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1  | INTRODUC TION

Variation in body size of American bison (Artiodactyla, Bovidae) 
has been a contentious topic for more than 7 decades (Dary, 1974; 
Hill, Hill, & Widga, 2008; McDonald, 1981; Skinner & Kaisen, 
1947). In North America, Skinner and Kaisen (1947) synthesized 
and synonymized 52 species of bison down to eight species using 
primarily skulls and horn cores which respond plastically to sexual 
selection. McDonald (1981) and Pinsof (1991) synthesized and syn-
onymized those eight species of bison to five, again based on cranial 

morphology. Bison priscus and B. latifrons, which denote sister taxa 
groups to the extant bison clade and represent the larger, more giant 
end of the body size spectrum, appear to go extinct circa 30kya. 
The extant bison clade in North America traditionally includes Bison 
bison, B. occidentalis, and B. antiquus, which represent a smaller body 
size in comparison with the larger, giant bison (B. priscus and B. lat-
ifrons). Yet, the skulls of these smaller species still represent plastic 
variation, likely due to sexual selection, not representative of over-
all body size. To avoid the issues surrounding problems with cranial 
morphology, our study here focuses on the postcranial body size 
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The relationship between body size and temperature of mammals is poorly resolved, 
especially for large keystone species such as bison (Bison bison). Bison are well repre-
sented in the fossil record across North America, which provides an opportunity to 
relate body size to climate within a species. We measured the length of a leg bone 
(calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stra-
tigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average 
annual temperature was estimated from δ18O values in the ice cores from Greenland.
Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average 
body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual 
temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is 
predicted to further increase by 4°C by the end of the 21st century. If body size con-
tinues to linearly respond to global temperature, Bison body mass will likely decline 
by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of 
mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of 
Bison may be a result of migration, disease, or human harvest but those effects are 
likely to be local and short-term and not likely to persist over the long time scale of 
the fossil record. The strong correspondence between body size of bison and air 
temperature is more likely the result of persistent effects on the ability to grow and 
the consequences of sustaining a large body mass in a warming environment. 
Continuing rises in global temperature will likely depress body sizes of bison, and 
perhaps other large grazers, without human intervention.
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reconstruction, particularly of a mechanistic element to the struc-
ture of the skeleton. Our assessment is that the extant bison clade 
species may represent a linear chronospecies and is supported by 
recent ancient DNA assessments (Froese et al., 2017; Shapiro et al., 
2004). Likely, B. antiquus and B. occidentalis did not go extinct, but 
through phenotypic and morphologic adaptation to changing cli-
matic conditions, evolved into what is traditionally referred to as 
B. bison that we have throughout the Holocene and this is what we 
present below.

Extant Bison are one of eight ungulate genera to survive the 
most recent deglaciation in North America (Koch & Barnosky, 
2006; Kurtén & Anderson, 1980; McDonald, 1981). Bison bison (the 
extant species in North America) has also survived a more recent 
near-extinction event by market hunters in the late 19th century 
(Dary, 1974; McDonald, 1981). Modern bison of the early 20th-
century bottleneck have rebounded in population to approximately 
400,000 bison today because of conservation efforts from public 
and private sectors (Gates, Freese, Gogan, & Kotzman, 2010; United 
States Department of Agriculture, 2016). During the Holocene in 
North America, Bison had the largest distribution of any contem-
porary ungulate; from Pacific to Atlantic coasts and from arctic to 
the tropical ecoregions (Feranec, Hadly, & Paytan, 2009; McDonald, 
1981; Skinner & Kaisen, 1947). Although it is often assumed that 
Bison are obligate grazers (occasionally referred to as hyper-grazers 
(MacFadden & Cerling, 1996; Leng, 2006)), Bison have shown to be 
adaptable and variable in diet selection (Bergman, Fryxell, Gates, & 
Fortin, 2001; Feranec & MacFadden, 2000; Miquelle, 1985; Widga, 
2006). Bison have inhabited North America (south of 55°N lati-
tude) for approximately 200,000 years (Barnosky et al., 2014; Bell 
et al., 2004; Pinsof, 1991) and have occupied Beringia for nearly 
300,000 years (Froese et al., 2017; McDonald, 1981; Shapiro et al., 
2004).

Despite conservation efforts, modern bison face increasing 
temperatures and increasing variability in climate (IPCC Working 
Group 1, 2014). Global temperature in the 21st century is expected 
to rise between 1 and 4°C above the 20th-century average (IPCC 
Working Group 1, 2014). Past global and regional climates can be 

reconstructed using isotopic markers from ice cores and marine 
sediments and using limnological data such as species of pollen 
and diatoms, and charcoal in geological context. Currently, the 
longest and highest resolution records for reconstructing past at-
mospheric conditions are stable isotopes of oxygen (18O) from con-
tinental ice sheets in Greenland (<120,000 years (Alley et al., 1993)) 
and Antarctica (<800,000 years (Jouzel et al., 2007)). Values for 
δ18O from the Greenland Ice Sheet Project (GISP2) index decadal 
temperatures that would have been experienced by Bison in the 
Northern Hemisphere.

Species that are affected by climate change may alter their dis-
tribution and adapt through changes in morphology, physiology, 
behavior, and life history (Smith, Murray, Harding, Lease, & Martin, 
2014; Smith et al., 2010). Small mammals appear to be able to adapt 
morphology and life history to environmental shifts within one 
to three generations (Crews & Gore, 2012; Mifsud et al., 2011). 
However, the adaptive responses of large mammals to climate 
change are poorly understood. In comparison with small mammals, 
large species can better avoid harsh environments by moving long 
distances, tolerate austere conditions with large bodies, and recover 
over multiple seasons to reproduce over long lifespans (Barboza, 
Parker, & Hume, 2009). Impacts of climate change on animals are 
twofold: direct effects of temperature on the animal (i.e., energetic 
load as heat) and indirect effects of temperature on the animal’s 
food supply (Figure 1). Warm temperatures advance the seasonal 
growth of grasses to reduce the availability of nitrogen for growth 
of cattle and bison (Craine, 2013; Craine, Elmore, Olson, & Tolleson, 
2010; Craine, Towne, Joern, & Hamilton, 2009; Craine et al., 2012). 
Ambient air temperature directly affects the costs of thermoregula-
tion of the animal in cold winters and the ability to lose excess heat in 
warm summers (Long et al., 2014; Speakman & Król, 2010). Seasonal 
patterns of air temperature affect the onset, duration, and intensity 
of plant production that sets the quantity and quality of food for 
growth and reproduction of herbivores from spring through autumn 
(Albon et al., 2017; Huston & Wolverton, 2011).

At least four biological concepts attempt to explain the phenom-
enon of changing body size. Cope’s rule recognizes the tendency of 

F IGURE  1 Conceptual model of the 
direct and indirect effects of elevated 
ambient temperature on body size of 
Bison
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vertebrate animals to increase body size over geological time scales 
(Stanley, 1973). Bergmann’s rule emphasizes the positive relation-
ship between body size and latitude, which suggests that the abil-
ity to retain body heat favors larger bodies at cooler temperatures 
as long as net primary production is adequate for animals of large 
size (Bergmann, 1847; Huston & Wolverton, 2011; Watt, Mitchell, 
& Salewski, 2010). The Metabolic Theory of Ecology emphasizes the 
allometric scaling of body size and the underlying relationships be-
tween the volume of animals and the surfaces that are exposed to 
the environment (Brown & Sibly, 2006). The Heat Dissipation Limit 
Theory emphasizes heat load as a driver of body size because metab-
olism can produce excess energy (heat), which may be more difficult 
to dissipate as body size and metabolic work increase (Speakman & 
Król, 2010). However, these relationships alone are not sufficient to 
accurately project the effect of climate change on the body size of 
large species. Although the fossil record provides abundant evidence 
of changes in the body size of vertebrate animals (i.e., dinosaurs, pro-
boscideans) that have been linked to global shifts in climate (Sander 
et al., 2011), taxa differ in the direction, rate, and extent of response 
to warming and cooling (Lovegrove & Mowoe, 2013). Among large 
mammals, changes in body size at a continental scale declined 
quickly with rising temperature but rose more slowly with cooling 
over the past 100 million years (Evans et al., 2012).

The relationship between body size and temperature of mam-
mals is poorly resolved especially for ecological keystone species 
of large mammals, such as bison (Knapp et al., 1999). Bison modify 
ecosystems through selective grazing (Coppedge & Shaw, 1998; 
Fahnestock & Knapp, 1994), wallowing (Coppedge, Fuhlendorf, 
Engle, Carter, & Shaw, 1999; Polley & Collins, 1984), transporting 
nutrients (Plumb & Dodd, 1994; Towne, 2000), herd movements 
(Bergman et al., 2001; Van Vuren, 2001), and physical disturbance of 
soil and vegetation (Allred, Fuhlendorf, & Hamilton, 2011; Coppedge 

& Shaw, 2000). Fossilized skeletal elements can be used to study 
body size over long-time frames. Our study focuses on the calca-
neum (the heel bone; Figure 3), an anatomically functional element, 
that is, conserved evolutionarily. We used the calcaneum to estimate 
body mass, whereas previous authors have focused on skull metrics 
(McDonald, 1981; Skinner & Kaisen, 1947) that are more suscepti-
ble to sexual selection and vary widely among species. In contrast, 
sexual dimorphism in bison, while noticeable in modern contexts, is 
lost in the fossil record without adequate comparison of other repre-
sentatives of the correct species at that time. Moreover, using osteo-
metrics and ratios on postcranial elements are unable to determine 
the intermediate-sized individuals within a fossil population, stated 
another way, mature females and immature bulls overlap in size and 
all immature individuals overlap in size (Lewis, Johnson, Buchanan, 
& Churchill, 2007). Bison are well represented in the fossil record 
across North America, which provides an opportunity to relate body 
size to climate within a taxon over the last 40,000 years. In this 
study, we used the historical and prehistorical records of Bison to 
test the hypothesis that large-scale changes in climate drive changes 
in body size.

2  | MATERIAL S AND METHODS

We used curated specimens from modern and fossil Bison. Data S1 
lists specimen numbers and sponsoring collections. Physiographic 
and chronological information about localities is summarized in 
Data S2, and osteometric information about specimens at each 
locality is summarized in Data S3. J.I. Mead and J.M. Martin ac-
crued a database of 2,400 Bison calcanea representing 60 locali-
ties (geological strata at geographic locations) in North America 
(Figure 2, Data S2). We used determinations of radiocarbon age 

F IGURE  2 Localities (n = 60) of 
fossil specimens in North America that 
correspond with body mass estimates of 
bison with calibrated age. Sites are further 
described in Data S2
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only after 1990 for consistent accuracy of radiometric estimates 
(Data S2) that were calibrated using OxCal Online Tool (https://
c14.arch.ox.ac.uk/) by employing the IntCal13 curve (Reimer, 
Bard, & Bayliss, 2013). Calibrated ages and errors are reported in 
Data S1; ages and errors in analyses are assumed accurate but not 
precise due to variability of the radiocarbon curve (Reimer et al., 
2013). Specimens lacking adequate chronologies or osteometrics 
(<3 measures) were omitted from subsequent analyses, thus pro-
viding 1,169 samples.

Fossil calcanea were reported as belonging to one of three spe-
cies of Bison (e.g., B. bison, B. antiquus, and B. occidentalis) in collec-
tion databases based on associated diagnostic elements with specific 
shape and morphological landmarks (e.g., horn cores, (Skinner & 
Kaisen, 1947; Balkwill & Cumbaa, 1992)). Some of the specimens 
were originally identified as Bison bison antiquus, (nomen dubium), 
which has been synonymized with B. antiquus (McDonald, 1981). Six 
standard linear measurements were taken on the calcaneum (Hill, 
1996; McDonald, 1981; Miller & Brotherson, 1979; Olsen, 1960; Von 
Den Driesch, 1976): distal breadth of calcaneal tuber (DstBr), great-
est breadth of calcaneum at the sustentaculum (GBr), distal depth 
of calcaneal tuber (DstDp), distal length of calcaneal tuber (DstL), 
greatest length of calcaneum (GL), and greatest depth of calcaneum 
at the sustentaculum (GDp, Figure 3). We used DstL to estimate live 
body mass (M) by the relationship of Christiansen (2002, p. 688).

We assume that global temperature is relative to the Greenland 
Ice Sheet Project (GISP2) ice core paleotemperature proxy data 
(Grootes, Stuiver, White, Johnsen, & Jouzel, 1993). Proxy data from 
reconstructing global paleoclimatic temperature in °C were derived 
from GISP2 δ18O values (‰; Grootes et al., 1993; Alley, 2000; Alley 
& Ágústsdóttir, 2005) and were related to average age of the locality. 
The global temperature anomaly was derived by scaling the GISP2 
data to the estimated Last Glacial Maximum temperature, which 
was on average 6°C colder than the 20th-century average global 
temperature.

We used mixed model regressions for each metric of the cal-
caneum to compare species as a fixed effect with B. bison as the 
base for the comparison (Stata v14.2, 2015, StataCorp, College 
Station, TX, USA). Similarly, mixed models were used to compare 
DstL with other calcaneal metrics with species as a fixed effect. 
The fixed effects of species, temperature, and latitude were in-
cluded in the model to analyze DstL and estimates of body mass 
from measures of DstL (Christiansen, 2002). We used two esti-
mates of temperature in the models: GISP2 temperatures and 
the relative global temperature anomaly. All mixed models in-
cluded site as a random effect to account for repeated measures 
within each location. We used the robust “sandwich estimator” 
to relax assumptions of normal distribution and homogeneity of 
variance for the regression (Bolker et al., 2009; Rabe-Hesketh & 
Skrondal, 2012). Pairwise group comparisons among predicted 
margins from each model were made with Bonferroni’s correc-
tion (α = 0.05).(1)M= (DstL∕11.49)3

F IGURE  3 Standard metrics on a typical fossil calcaneum from a Bison (a) hock (b) shown in dorsal view (c) and medial view (d). Two 
measures for assessing body size of bison are illustrated: GL, greatest length; DstL, distal tuber length. Additional measures of the 
calcaneum are described by Von Den Driesch (1976) and Hill (1996)

https://c14.arch.ox.ac.uk/
https://c14.arch.ox.ac.uk/
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3  | RESULTS

Species significantly affected all metrics of calcaneal size (Table 1), 
that is, specimens from B. antiquus were larger than those of 
B. bison. Similarly, the intercept of the positive relationship between 

the depth or breadth of the calcaneum and its tuber length (DstL) 
was greater for B. antiquus than for B. bison (Table 2). Estimated 
body mass decreased over time from B. antiquus (802 ± 183 kg) 
to B. occidentalis (678 ± 105 kg) to modern B. bison (479 ± 177 kg; 
(Figure 4).

Parameter Bison bison B. occidentalisa B. antiquusa

GL 142.1 ± 12.2 (428) A 155.9 ± 8.7 (35) B 161.8 ± 11.3 (568) C

DstL 88.4 ± 12.0 (273) A 100.7 ± 5.3 (36) B 106.2 ± 8.0 (540) C

DstBr 36.17 ± 3.8 (164) A 38.3 ± 4.1 (35) B 41.5 ± 4.7 (569) B

DstDp 39.3 ± 3.5 (164) A 42.2 ± 3.5 (38) B 44.3 ± 4.5 (589) C

GBr 48.0 ± 4.5 (433) A 50.3 ± 4.2 (33) B 55.2 ± 5.2 (545) B

GDp 55.5 ± 4.5 (400) A 58.3 ± 4.6 (34) B 63.7 ± 5.0 (563) B

DstBr, distal tuber breadth; DstDp, distal tuber depth; DstL, distal tuber length, GBr, greatest 
breadth; GDp, greatest depth; GL, greatest length.
Uppercase letters indicate significant pairwise differences (p < .05) between species within each 
measure (row).
aExtinct.

TABLE  1 Summary statistics [ ̄X ± SD 
(n)] calcaneal osteometrics (mm) of Bison

Parameter Obs. Sites Intercept (± SE) Slope (± SE)

GLa 743 53 −6.22 ± 2.48 0.68 ± 0.01

DstBr 645 48 46.69 ± 2.06 + 3.14 ± 1.04 
(B.a.) + 2.37 ± 1.18 (B.o.)

1.34 ± 0.05

DstDp 662 47 40.38 ± 2.78 + 4.53 ± 1.52 
(B.a.) + 2.45 ± 1.45 (B.o.)

1.36 ± 0.07

GBr 714 51 40.13 ± 4.57 + 6.00 ± 1.93 
(B.a.) + 5.99 ± 2.00 (B.o.)

1.08 ± 0.07

GDp 723 52 29.49 ± 4.88 + 5.77 ± 2.29 
(B.a.) + 6.30 ± 2.35 (B.o.)

1.11 ± 0.07

B.a., Bison antiquus; B.o., B. occidentalis.
(DstL) from other measures of the calcaneum (GL, DstBr, DstDp, GBr, GDp) in Bison using mixed 
models with site as a random effect and B. bison as the comparison base for species.
aNo linear effect of species on GL (p < .05).

TABLE  2 Regression relationships for 
estimating distal tuber length in Bison

F IGURE  4 Average body size of fossil 
bison measured as calcaneal lengths 
(DstL) and body mass at 60 localities in 
North America from 40,000 years ago 
(left) to today (right)
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The greatest proportion of specimens (50%) were those of 
B. antiquus and B. occidentalis that were dated between 7,000 and 
13,000 years ago, whereas 38% of the specimens were those of 
B. bison from 3,000 years ago to present. Average annual tempera-
tures varied over 25°C on the scale of Greenland temperature over 
the last 40,000 years, which was equivalent to a span of 6°C on the 
relative global scale (Figure 5).

The largest proportion of Bison specimens were associated 
with two large fluctuations from 15,000 years ago to present that 

included warming in the Bølling–Allerød period (15,000 years 
to 13,000 years ago), cooling in the Younger Dryas (13,000 to 
12,000 years ago), and warming through the Holocene period to 
present with small undulations in temperature, such as the Medieval 
Climatic Anomaly (approximately 1,000 to 700 years ago) and Little 
Ice Age (approximately 700 to 150 years ago; Figure 5).

Calcaneal distal tuber length (DstL) was negatively related to 
Greenland temperature (slope: −0.45 mm/°C ± 0.11; z = −3.95 
p < .001) with intercepts at 78 ± 4 mm for B. bison, 90 ± 3 mm for 
B. antiquus, and 87 ± 2 mm for B. occidentalis. The relationship be-
tween calcaneal distal tuber length (DstL) and relative global tempera-
ture was −1.77 mm/°C ± 0.45 (z = −3.95, p < .001) with intercepts at 
92 ± 2 mm for B. bison, 103 ± 3 mm for B. antiquus, and 101 ± 2 mm for 
B. occidentalis. Consequently, the slope of estimated body mass with 
global temperature was also negative at −41 kg/°C (± 10; z = −4.10, 
p < .001) with intercepts at 521 ± 36 kg for B. bison, 737 ± 45 kg for 
B. antiquus, and 676 ± 36 kg for B. occidentalis (Figure 6). This relation-
ship predicts that B. bison will decrease by 164 ± 40 kg to 357 ± 54 kg 
if global temperature rises from 0°C to +4°C (Figure 6).

4  | DISCUSSION

Our data supported our hypothesis that global climate change drives 
body size of Bison spp., that is, as temperatures warmed, Bison be-
came smaller. Generally, described as Bergmann’s Rule (Bergmann, 
1847), endotherms increase in body size with increasing latitude 
(Huston & Wolverton, 2011). It is likely that negative correlation be-
tween temperature and latitude is driving Bergmann’s rule (i.e., body 
size) because even though we found that bison are larger at cooler 
temperatures, we were unable to correlate a significant effect of 
latitude over the geologic record (p > .94). The negative relationship 
between body mass and global temperature may reflect underlying 

F IGURE  5 Sequence of Greenland 
mean annual temperature (°C derived 
from GISP2 δ18O values (Alley & 
Ágústsdóttir, 2005)) and relative 
global temperature anomaly derived 
from modern Greenland temperatures 
(μ29.9°C mean annual temperature) from 
40,000 years ago (left) to today (right)
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relationships between body size and net primary production as well 
as heat loads (Speakman & Król, 2010; Huston & Wolverton, 2011; 
Figure 1).

Paleontologists have long used skeletal elements from ex-
tant animals to reconstruct body mass and body shape of fossils 
(Christiansen, 2002; Damuth & MacFadden, 1990; Gingerich, 1990). 
Data from some bones indicate body size more accurately than oth-
ers. Indices of body size in mammals, including Bison, are best indi-
cated by bones of the hind foot (elements of the ankle, calcaneum, 
and astragalus), and front foot (elements of the wrist, scaphoid, and 
magnum), along with the toes (podial digits and distal and proximal 
phalanges; (Damuth & MacFadden, 1990)). The bulk of the foot 
bones precisely reflects body mass because they bear the weight of 
the animal, whereas the shape of the bones reflects the functional 
anatomy for locomotion through the attachment of tendons and 
muscle (Scott, 1990). Longer bones of limbs (femora and humeri) are 
also good proxies for reconstructing body size. Unfortunately, long 
bones in the fossil record are typically broken, whereas the calca-
nea, astragali, and phalanges are commonly well preserved, likely 
because these dense elements resist degradation. Consequently, 
podial elements are well studied within Bovinae, which includes cat-
tle (Bos taurus, (Lawrence, 1951; Olsen, 1960; Balkwill & Cumbaa, 
1992)), and Antilopinae, mountain goats (Oreamnos sp., (Carpenter, 
2003)), bighorn sheep (Ovis sp., (Todd & Rapson, 1988; Rothschild & 
Martin, 2003), among others). However, it is difficult to distinguish 
taxa using podial elements. Bison and Bos can be resolved from traits 
of podial elements by the methods of Balkwill and Cumbaa (1992) 
but we cannot resolve Bison species based upon podial elements 
alone. Species designations in our dataset originated from whole 
collections of associated podial and cranial material that may not 
distinguish mixes of species at each location. For example, American 
Falls Reservoir in Idaho contains at least four co-existing species of 
Bison (Pinsof, 1991). If we ignore species designations and analyze 
our data at the clade level, the slope of podial size with increasing 
temperatures becomes steeper; −63 kg/°C (±10; z = −6.11 p < .001) 
with an intercept at 648 ± 26 kg for Bison spp., as compared to the 
−41 kg/°C for Bison bison (Figure 6). This slope may change region-
ally with latitudinal differences in body size of extant Bison.

Bison crania exhibit plastic morphology, likely due to a combi-
nation of environmental and sexual selection, whereas postcranial 
elements—podial elements specifically—exhibit a more conserva-
tive and accurate reflection of body size due to functional anatomy 
of the appendicular skeleton (Clifford, 2009, 2010). Historically, it 
has been difficult to identify Bison fossil species (Bison bison, B. oc-
cidentalis, and B. antiquus) based on skeletal remains without skulls, 
especially those without horn cores (McDonald, 1981; Skinner & 
Kaisen, 1947). This issue continues today (Grayson, 2006; Lyman, 
2004; McDonald & Lammers, 2002), with the exceptions of B. lati-
frons (Giant bison (Hopkins, 1951; Schultz & Hillerud, 1977; Pinsof, 
1991)) and B. priscus (Steppe bison; (Gee, 1993; Zazula, MacKay, & 
Andrews, 2009; Boeskorov et al., 2013)), which are distinct because 
of their massive size. Many of the above authors rely on cranial ele-
ments alone to specifically classify Bison, but recent studies suggest 

that the diagnostic Bison cranial characters vary widely (Krasinska, 
1988) and do not reflect conservative morphological variability in 
the skeleton. Cranial elements of Bison are now thought too vari-
able to rely on for taxonomic classification (Prothero & Foss, 2007). 
Widga (2013) attempted to synthesize a large dataset of bison 
horn-core metrics and illustrates the noise inherent in these sam-
ples (Hill, Hawley, Widga, Monahan, & Wanamaker, 2014; Wilson, 
1974).

Some researchers suggest that the past several millennia of an-
thropogenic selection by Paleoindians, conservationists, and pro-
ducers may have directly and indirectly selected traits that scale 
to body size (i.e., large heart girths, large heads, straight vertebral 
column; (Todd, 1983; Grayson, 2000, 2001)). Undoubtedly, early ar-
rivals of modern humans were having impacts on the available bison 
through hunting some 14,000 years ago (Barnosky et al., 2014; 
Grayson, 2000); however, these effects were limited by small human 
populations dispersed over a large continent and were therefore 
local impacts (Hawley, Hill, & Widga, 2013; Hill et al., 2008, 2014). 
Others have acknowledged that any selection has not made signif-
icant changes in morphology (Hawley et al., 2013; Hill et al., 2008, 
2014). Climate is the most parsimonious explanation for shaping 
Bison morphology (Hill et al., 2008; Lewis et al., 2007; Shapiro et al., 
2004). Changes in body size of Bison could be a result of migration 
or disease but those effects are geographically local and not likely 
to persist over the long time scale of the fossil record (Hamel et al., 
2016). Wilson, Hills, and Shapiro (2008) postulate the decrease 
in body size of Bison is a consequence of dispersal theory, that is, 
expansion of range, over the last 80,000 years (Wilson, 1996). A 
more cogent argument explaining decrease in body size is the rap-
idly warming global climate, characterizing the termination of the 
Younger Dryas period.

This study demonstrates a strong inverse correlation between 
increasing global temperatures and body size of bison over the last 
40,000 years. We hypothesize that increasing temperature alters 
both metabolic demands and available resources (Figure 1).

The IPCC Working Group 1 (2014) predicts 4°C rise in global 
temperatures by year 2100. While the absolute increase in 4°C is not 
unprecedented in the evolutionary history of Bison, the rate of tem-
perature change is 30 times faster than the Bølling–Allerød period, 
the transition from the Last Glacial Maximum to Holocene climate 
conditions. The Last Glacial Maximum corresponds with a global 
temperature 6°C cooler than the 20th century, when Bison mass 
was 910 kg. If global temperature warms to +4°C as predicted for 
the 21st century, Bison body mass will likely decline from 665 kg to 
357 kg (Figure 6), if body size declines at the long-term average. The 
greatest decline in body size of Bison apparently occurred between 
12,500 and 9,250 years ago, when mass declined by 26% (906 kg to 
670 kg) in approximately 3,000 years. If generation time of Bison is 
3–10 years (Evans et al., 2012; Gingerich, 1993), the change in body 
size occurred in 325–1,080 generations producing an average rate 
of change of 0.2–0.7 kg per generation. It is unclear whether Bison 
can adapt body size to a 4°C warming within 10 generations by year 
2100.
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Bison today express a 30% body mass gradient from north to 
south, that is, Bison in Saskatchewan (52°N) are at least 30% larger 
than those in Texas (30°N (Craine, 2013, p. 3)). This body size gra-
dient is likely associated with latitudinal variation in timing of re-
production and parturition as well as windows for growth (Barboza 
et al., 2009). Quantifying and comparing physiological thresholds 
and mechanisms driving body size change are imperative for man-
aging Bison and other large herbivores (Figure 1). Conservation goals 
among latitudinally disparate Bison herds in North America should 
consider that resident Bison will likely grow smaller and more slowly 
in the south than in the north, which will impact management strat-
egies at both regional and continental scales.
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