate 
the x values at which |dy/dx|  1. The blue lines indicate the slope 
of |dy/dx|  1.
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response curves are continuous functions of underlying 
change in habitat. Facing this difficulty, there have been 
some attempts to define thresholds for such continuous 
curves. For instance, Swift and Hannon (2010) sug-
gested the midpoint of the curve around which the slope 
changes as thresholds for the S-shaped relationship, while 
Fahrig (2001) proposed a threshold at the point where the 
response variable starts to show an accelerating change. 
For many response curves (e.g. types I and III), however, 
a rigorously defined ‘accelerating point’ (i.e. inflexion 
point) does not actually exist. Thus, proven quantitative 
methods for defining critical threshold points and thresh-
old zones are not yet available (Ficetola and Denoël 2009) 
but urgently needed because continuous responses are 
widespread in ecology.

In this study, our objectives are to model the effects of 
habitat loss on the distribution of species populations and 
species diversity. In particular, we first propose a method to 
define thresholds for continuous ecological variables that 
do not have abrupt responses to perturbations. We then 
present four metrics to model the effect of habitat loss on 
species distribution. They include two landscape metrics: 
edge length and the number of patches of species distribu-
tion and two biodiversity metrics: endemics–area relation-
ship and half-population curve under scenarios of habitat 
loss for conservation concern. We finally apply our new 
thresholding method to the four models to detect habi-
tat loss thresholds for two stem-mapped empirical forest  
data sets.

A new method for detecting ecological thresholds to 
habitat loss

Here, we propose a new method for detecting ecological 
thresholds that focuses on a zone of change in ecological 
relationships. Our method defines a threshold as a region 
in which the slope of the relationship between ecological 
response (y) and perturbation (x; e.g. habitat loss) is larger 
than 1: |dy/dx| 1, where both x and y axes are scaled to (0, 1) 
range to standardize the effect of measurement units between 
x and y. The threshold so defined describes the degree of sen-
sitivity of dependent variable y in response to the change in 
x. When slope  1, the change in y is slower than the change 
in x, i.e. x does not trigger as much change in y, as illustrated 
by the region A or C of Fig. 1b. When x enters region B, y 
starts to change faster than that in x, triggering an accelerat-
ing change in y before slowing down again in region C (Fig. 
1b) or till the entire landscape is destroyed (Fig. 1c). In the 
case of a V-shape curve (Fig. 1a), our method no longer con-
siders the conventionally identified breakpoint as a threshold 
but the two points at which dy/dx  1 and –1. Of these two 
thresholds which define a threshold zone, the lower thresh-
old point is of particular ecological interest because it is the 
smallest x that may trigger impending catastrophic response 
to a small change in x. This lower threshold thus is a useful 
early warning sign and could serve as the first concern to 
action.

Habitat loss and fragmentation are two intimately 
related forms of habitat destruction. Although it is possible 

Table 1. A summary of tools for identifying ecological thresholds. The types of thresholds are in correspondence with those shown in  
Figure 1 and described in the main text (i.e. type I  V-shape, type II  S-shape and type III  monotonic curve).

Categories Methods Data requirement Model outputs
Type of 

threshold References

Statistical 
inference

Non-parametric 
model

observations of response 
variables along a 
perturbation gradient

model fit predicting an 
abrupt transition

type I, II, III Qian et al. (2003)

Piecewise regression 
model

observations of response 
variables along a 
perturbation gradient

model fit predicting an 
abrupt transition

type I Toms and Lesperance (2003)

Bent-cable regression 
model

observations of response 
variables along a 
perturbation gradient

model fit predicting a 
sharp or smooth 
transition

type I Chiu (2002)

Physical 
methods

Percolation theory occupancy (presence/
absence) map of species

landscape connectivity, 
largest patch size or 
other related response 
variables

type II With and Crist (1995)

Self-organization 
process

simulated landscape 
occupancy of species

simulated generalized 
fractal dimensions

type I, II Solé and Manrubia (1995)

Ecological 
approaches

Theoretical methods: 
Patch occupancy 
model

real or simulated occupancy 
(presence/absence) map 
of species

dynamics of meta- 
populations balanced  
by extinction and 
colonization

type III Lande (1987)

Simulation: cellular 
automaton

real or simulated occupancy 
(presence/absence) map 
of species

dynamics of populations 
based on pre-set of 
rules

type III Bascompte and Solé 
(1996), Hill and  
Caswell (1999),  
With and King (1999b)

Neutral landscape 
model

landscapes with two/
multiple randomly 
distributed habitat types 
or hierarchical random 
landscapes

neutral landscape type II With (1997), With and King 
(1997)

Empirical method observations of response 
variables along a 
perturbation gradient

usually apply statistical 
methods above to 
detect thresholds

type I, II, III Parker and MacNally (2002), 
Homan et al. (2004)
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the number of cells along the horizontal and vertical sides of 
a regular grid map, respectively, and p is the probability that 
a cell is occupied (i.e. the occupancy of the species in the 
landscape map).

It is straightforward to generalize the edge length given 
by Eq. (1) to consider habitat loss. By definition habitat 
loss refers to the loss of occupied sites (e.g. forested areas for 
trees). For those areas that are not occupied, changes would 
not make any difference to occupancy. Thus, we can simply 
replace p in Eq. (1) by (1–x)p, where x is habitat area lost, 
leading to an edge length model of habitat loss
L a J x p x p= − − −2 1 1 1( ) [ ( ) ] 	 (2)

where x is the proportion of destroyed habitats. This 
model defines the relationship between L and habitat loss 
x for a given occupancy p and cell size a. Their slope is: 
dL dx a Jp x p/ [ ( ) ]= − −2 2 1 1 . We can also easily solve for  
x that maximizes edge length: x pmax /( )= −1 1 2 . Substituting 
this xmax into Eq. (2), we obtain the maximum edge length  
of a species: L a Jmax /= 2 . We now scale L in Eq. (2) to  
(0, 1) range by L/Lmax , denoted as lL:
λL x p x p= − − −4 1 1 1( ) [ ( ) ] 	 (3)
This scaled edge length is illustrated in Fig. 2 for different  
p values. Its slope is d dx p x pLλ / [ ( ) ]= − −4 2 1 1 . To identify 
a threshold zone, we need to find x values where the slope  
is either larger than 1 or smaller than –1. These can be 
easily solved by setting | / |d dxLλ = 1 , resulting in lower 

xslope = −
+

1
4 1
8 2

p
p

and upper xslope = −
−

1
4 1
8 2

p
p

. These 

critical slopes are also indicated in Fig. 2.
It is important to note that the lL∼x relationship (Eq. 3)  

and L∼x relationship (Eq. 2) have the same shape but at 
different scales. Eq. (3) is a general form that does not require 
knowledge about cell size (a) or specific shape of study land-
scapes (because parameter J disappears after scaled to (0, 1) 
range). The model applies as long as the occupancy of species 
in landscapes is known.

In landscape ecology, perimeter-area ratio is also used 
to quantify landscape fragmentation (Wang et  al. 2014). 
This metric can be easily derived by dividing Eq. (3) by area  
(1–x)p, leading to lperimeter-area  4[1–(1–x)p]. This metric 
linearly increases with habitat loss (x), showing no threshold. 
As such, we will not further analyze this metric.

The above edge length models are derived from the 
assumption of the independence of cell occupancy. For ran-
domly distributed species, Eq. (3) describes perfectly the 
relationship between edge length (lL) and habitat loss (x) as 
shown in Fig. 2 (left column). For non-randomly distributed 
species, Eq. (3) still holds but takes a general form as:
λL c x p x p= − − −( ) [ ( ) ]1 1 1 	 (4)
where c is a general parameter replacing value 4 in Eq. (3) 
and p here is not the observed occupancy of an empirical 
species but is an occupancy equivalent to its random distri-
bution counterpart, i.e. the random p that would achieve the 
same amount of edge length as the aggregated p. Both c and 
p in Eq. (4) are obtained by fitting the model to observed 
edge length of empirical species. The estimated p from Eq. 
(4) is generally smaller than the observed p for aggregated 
species.

to separate their respective effects under some specific cir-
cumstances (Yaacobi et al. 2007), the effects of habitat loss 
and fragmentation in general are compounded and are not 
separable because losing habitat almost always accompanies 
fragmentation and vice versa (Bascompte and Solé 1996, 
Fahrig 2003, Swift and Hannon 2010, Haddad et al. 2017). 
Here we do not explicitly distinguish habitat loss and frag-
mentation but focus on the consequences of habitat loss by 
understanding that a change in habitat could lead to frag-
mentation.

Habitat loss models for the distribution of species 
populations and diversity

Ecologists have measured the response of many ecological 
variables to habitat loss (Bascompte and Solé 1996, Hill and 
Caswell 1999, With and King 1999a, 1999b, Fahrig 2001). 
These include variables describing population dynamics (e.g. 
survival, dispersal success, growth rate), landscape metrics 
of species distribution (e.g. number of patches and size of 
largest patch), and diversity indices (e.g. richness). Among 
the many landscape metrics, edge length which is the total 
amount of edge of a species’ distribution and the number of 
patches which is the total number of disconnected patches 
are two of the most widely used metrics for describing the 
effect of fragmentation on species distribution in landscapes 
(Wang et al. 2014). These two metrics are relevent for popu-
lation migration, predation and growth (Swift and Hannon 
2010), especially for those species with low migration abil-
ity. For example, Zurita et al. (2012) show that edge effects 
influence habitat suitability of most of the 46 bird species 
surveyed in an Atlantic forest of Argentina and Paraguay. 
Likewise, the number of patches is a fundamental determi-
nant of persistence probability for species living in metapo-
pulations (Hanski 1999). The relationships between habitat 
loss and edge length or number of patches could provide 
significant information and guidelines for conservation 
management. As for diversity indices, it goes without say-
ing the great importance of the effect of habitat loss on spe-
cies extinction and endangerment concern (IUCN 2013). 
Models predicting the relationship between habitat loss and 
the rate of species extinctions or endangerment are of critical 
importance.

Landscape metrics for species distribution

Edge–length model
He and Hubbell (2003) developed models for edge length 
and the number of patches of a species distribution. These 
models relate these two metrics with key ecological variables 
such as abundance, spatial dispersion of a species and spatial 
scale. The edge length model of a species’ distribution counts 
the total number of joins where occupied cells abut empty 
cells and has the form

L a Jp p= −2 1( ) 	 (1)
where a is the area of the grid cell of a landscape map where 
the species is distributed, J is the total number of neighbor-
ing joins (i.e. two neighboring cells that share a common 
edge) in the lattice and J  2JxJy – Jx – Jy, where Jx and Jy are 



135

Fragm
entation Special Issue

We can easily generalize Eq. (5) to consider the effect of 
habitat loss by scaling T by its maximum (i.e. λT T T= / max ), 
resulting in:

λT

m j

m j
m jm j

m j
x p x p=

+
− − −

+( )
[( ) ] [ ( ) ]1 1 1 	 (6)

where x is the proportion of habitat loss, p is the occupancy 
of a given species, m and j have the same interpretations 
as in Eq. (5) but are numerically different because the loss 
of habitat would change their values. They are obtained 
by fitting the observed patch number and habitat loss of 

Number of patches model
We now turn to model the number of patches for species 
distributions in landscapes. A patch could be defined as a 
group of occupied cells which are connected side by side 
(circles in Fig. 3a). The relationship between the number of 
patches and probability of occupancy (p) has the form (He 
and Hubbell 2003)
T p pm j∝ ( )1− 	 (5)
where m is the number of occupied cells for a patch, j is  
the number of occupied and empty joins for that patch.
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Figure 2. Relationships between edge length (left column, a, c, e) and number of patches (right column, b, d, f ) and habitat loss (x), i.e. Eq. 
(3) and (6), for a simulated random distribution of species with occupancy p  0.25 (a and b), 0.55 (c and d) and 0.85 (e and f ). The black 
dots show the edge length or number of patches for each random distribution of species. The red solid lines are the relationships predicted 
from Eq. (3) (a, c, e) and fitted from Eq. (6) (b, d, f ). The black dashed lines indicate the habitat loss x at which the maximum edge length 
(a, c, e) or patch number (b, d, f ) is reached. Panel (a) indicates that edge length–habitat loss curves for species with low occupancy do not 
have a peak value. Red dashed lines indicate the x values at which |dy/dx|  1 and blue lines show the slope of |dy/dx|  1.
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where N is the abundance of the species in a landscape, 
A is the total area of the landscape, and a is the searching 
(sampling) area required to encounter the nth nearest indi-
vidual. Equivalently, if a is considered as the area destroyed, 
Eq. (7) is the probability that n of N individuals of the species 
is lost with the loss of a habitat.

The EAR model can be easily derived from the above 
probability by setting n  N (i.e. the area a required to 
encounter the last individual, the Nth). This endemic 

probability is: F a
a
AN

N

( ) = 



 . Summing this probability 

across species leads to the EAR (He and Hubbell 2011): 

s a
a
Ai

S Ni

( ) = 





=
∑

1

, where S is the total number of species 

in the extent of the landscape A. The scaled EAR (i.e. the 
relative EAR) is

λEAR ( )x
S

x N

i

S
i=

=
∑1

1

	 (8)

empirical species. Eq. (6) describes well the relationships 
between patch number and habitat loss for both randomly 
distributed (Fig. 2) and empirical species (Results).

Biodiversity metrics for species distribution

Endemics–area relationship
The loss of habitat could drive local species to instantaneous 
extinction. This process is modeled by the endemics–area 
relationship (EAR) (Harte and Kinzig 1997, He and Hubbell 
2011). Here we use this relationship to quantify thresholds of 
habitat loss where extinctions are most prevalent. A general 
EAR model can be derived from the probability of finding 
the nth nearest individual of a species from a random loca-
tion in a landscape. This probability is given by a cumulative 
binomial distribution (Eberhardt 1967):

F a
N
i

a
A

a
An

i N i

i n

N

( ) =










 −















−

=
∑ 1 	 (7)

Figure 3. Illustration of habitat patches and the distribution of Syzygium kwangtungense (abundance  1364) in Heishiding plot at 20  20 
m grid size and two scenarios of habitat removal. (a) shows the original distribution of the species (occupancy  0.5008) before habitat loss. 
(b) is the remained distribution after half of the occupancy (  0.2504) being randomly removed and (d) is the distribution that is 
destroyed. (c) is the remained distribution after aggregated removal of half of the occupancy and (e) is the destroyed distribution. The circles 
in (a) illustrate two examples of patches.
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breast height  1 cm) in a 50 ha (1000  500 m) subtropical 
evergreen broadleaved forest in Heishiding Nature Reserve 
(HSD) in southern China (Yin and He 2014). The second 
plot describes the distribution of 302 tree/shrub species with 
243 541 stems in a 50 ha lowland tropical forest located in 
Barro Colorado Island (BCI), Panama (Condit et al. 2000). 
For each plot, the spatial location of each individual stem 
and the abundance of each species are known.

Model fit and habitat loss scenarios
To fit Eq. (4) and (6) to the empirical data, we generated a 
1000  500 m map with grid cell size of 20  20 m for each 
species (e.g. Fig. 3a). To assess the effect of habitat loss on 
the landscape and biodiversity metrics, we implemented two 
scenarios of habitat loss. The first scenario assumes random 
removal of habitat (e.g. Fig. 3b, 3d). The second describes 
aggregated removal of habitat (e.g. Fig. 3c, 3e), which begins 
with randomly selecting 5 occupied cells as removal centers. 
The preset rules of aggregated removal are: 1) we only con-
sidered removing cells that are less than or equal to 60 m 
from a removal center; 2) occupied cells within the 60 m 
circle have the removal probability p e dist= − ×η  according to 
their distance from the removal center, where h controls the 
intensity of habitat removal. The probability decreases with 
the distance from the removal center. In this study, we used 
h  0.25 to assess the effect of aggregated habitat loss on 
landscape and biodiversity metrics. Our results are qualita-
tively robust to variations in h values and distribution map 
cell sizes (e.g. 10  10 m and 50  50 m).

For the landscape metrics Eq. (4) and (6), habitat reduc-
tion, i.e. x, varies from x  0 (intact habitat) to 1 (all habitat 
is destroyed) by 0.01 step increments. At each x level, we 
measured edge length and the number of patches. Equations 
(4) and (6) were then fitted to the observed edge length and 
number of patches for the random and aggregated removal 
scenarios, respectively.

For the biodiversity metrics (Eq. 8, 9), we also varied 
habitat destruction from x  0 to 1 and then counted the 
number of species going extinct (Eq. 8) or losing half of 
population size (Eq. 9) following habitat loss.

Determining habitat loss thresholds
Identifying maximum permissible habitat loss, which is 
of great conservation concern, is an important goal but 
something challenging to determine in practice. Our 
zonal threshold method offers a way to determine maxi-
mum permissible habitat loss (i.e. the lower xslope; Fig. 2) 
and we apply this method to the four species distribution 
models to identify habitat loss thresholds for the HSD and 
BCI species distribution. For comparison, we also identify 
the conventional peak breakpoint habitat loss (xmax; see  
Fig. 2) whenever xmax exists (xmax only exists for type I 
response curve, not type II and III).

Results

We fit the two landscape metrics (Eq. 4, 6) to each of the 
213 HSD and 302 BCI plot species for the two habitat 
removal scenarios. As example, Fig. 4–5 present the modeled 
results for three species from the HSD plot under random 

where Ni is the abundance of the ith species in A and  

x  a/A. The slope of this EAR is: 
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Half-population curve
Similarly, we can derive an EAR model for losing half of 
a population for each of the S species, i.e. the probability 
for losing half of abundance of a species. We are interested 
in deriving a half-population EAR because the IUCN 
red list criteria consider species that have lost more than 
50% of their original abundance as ‘Endangered’ (IUCN 
2013). Consequently, identifying the half-population 
EAR as a function of habitat loss has considerable conser-
vation value. Directly from Eq. (7), this half population 
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the smallest integer larger than N/2. This probability  
describes that half of the N individuals of a species are  
contained in the area a (i.e. those that are lost if a is destroyed) 
and half are still at large (those that remain). Summing this 
probability across all species S, we obtain a scaled (relative) 
half-population EAR model:

λN
i

j

N
j

i

S
N jx

S

N
j

x x i
/

[ / ]

( ) ( )2
0

2 1

1

1
1

1= −






−
=

−

=

−∑∑ 	 (9)

The slope of this half-population EAR is:
d

dx S x x
xN j

N
j

x xN
i

i

j

N

i

S
j N i

l /
[ / ]

( )
( ) ( )2

0

2 1

1

1
1

1=
−

−






−
=

−

=

−∑∑ jj

Although the above EAR models are derived from 
randomly distributed species, He and Hubbell (2011) proved 
(see their Supplementary Information E) that the EAR 
models are invariant to spatial aggregation and the above 
Eq. (8) and (9) are general EAR models applicable to any 
empirical system. However, it is useful to note a key differ-
ence between these two EAR models. λEAR ( )x  describes  
the global loss of species (i.e. extinction from the study 
landscape A) due to habitat destruction, while λN x/ ( )2  
describes the local loss of species (i.e. extirpation from local 
areas within the landscape A).

Applying the habitat loss models and our 
thresholding method

Data
We fit the above four models (Eq. 4, 6, 8, 9) to two empiri-
cal data sets and apply our method of detecting ecologi-
cal threshold zones to each model. The four models allow 
us to predict minimum habitat loss levels (i.e. habitat loss 
that does not lead to large changes in species distribution). 
These two empirical data sets are the distribution and abun-
dance of tree/shrub species in two study plots from the 
CTFS-ForestGEO network (< www.forestgeo.si.edu/ >) that 
mapped the location of every stem of each species in respec-
tive plots. The first plot describes the distributions of 213 
tree/shrub species with 213 969 stems (with diameter at 
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versus the green and blue dots in Fig. 6a, c). The low xslope 
thresholds in Fig. 6a and c (the y-axes) show that regard-
less of the occupancy of a species ∼40% is the maximum 
habitat loss permissible by the metrics of edge length and 
number of patches, which means even the most abundant 
species (i.e. occupancy  1) can tolerate at most 40% of the 
habitat loss without a sharp decline in edge length and num-
ber of patches of their distribution. However, it is impor-
tant to note that for most species with low occupancies, the 
low xslope are much smaller than this 40% threshold (Fig. 6a, 
c). Specifically, for those species with occupancies  0.4, no 
habitat loss should be permitted, i.e. for small-range species 
( 0.4), any habitat loss would inevitably increase the edge 
length and the number of patches of the species. This result 
suggests that, by the metrics of edge length and number of 
patches, the maximum permissible habitat destruction var-
ies from 0 up to 40%, depending on the occupancy of the 
species of concern. This range of permissible habitat destruc-
tion could also approximately be derived from the empiri-
cal relationships, y a bp= − −1 exp( ) , between low xslope  
and occupancy as given in Fig. 6. Note that the upper xslope 
for the edge length and patch number metrics (Eq. 4, 6) can 

and aggregated habitat loss. For each species, we identify 
four thresholds: 1) lower xslope for edge-length threshold, 
2) xmax for edge-length threshold, 3) lower xslope for num-
ber of patches threshold, and 4) xmax for number of patches 
threshold (Fig. 6). As it is clear from the above analytical 
results, thresholds of a species are dependent on occupancy 
and spatial distribution of each species and also on the met-
ric (edge length or number of patches) that is used. For the 
edge length model and randomly distributed species with 
occupancy  0.5, our analytical result shows that the peak 
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 do not exist. For empirical species, 

this is true for the low xslope threshold (Fig. 6a) but not  
true for xmax, i.e. xmax can exist even when occupancy  0.5 
(Fig. 6b).

The low xslope thresholds are always smaller than the con-
ventional xmax threshold (Fig. 2, 6). Also random habitat 
loss leads to higher low xslope thresholds than does aggre-
gated habitat loss (compare the black and red open dots 

Figure 4. Relationships between habitat loss and edge length for Neolitsea aurata, Castanopsis fabri and Machilus velutina from the HSD 
plot. The left column shows the distributions of the three species at cell size  20  20 m with abundances  52, 506 and 2296, respec-
tively. The middle and right columns represent the edge length–habitat loss relationships for random and aggregated habitat removal, 
respectively. The dots are the observed edge length at each habitat loss level. The red curves are the fitted Eq. (4). For comparison, the ran-
dom edge length Eq. (3) is also shown (blue curves) that over-predicts the edge length of empirical species.
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as calculated from the landscape metrics of edge length  
and the number of patches. The upper xslope does not exist  
for the EAR, while for the half-population they are 0.571 
and 0.591 for HSD and BCI plots, respectively (Fig. 7).

Discussion

A large amount of evidence has shown that many species 
respond in non-linear ways to habitat loss and fragmenta-
tion (Ficetola and Denoël 2009, Swift and Hannon 2010). 
The most common methods for identifying non-linear 
changes in species–habitat relationships assume that true 

also be obtained for a species but there is no practical interest 
in the estimate for upper xslope because it is larger than xmax 
in most cases.

The endemics–area curves and the half-population endem-
ics–area curves are solely dependent on species abundance 
and are robust (invariant) to spatial distributions of spe-
cies and different habitat removal patterns, as shown by the 
HSD and BCI species (Fig. 7). The EAR low xslope thresholds  
are 0.932 and 0.913 for HSD and BCI plots, respectively, 
which are much larger than the half-population EAR 
thresholds. The low xslope half-population thresholds are 
0.423 and 0.397 for HSD and BCI plots, respectively. These 
thresholds coincidently agree with the low xslope threshold 
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The dots are the observed number of patches at each habitat loss level. The red curves are the fitted Eq. (6).
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species–habitat relationships are most likely a continuous 
function, showing no point of abrupt change but a zone of 
change. As a result, the previous methods aiming to detect 
habitat thresholds are either of no use or the thresholds so 
detected do not reflect the real change important to the sys-
tem of concern because ecologically sensitive changes often 
occur much earlier than the detected peak breakpoint indi-
cates. However, few methods exist for defining and detect-
ing such thresholds for continuous ecological response 
functions. In this study, we propose a method to identify 
habitat loss thresholds for the distribution and diversity of 
species in landscapes. In contrast to existing methods in the 
literature, we are not interested in the conventional break-
point threshold but a smaller threshold indicating rapid 
changes in species distribution.

We approach this new thresholding method by the con-
cept of threshold zones for species–habitat relationships. 
To evaluate the performance of our method, we developed 
four habitat loss models and fit them to empirical data from 
two forest permanent census plots. The results of our two 
landscape metric models show that edge length and number 
of patches for species with occupancy (distribution range) 
 0.4 will decline significantly even with a small amount 
of habitat loss. Consequently, we recommend no habitat 
should be destroyed for species with low occupancy. The 
landscape metric models also show that the most widely 
distributed species could tolerate up to 40% of habitat loss 
before the rate of change in edge length and number of 
patches is greater than unity, depending on the occupancy 

point thresholds exist where the relationship switches from 
one state to another rapidly (Toms and Lesperance 2003, 
Homan et al. 2004, Ficetola and Denoël 2009). In reality, 
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Figure 6. Habitat loss thresholds for edge length and number of patches for HSD and BCI species for both random and aggregated habitat 
loss (Fig. 3). (a) Lower slope thresholds for edge length, i.e. the lower xslope at which edge length slope  1 (Fig. 2) versus occupancy. The 
dashed curve is the theoretical threshold under random occupancy, i.e. 1–(4p  1)/(8p2) (see text). (b) Peak thresholds for edge length, i.e. 
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(c) Lower slope thresholds for number of patches. (d) Peak thresholds for number of patches. Black and green colors are the thresholds for 
HSD species for random and aggregated habitat loss, respectively. Red and blue colors are for BCI species for random and aggregated 
habitat loss, respectively. The solid curves are the fitted model y a bp= − −1 exp( ), to each threshold data.
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thresholds (Swift and Hannon 2010, Johnson 2013). The 
key advantages of our approach are fourfold. First, we derive 
a quantitative method for identifying threshold zones. We 
argue that transition zones rather than points are the rule 
and not the exception in ecological thresholds, therefore an 
approach designed to identify zones is appropriate for most 
types of thresholds such as type II and III response curves 
where abrupt breakpoints do not exist (Fig. 1). Second, our 
method is simple in that it only requires one to measure the 
slope of the relationship between an ecological variable (e.g. 
species richness or other landscape metrics such as decayed 
connectivity) and a perturbation (e.g. habitat loss) and our 
method is general in that it may be applied to define threshold 
zones for any continuous ecological variable. Third, the more 
restrictive breakpoint thresholds (e.g. V-shape) will always 
occur within the zonal threshold defined by our proposed 
method. Finally, threshold zones are defined by lower and 
upper points, and the lower point provides a simple metric 
for early detection of ecological thresholds. Specifically, the 
lower point at which |dy/dx|  1 is the point at which the 
ecological response variable (y, e.g. species richness) starts to 
change faster than the environmental variable (x, e.g. habitat 
loss) does. This lower point threshold is of particular ecologi-
cal significance because it indicates a starting point signaling 
possible impending critical change in y. For example, in our 
analysis the lower threshold emerged at ∼40% and at this 
point about 16% of species in HSD and BCI plots would 
have lost half of their populations (Fig. 7). In contrast, 90% 
of species would have lost half their populations if the upper 
zonal threshold (∼60%) for the half-population EAR were 
considered (Fig. 7). Consequently, decision-making, which 
relies on the upper point thresholds or the conventional 
restrictive breakpoint thresholds (i.e. xmax), may risk being 
too late for action. Therefore, the lower point of a zonal 
threshold should be used as an ecologically sensible thresh-
old for conservation application. Overall, the new threshold 
zone method, paired with the novel habitat loss models we 
have derived, could be used for describing and understand-
ing the effect of habitat loss on species diversity and distribu-
tion in landscapes.

Our study, however, is not without limitations. One key 
limitation is that our analyses do not specifically consider 
impacts of habitat fragmentation itself (not just habitat loss) 
on the identification of ecological thresholds. Although it 
is possible to analyze some aspects of fragmentation in our 
habitat loss models (e.g. by explicitly changing cell size or 
spatial patterns of habitat removal as in the above analy-
ses), such analyses are not very useful by themselves with-
out considering the loss of habitat, as empirical studies have 
demonstrated that habitat loss can interact synergistically 
with habitat fragmentation, particularly at high levels of 
habitat loss (Andrén 1994, Fahrig 2003). Our analysis also 
assumed a binary habitat/non-habitat definition of land-
scapes which is consistent with the dominant conceptual 
framework in fragmentation research (Brudvig et al. 2017). 
Growing empirical evidence, however, suggests that the 
quality of the intervening matrix impacts the fitness and 
response of species to habitat loss and fragmentation. For 
example, a meta-analysis by Prugh et al. (2008) shows that 
the negative effects of habitat area and isolation on spe-
cies occupancy are reduced when the intervening matrix is 

of concerned species (Fig. 6). This 0–40% range is the maxi-
mum permissible habitat destruction to avoid creating sig-
nificant landscape fragmentation, at least as measured by 
edge length and number of patches.

The landscape metrics are for describing edge length and 
number of patches for individual species. However, conser-
vation decisions and landscape management are rarely made 
based on individual species but rather on assemblages of spe-
cies or entire ecosystems. In this case, our half-population 
EAR models for the empirical HSD and BCI plot (Fig. 7) 
suggest that ∼40% of habitat destruction is the maximum 
permissible habitat loss to avoid high rates of biodiversity 
loss. Together with the results of the edge length and patch 
number metrics, here we suggest 40% to be the maximum 
permissible habitat loss threshold for biodiversity conserva-
tion. We further argue there is no such thing as a minimum 
permissible habitat loss in landscape conservation and man-
agement as our results show that some species are sensitive to 
very low levels of habitat loss.

Our predictions for maximum permissible habitat loss 
are within the range (10–50%) of the majority of threshold 
values identified by the simulation studies reviewed in Swift 
and Hannon (2010). For example, Solé et al. (2004) report 
sudden biodiversity collapses at 10–40% habitat loss based 
on the analysis of a metapopulation model. Many empiri-
cal studies also have found ecological thresholds within the 
range identified by our study. For example, Desrochers et al. 
(2011) show that  50% habitat loss or conversion can lead 
to loss of bird species from regional assemblages in Ontario, 
Canada and van der Hoek et al. (2015) report bird extinction 
thresholds with 10–93% forest loss or conversion in north-
eastern United States. Although the identification of a single 
‘magic’ (Matthews et al. 2014) threshold value may be attrac-
tive from a conservation perspective (Johnson 2013), thresh-
old values often demonstrate considerable variability even 
within taxonomic groups and simple landscapes (reviewed 
by Swift and Hannon 2010). In this study, we found that 
occupancy and the pattern of habitat loss (i.e. random or 
aggregated) influenced our predictions of ecological thresh-
olds. Specifically, our landscape metrics (i.e. edge-length and 
number of patches) predicted lower habitat loss thresholds 
(i.e. 0%) for relatively rare species (i.e. low occupancy) than 
relatively abundant species (Fig. 4–6) as well as lower habitat 
loss thresholds when habitat is lost at an aggregated com-
pared to a random manner. Our biodiversity metrics (i.e. the 
endemics–area relationship and half-population curve) vary 
with occupancy but are invariant to spatial aggregation pat-
terns (Fig. 7, He and Hubbell 2011).

In this study, we focus on the identification of early thresh-
olds that may indicate rapid changes in species distributions 
or even extinctions. This approach is akin to the focus on 
early warning signals developed in the ecological dynamical 
systems literature (reviewed by Scheffer et al. 2009). From an 
applied perspective, early warning signals are valuable as they 
can inform resource management policies prior to undesir-
able changes. For example, thresholds at which logging 
intensity begins to seriously impact biodiversity are often 
used to set forest retention targets in tropical (Burivalova 
et al. 2014) and boreal forests (Craig and Macdonald 2009). 
Given the practical value of ecological thresholds, it is para-
mount that ecologists develop robust methods for defining 
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Johnson, C. J. 2013. Identifying ecological thresholds for regulat-
ing human activity: effective conservation or wishful thinking? 
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relationship: a synthetic analysis of habitat island datasets. – J. 
Biogeogr. 41: 1018–1028.

Muradian, R. 2001. Ecological thresholds: a survey. – Ecol. Econ. 
38: 7–24.

Pan, Y. et  al. 2000. Changes in algal assemblages along observed 
and experimental phosphorus gradients in a subtropical 
wetland, USA. – Freshwater Biol. 44: 339–353.

Parker, M. and MacNally, R. 2002. Habitat loss and the habitat 
fragmentation threshold : an experimental evaluation of 
impacts on richness and total abundances using grassland 
invertebrates. – Biol. Conserv. 105: 217–229.

Prugh, L. R. et  al. 2008. Effect of habitat area and isolation on 
fragmented animal populations. – Proc. Natl Acad. Sci. USA 
105: 20770–20775.

Qian, S. S. et al. 2003. Two statistical methods for the detection 
of environmental thresholds. – Ecol. Modell. 166: 87–97.

Radford, J. Q. et  al. 2005. Landscape-level thresholds of habitat 
cover for woodland-dependent birds. – Biol. Conserv. 124: 
317–337.

Richmond, S. et  al. 2015. Thresholds in forest bird richness in 
response to three types of forest cover in Ontario, Canada.  
– Landscape Ecol. 30: 1273–1290.

Rondinini, C. and Chiozza, F. 2010. Quantitative methods for 
defining percentage area targets for habitat types in conserva-
tion planning. – Biol. Conserv. 143: 1646–1653.
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and the cusp catastrophe. – Acta Biotheor. 30: 229–253.

Rueda, M. et  al. 2015. Detecting fragmentation extinction 
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higher quality (i.e. natural). Furthermore, although the three 
types of thresholds described in Fig. 1 are widespread, they 
are not exclusive (e.g. cusp catastrophe; Rose and Harmsen 
1981). We do not suggest that the method developed in this 
study is applicable to all types of thresholds. Finally, our 
landscape metric and biodiversity models mainly focus on 
static scenarios of species distribution and therefore we have 
no inference on the impacts of habitat loss on population or 
community dynamics. Future developments of our method 
should investigate potential synergisms between habitat 
loss and fragmentation and the role of matrix quality for 
the delineation of ecological thresholds. Future work may 
also explore the relationship between characteristics of the 
full threshold zone – as identified using our method – and 
ecological responses, to address questions, for example, how 
the gradient or shape of the zone might impact recovery of 
species following habitat loss.
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