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Abstract
Aim: To evaluate current and future dynamics of 25 tree species spanning United 
States and Canada.
Location: United States and Canada.
Methods: We combine, for the first time, the species compositions from relative im-
portance derived from the USA’s Forest Inventory Analysis (FIA) with gridded es-
timates based on Canada's National Forest Inventory (NFI-kNN))-based photo plot 
data to evaluate future habitats and colonization potentials for 25 tree species. Using 
21 climatic variables under RCP 4.5 and RCP 8.5, we model climatic habitat suit-
ability (HQ) within a consensus-based multimodel ensemble regression approach. A 
migration model is used to assess colonization likelihoods (CL) for ~100 years and 
combined with HQ to evaluate the various combinations of HQ + CL outcomes for 
the 25 species.
Results: At a continental scale, many species in the conterminous United States lose 
suitable climatic habitat (especially under RCP 8.5) while Canada and USA’s Alaska 
gain climate habitat. For most species, even under optimistic migration rates, only a 
small portion of overall future suitable habitat is projected to be naturally colonized 
in ~100 years, although considerable variation exists among species.
Main conclusions: For the species examined here, habitat losses were primarily 
experienced along southern range limits, while habitat gains were associated with 
northern range limits (especially under RCP 8.5). However, for many species, south-
ern range limits are projected to remain relatively intact, albeit with reduced habitat 
quality. Our models predict that only a small portion of the climatic habitat gener-
ated by climate change will be colonized naturally by the end of the current cen-
tury—even with optimistic tree migration rates. However, considerable variation 
among species points to the need for significant management efforts, including as-
sisted migration, for economic or ecological reasons. Our work highlights the need to 
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1  | INTRODUC TION

Climate change has already impacted many natural systems 
(Scheffers et al., 2016) and is projected to have increasingly serious 
impacts as the century progresses. Forest ecosystems are of partic-
ular concern due to the high levels of biodiversity that they main-
tain (Aerts & Honnay, 2011) and the slow migration rates of trees 
(Corlett & Westcott, 2013; Feurdean et al., 2013). Consequently, un-
derstanding the response of forests to climate change has been an 
ongoing focus of scientific research for several decades (see Iverson 
& Prasad, 1998; Keenan, 2015). A key aspect of this response is the 
extent to which long-distance tree migration can track the climatic 
shifts projected for the coming decades (Aitken, Yeaman, Holliday, 
Wang, & Curtis-McLane, 2008; Iverson, Schwartz, & Prasad, 2004; 
Prasad, Gardiner, Iverson, Matthews, & Peters, 2013).

Modelling tree migration under climate change is most effective 
at broad spatial extents which incorporate entire species ranges. 
One reason for this is that the climate is not changing evenly across 
the planet. For example, the boreal forest in North America has al-
ready experienced more than a 1.5°C increase in mean annual tem-
perature since 1900 (Price et al., 2013), compared to an increase of 
0.7°C across the conterminous United States (USGCRP, 2017). These 
changes, in combination with projections for modest, regionalized 
changes in precipitation (Gauthier, Bernier, Kuuluvainen, Shvidenko, 
& Schepaschenko, 2015) indicate that many species could experi-
ence different climatic drivers across their range (Bouchard, Aquilué, 
Périé, & Lambert, 2019; Housset, Girardin, Baconnet, Carcaillet, & 
Bergeron, 2015; Matthews, Sadler, Kubota, Woodall, & Pugh, 2019). 
Furthermore, there is a general expectation that populations within a 
species range will respond differentially to climate change, with trail-
ing populations expected to decline and poleward populations ex-
pected to expand (Hampe & Petit, 2005; Pedlar & McKenney, 2017). 
Indeed, many studies have shown measurable changes in vegeta-
tion at the boreal–tundra boundary (Becker-Scarpitta, Vissault, & 
Vellend, 2019; Chaste, Girardin, Kaplan, Bergeron, & Hély, 2019; 
Holsinger et al., 2019; Myers-Smith et al., 2019; Sittaro, Paquette, 
Messier, & Nock, 2017; Truchon-Savard, Jean, & Payette, 2019; 
Wang et al., 2019; Zhang, Huang, Huang, & He, 2015; Zhang, Liu, 
et al., 2015).

Efforts to model range shifts of tree species under climate 
change have evolved through time (Iverson, Peters, Prasad, 
& Matthews, 2019; Iverson & Prasad, 1998; Iverson, Prasad, 
Matthews, & Peters, 2008). Early studies tended to focus solely 

on climate envelope shifts, identifying suitable climate habitat 
under current and future conditions (McKenney, Pedlar, Lawrence, 
Campbell, & Hutchinson, 2007a, 2007b; McKenney, Pedlar, Rood, 
& Price, 2011; Shafer, Bartlein, & Thompson, 2001; Sykes, Prentice, 
& Cramer, 1996). Other studies have attempted to generate better 
predictions by incorporating key drivers of tree suitability, includ-
ing edaphic variables (Chambers, Périé, Casajus, & de Blois, 2013; 
Iverson & Prasad, 1998; Iverson et al., 2008; Peters, Iverson, Prasad, 
& Matthews, 2019), migration constraints (Iverson, Prasad, Peters, 
& Matthews, 2019; Prasad et al., 2013) and competitive interactions 
(Araujo & Luoto, 2007). Regardless of the exact approach taken, 
most efforts incorporate habitat models that relate species abun-
dance or occurrence to a suite of environmental variables. While 
many studies have employed occurrence data for this step (e.g. Bell 
& Schlaepfer, 2016; Case & Lawler, 2017), the use of abundance data 
allows for a more detailed and useful assessment of habitat suitability 
(Howard, Stephens, Pearce-Higgins, Gregory, & Willis, 2014; Iverson, 
Peters, et al., 2019; Iverson et al., 2008). However, in North America, 
seamless coverage of tree abundance data has been challenging to 
obtain due to national-level differences in data collection methodol-
ogy and availability in the United States and Canada (see Beaudoin 
et al., 2014; Forest Inventory Analysis, 2017). Consequently, at-
tempts to model tree migration using abundance-based habitat 
models have typically been regional in scope (Chambers et al., 2013; 
Coops & Waring, 2011; Gray & Hamann, 2013), with minimal at-
tempts at cross-border analyses using abundance data owing to sev-
eral challenges related to the merging of different datasets.

In order to overcome this limitation, we have combined United 
States’ Forest Inventory Analysis (FIA) data (Forest Inventory 
Analysis, 2017) with spatial datasets derived from Canada's National 
Forest Inventory (NFI) data (Beaudoin et al., 2014; Beaudoin, Bernier, 
Villemaire, Guindon, & Guo, 2017) to produce a spatial database of 
relative abundance for 25 ecologically and commercially important 
tree species that span the two countries (Table 1). We use this data-
base to model climatic habitat quality (HQ, also referred to as habitat 
suitability or climatic habitat suitability) under current, and future 
climate (RCP 4.5 and 8.5 emission scenarios—Moss et al., 2008) 
using a multimodel ensemble approach (Prasad, 2018). We further 
employ a migration simulation model (Prasad et al., 2013) to com-
pute colonization likelihoods (CL, also referred to as migration po-
tential) associated with future suitable habitats. Finally, we combine 
HQ and CL to visualize and assess potential tree shifts under climate 
change. Specifically, our goals are to a) examine the potential spatial 

employ range-wide data, evaluate colonization potentials and enhance cross-border 
collaborations.
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distribution of future suitable habitats across the entire range of 
each species, b) assess the likelihood that newly gained suitable hab-
itats will be colonized in the future, c) evaluate habitats colonized, 
gained, lost and retained across the two countries and d) provide 
a template to evaluate current and future management options for 
important tree species. We use a multistage modelling approach 
(Prasad, Iverson, Matthews, & Peters, 2016) to minimize the bias 
and confoundment of the model by modelling HQ as a purely cli-
mate response (Matthews et al., 2019; Price, Cooke, Metsaranta, & 
Kurz, 2015) and allowing for other dependencies, such as land cover 
and elevation, to be evaluated as optional post-model filters, where 
appropriate.

2  | METHODS

Our overall methodology and the data used to model habitat suit-
ability and colonization potentials are illustrated in Figure 1.

2.1 | Combining FIA and NFI-kNN

We use FIA data in the eastern United States to derive relative 
importance values (RIV, also known as relative abundance) of tree 
species (Iverson et al., 2008; Peters et al., 2019). This index is cal-
culated as the sum of the (1) abundance (i.e. number of stems) and 
(2) dominance (i.e. basal area) of each species relative to all trees 
within the plot (~83K plots in the eastern United States—for de-
tails on the FIA plot design please refer to the FIADB user guide 
available online, and O’Connell et al., 2017). Because the FIA plot 
locations are unequally sampled across the United States, we ag-
gregated relative importance values over grid cells (20 x 20 km) 

TA B L E  1   Combined R-square values from the random forest and 
gradient boosting models for the 25 tree species in this study

Common Name Scientific Name
Combined 
R-square

American elm Ulmus americana 0.27

Balsam fir Abies balsamea 0.83

Balsam poplar Populus balsamifera 0.42

Bigtooth aspen Populus grandidentata 0.36

Bitternut hickory Carya cordiformis 0.18

Black cherry Prunus serotina 0.44

Black spruce Picea mariana 0.88

Black walnut Juglans nigra 0.22

Bur oak Quercus macrocarpa 0.21

Eastern hemlock Tsuga canadensis 0.56

Eastern hophornbeam Ostrya virginiana 0.23

Eastern white pine Pinus strobus 0.4

Jack pine Pinus banksiana 0.73

Northern red oak Quercus rubra 0.48

Northern white cedar Thuja occidentalis 0.56

Paper birch Betula papyrifera 0.78

Quaking aspen Populus tremuloides 0.82

Red maple Acer rubrum 0.62

Red spruce Picea rubens 0.6

Silver maple Acer saccharinum 0.11

Sugar maple Acer saccharum 0.56

Tamarack Larix laricina 0.52

White ash Fraxinus americana 0.38

White oak Quercus alba 0.53

Yellow birch Betula alleghaniensis 0.55

F I G U R E  1   Schematic of modelling approach that combines suitable habitats (HQ) predicted by the multimodel ensemble with 
colonization likelihoods (CL) computed by the migration model into 12 classes of HQCL
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that contained at least 2 FIA plots in order to minimize the influ-
ence of singletons that can unduly influence the values. The FIA 
plots in Alaska were not used as they are currently confined to the 
coastal forests.

Canada's National Forest Inventory (NFI), while different in de-
sign from the FIA, includes a field survey component (with 1,116 
permanent ground plots) and a remote sensing survey component 
(Gillis, Boudewyn, Power, & Russo, 2010). The remote sensing com-
ponent consists of 2 x 2 km sample units located on a systematic 
national sampling grid of 20km, with a total of 13,158 sample units 
in the first current 10-year (2008–2017) re-measurement survey. 
Recently, Beaudoin et al. (2014), Beaudoin et al. (2017) have pro-
duced gridded estimates of forest attributes from the NFI, using a 
k-nearest neighbour (kNN) approach to impute cell values from a 
combination of NFI photo plot data (Gillis, Omule, & Brierley, 2005), 
and 26 geospatial data layers including MODIS spectral imagery, cli-
mate and topographic variables. One of the products derived from 
this project was a set of species composition maps that gave esti-
mates of species’ relative abundance.

We merged grids of relative abundance from the two data 
sources (FIA and NFI-kNN) to obtain continuous tree abundance es-
timates for each tree species. Both indices were scaled from 0 to 100 
to indicate the relative per cent composition of each species. One 
consequence of this merger was that the coarser estimates from the 
kNN-based approach tended to produce smoother patterns of spe-
cies relative abundance patterns, likely influenced by the secondary 
processing. Although admittedly not seamless, the merger provided 
continuous estimates of relative abundance up to the northern edge 
of each species range, which was vital for our regression-based en-
semble modelling approach. We aggregated the abundance data for 
the 25 species to a 20 x 20 km resolution that smoothed differences 
in relative abundance methodologies across the USA–Canada bor-
der and allowed a computationally feasible framework for looking at 
macroscale patterns across the entire range.

Of the 25 species, there were only two (quaking aspen and 
paper birch) whose ranges extended significantly into the western 
United States and thus were not fully represented by our abundance 
data, which was comprised of FIA plots east of the 100th meridian. 
Additionally, there were some data gaps in the NFI-kNN data for 
quaking aspen in Ontario, Canada.

2.2 | Climate data

Predictors for the HQ model (described below) were climate normals 
from the AdaptWest database (AdaptWest Project, 2015; Wang, 
Hamann, Spittlehouse, & Murdock, 2012) for current (1981–2010) and 
future (2071–2100) periods. We obtained data for future climate sce-
narios (Moss et al., 2008), RCP 4.5 (medium emission pathway) and RCP 
8.5 (high emission pathway), in order to examine the degree to which 
habitat projections differed under these alternative pathways (Wang, 
Hamann, Spittlehouse, & Carroll, 2016). Future climate projections were 
based on an ensemble of 15 general circulation models (AdaptWest 

Project, 2015). The original data, at 1 km resolution, was aggregated to 
20 km to match the abundance variables for the HQ model.

2.3 | Multimodel ensemble (MME)

Habitat quality (HQ) for current and future climate scenarios 
was predicted using a multimodel ensemble (MME) technique 
(Prasad, 2018) at a cell resolution of 20 x 20 km. The HQ model was 
developed using current climate values at tree abundance cells and 
then projected into the future under the RCP 4.5 and 8.5 emissions 
scenarios. We screened 27 bioclimatic climate variables available in 
the AdaptWest database using random forest and stochastic gradi-
ent boosting (see MME below) to find the best fit for all the 25 spe-
cies. We selected a subset of 21 climate variables (Table 2) for the 
final HQ model by examining the variable importance for all 25 tree 
species that contributed substantially to the overall fit. Highly col-
linear variables were not selected—but this criterion was relaxed if 
the variable resulted in a superior fit.

The MME technique involves averaging the consensus predic-
tions of four machine learning techniques: two versions of random 
forest (RF) and two versions of generalized gradient boosting meth-
ods. We used the ranger module in R (R Core Team, 2019) with reg-
ular and random number of splits for the two versions of RF, and 
the gbm and Xgboost modules for the two versions of boosting. The 
RF approach is a well-known solution to the overfitting problem of 
individual decision trees by building a forest of decision trees from 
bootstrapped data and further de-correlating it by randomly choos-
ing a subset of predictors to reduce variance. RF has been used ex-
tensively to make reliable predictions with low bias and variance for 
multidimensional data that are nonlinear and exhibit interactions 
(Cutler et al., 2007; Prasad, Iverson, & Liaw, 2006). The version of 
RF with random number of splits, known as extremely randomized 
forest (ERF), takes this one step further by creating p random pre-
dictor splits in each node (in contrast with RF, which chooses the 
‘best’ split), independent of the response variable and then the split 
with the best gain (mean-squared error for regression) is chosen. The 
rationale is that by randomizing the split the variance is further re-
duced, but with a slight increase in model bias. To compensate, ERF 
typically uses the entire learning sample instead of a bootstrapped 
one to keep the bias low (Geurts, Ernst, & Wehenkel, 2006).

Boosting is a method of iteratively converting weak learners (re-
gressors that are weakly correlated with the true model) to strong 
ones using decision trees as the base learner by reweighting obser-
vations that have higher errors. Stochastic gradient boosting (gbm 
module in R) reduces variance by shrinkage (regularization) and sto-
chasticity in which each newer iteration of the model learns from 
the previous one by minimizing residuals based on the shrinkage pa-
rameter (Friedman, 2002). Xgboost is a slightly different approach to 
boosting which implements an enhanced regularization technique to 
limit overfitting (Chen & Guestrin, 2016).

The MME approach is best used where prediction uncertainty 
needs to be stabilized to yield more robust predictions that reflects 
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the consensus (Jones & Cheung, 2015; Martre et al., 2015) by aver-
aging individual model errors (Zhang, Huang, et al., 2015; Zhang, Liu, 
et al., 2015). It further minimizes bias and variance (Hastie, Tibshirani, 
& Friedman, 2009) as well as prediction error while extrapolating 
current prediction to future climates. Only predictions where there 
was ‘consensus’ among all models (i.e. where all models predicted 
nonzero values) were averaged to ensure that the main trends were 
captured. For the multimodel approach to work well, the models 
should be based on a similar framework (in our case, decision trees) 
but should adopt structurally different approaches (the different ap-
proaches to random forest and boosting) so that the final ensemble 
averages these heterogeneous approaches (Tebaldi & Knutti, 2007). 
The MME also helps mitigate the effects of spurious model artefacts 
at the low end of the abundance spectrum. Here, the ‘consensus’ ap-
proach averages prediction signals that are present in all four individ-
ual models of the ensemble, thus highlighting the dominant patterns 
of prediction in the ensemble (Prasad, 2018).

2.4 | MME validation

The four models used in the ensemble have built-in validation meth-
ods that ensure that the models do not overfit and provide estimates 

of their predictive accuracy. For example, in Random Forest, the 
training is performed using a bootstrap sample (with replacement), 
which included 2/3 of the data. At each iteration of the bootstrap 
sample, the remaining data (called out-of-bag, OOB) are used to 
measure the predictive accuracy of regression trees grown from the 
bootstrap sample; these errors are aggregated to obtain the OOB 
error rate (Svetnik et al., 2003). With large datasets like ours, where 
the number of observations far exceeds the number of predictors, 
and with large numbers of decision trees (1,000 in our case), the 
OOB error rate matches very closely with the cross-validation error 
rate from separate training and test datasets (Hastie et al., 2009). 
For boosting, cross-validation was performed (we used 10-fold) to 
calculate an estimate of the generalization error using 1,000 trees. 
There was close correspondence between the error rates of Random 
Forest and stochastic gradient boosting, and we therefore calcu-
lated the average R-square to estimate overall model performance 
(Table 1).

To ensure that we chose the optimal parameters for the random 
forest and boosting variants in our ensemble, we used a package 
called caret in R which streamlines the model training process for 
complex regression and classification problems by doing a strati-
fied random split of the data into training and test sets. These two 
sets are used to evaluate the effect of tuning parameters on model 

Climate Abb. Climate variable

mat Mean annual temperature (°C)

mwmt Mean temperature of the warmest month (°C)

mcmt Mean temperature of the coldest month (°C)

td Difference between MCMT and MWMT, as a measure of continentality (°C)

map Mean annual precipitation (mm)

msp Mean summer (May to Sep) precipitation (mm)

ahm Annual heat moisture index, calculated as (MAT + 10)/(MAP/1000)

shm Summer heat moisture index, calculated as MWMT/(MSP/1000)

dd0 Degree-days below 0°C (chilling degree-days)

dd5 Degree-days above 5°C (growing degree-days)

nffd The number of frost-free days

bffp The Julian date on which the frost-free period begins

pas Precipitation as snow (mm)

emt Extreme minimum temperature over 30 years

ext Extreme maximum temperature over 30 years

eref Hargreaves's reference evaporationa 

cmd Hargreaves's climatic moisture deficita 

mar Mean annual solar radiation (MJ/m2 d−1) (excludes areas south of US)

rh Mean annual relative humidity (%)

tave_sm Summer (Jun to Aug) mean temperature (°C)

ppt_wt Winter (Dec to Feb) precipitation (mm)

aFor more information, see: Wang, T., Hamann, A., Spittlehouse, D. L., & Murdock, T. Q. (2012). 
ClimateWNA-High-Resolution Spatial Climate Data for Western North America. Journal of Applied 
Meteorology and Climatology, 51(1), 16–29. Hargreaves G., Allen R. (2003). History and Evaluation 
of Hargreaves Evapotranspiration Equation. Journal of Irrigation and Drainage Engineering, 129(1), 
53–63. 

TA B L E  2   The 21 climate variables used 
as predictors in the HQ (MME) model
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performance and choose the optimal model across these parameters 
(Kuhn, 2008).

Finally, our approach to average only the consensus of the four 
models in the ensemble ensured we chose the most dominant trend 
across these models, further boosting our confidence in the final 
result.

2.5 | Estimation of colonization potentials

Colonization likelihoods (CL) were computed for each species 
using a long-distance migration model that incorporates current 
abundance, historical migration rates and current habitat frag-
mentation (Schwartz, 1993). Simulation of long-distance migration 
was implemented via a fat-tailed inverse power function at a cell 
resolution of 1 km. The likelihood of an unoccupied cell becom-
ing colonized by a particular species during each generation is a 
function of that species’ abundance in the surrounding cells, the 
habitat quality of the unoccupied cell (must have at least 10% per 
cent forest cover, to ensure that it is a habitable cell) and a search 
window distance function. The colonization likelihood for each 
unoccupied cell is calculated by summing over all occupied cells at 
each generation. The stochastic nature of the tail of the long-dis-
tance migration is simulated by drawing a random number from an 
even distribution and comparing it with the calculated likelihood 
to determine if the cell gets colonized. Simulation using multiple 
historical migration rates and application to multiple species was 
made feasible by using convolution and Fast Fourier Transforms to 
keep the computation time to a minimum (Prasad et al., 2013). For 
this study, we use an optimistic, but historically defensible migra-
tion rate of 50km/century for all species and a generous search 
window of 500 km (to accommodate stochastic long-distance dis-
persals) as the limit for migration within each generation. These 
estimates are generally at the higher end of reported tree migra-
tion rates (Davis, 2001; McLachlan & Clark, 2004; McLachlan, 
Clark, & Manos, 2005; but see Snell & Cowling, 2015; Ordonez 
& Williams, 2013). We deliberately chose not to parameterize 
individual species migration rates owing to large uncertainties in 
life histories and dispersal syndromes among the 25 tree species 
(Iverson et al., 2004).

A recent improvement to this model (cf. Prasad et al., 2013) in-
volved relaxing the requirement for a rigid source–sink boundary 
along the migration front by allowing it to opportunistically col-
onize suitable cells throughout the current range of the species. 
This produces a more realistic migration scenario where coloni-
zation can happen within the gaps in the current distribution (in-
filling or interpolating) as well as at range boundaries (migrating/
outfilling). Each species is allowed to migrate based on its current 
distribution and generation time with no climatic constraints, for 
approximately 100 years. This ensures that in spite of having a 
common migration rate, the landscape is colonized based on indi-
vidualistic species responses. The number of generations (model 
iterations) required to simulate ~100 years of migration varies 

among species depending on their generation time (which varies 
between 14 and 33 years for the species in this study). For exam-
ple, for purposes of our models, sugar maple requires ~33 years/
generation—that is time to maturity (=3 generations in 100 years), 
and newly colonized cells can only contribute to colonization in the 
next generation since the propagules have to mature. For more de-
tails on the migration model, see Prasad et al., 2013 and Schwartz, 
Iverson, & Prasad, 2001. The migration model was implemented in 
the Julia scientific programming language, to take advantage of its 
computing capabilities and speed (Bezanson, Edelman, Karpinski, 
& Shah, 2017).

2.6 | Combining suitable habitats and colonization 
likelihoods

The habitat quality (HQ) based on relative abundance is estimated by 
the MME model for the RCP 4.5 and RCP 8.5 scenarios. Outputs are 
scaled 0 to 100, where 0 represents absence and 100 represents the 
maximum where the cell contains monotypic stands of that species. 
These outputs were reclassified into three classes: low (1–5), me-
dium (6–15) and high (16–100). The current distribution of relative 
abundance based on FIA and NFI (scaled 0–100) was also classified 
into three classes—low, medium and high—based on the HQ catego-
ries described above.

Similarly, the colonization likelihoods (CL) estimated by the mi-
gration model (scaled 0 to 100 where 0 represents no colonization 
and 100 the maximum colonization likelihood) for ~100 years were 
also reclassified into uncolonized (0), low (1–10), medium (11–50) and 
high (51–100). These two reclassified rasters were combined to yield 
12 combination classes—HQlow/CLnull, HQlow/CLlow, HQlow/
CLmed, HQlow/CLhi; HQmed/CLnull, HQmed/CLlow, HQmed/
CLmed, HQmed/CLhi; HQhi/CLnull, HQhi/CLlow, HQhi/CLmed, 
HQhi/CLhi. Note that CLnull refers to the uncolonized class.

The reclassification schemes were based on heuristics after ex-
amining the HQ and CL distribution patterns of all 25 tree species. 
The colour scheme (Figure 1) to depict the combination of HQ and 
CL classes was chosen to highlight the interplay of HQ and CL as well 
as the absence of CL (CLnull) in areas where HQ is present. Areas 
of future predicted HQ, where CL is absent (i.e. where the species 
cannot migrate, CLnull), are depicted in shades of grey increasing in 
darkness from HQlow/CLnull, HQmed/CLnull, HQhi/CLnull in that 
order. If the species is currently present (according to FIA or NFI-
kNN estimates), it is depicted as black to distinguish it from future 
scenarios. The areas where HQ is low (HQlow) and CL increases 
from low to high (HQlow/CLlow, HQlow/CLmed, HQlow/CLhi) are 
in progressively darker shades of yellow; areas where HQ is me-
dium (HQmed) and CL increases from low to high (HQmed/CLlow, 
HQmed/CLmed, HQmed/CLhi) are in progressively darker shades 
of blue; and where HQ is high (HQhi) and CL increases from low 
to high (HQhi/CLlow, HQhi/CLmed, HQhi/CLhi) are in progressively 
darker shades of green. This colour scheme helps distinguish those 
areas that are modelled to be colonized (coloured) from those that 
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are suitable, but not colonized (shades of grey), and those that are 
currently occupied (black).

2.7 | Temporal matching of HQ and CL

As can be expected, combining suitable habitats and colonization 
likelihoods through time poses a problem because of the approximate 
temporal periods of the various data and model outputs. The current 
distribution of the species was based on data that spanned from ap-
proximately 2008–2017 from the FIA and NFI-kNN data. The species 
were allowed to migrate for ~100 years and CL was calculated rela-
tive to this current distribution. Because future climatic habitats (HQ) 
for RCP 4.5 and 8.5 were based on the 2071–2100 equilibrium sce-
narios, and the current climate spanned 1981–2010, future temporal 
matching of HQ and CL is approximate. We have therefore assumed 
that allowing the species to migrate ~100 years with a slight temporal 
overshoot is justified for combining HQ and CL rather than a prema-
ture termination of colonization (Figure 1). Further, we found that this 
approximation does not alter the outcome of this work to any appreci-
able degree.

3  | RESULTS

The results demonstrate the importance of migration constraints, 
where only portions of future suitable habitats (HQ) are predicted 
to be colonized by 2,100. We modelled, mapped and calculated 
various statistics for the combinations of HQ and CL for 25 tree 
species (Table 1) that span the USA–Canada border and used 
sugar maple (Acer saccharum) as an example to illustrate the dy-
namics of colonization of suitable habitats under future scenarios. 
Additionally, we illustrate the potential HQ lost, gained and re-
tained and report the per cent colonization of the newly suitable 
habitats. We also assess the overall trends of HQ and CL for the 
25 species. The maps for all 25 species are available in the Data 
Availability section.

3.1 | HQ Model performance

The combined R-square for the HQ models, based on an average of 
the random forest and stochastic gradient boosting models, shows 
that model reliability varied widely among the 25 species (Table 1), 
averaging 0.49, with a median of 0.52, minimum of 0.11 and maxi-
mum of 0.88. Six species had R-square values below 0.3, including 
silver maple (Acer saccharinum; 0.11), bitternut hickory (Carya cor-
diformis; 0.18), bur oak (Quercus macrocarpa; 0.21), black walnut 
(Juglans nigra; 0.22), eastern hophornbeam (Ostrya virginiana; 0.23) 
and American elm (Ulmus americana; 0.27). Outputs for these spe-
cies should be used with this caveat in mind. Additionally, these 
metrics indicate the strength of climatic controls on each species’ 
distribution. The six species with low R-square values, for example, 

exhibit patchy distributions that appear to be weakly correlated with 
regional climatic patterns.

3.2 | Habitats lost, gained and retained

Sugar maple (Acer saccharum) is currently distributed primarily in the 
eastern United States (Figure 2), but also extends into southern Ontario 
and Quebec as well as the coastal regions of eastern Canada. Little's 
range extent (Little, 1971, used extensively for tree species ranges in 
North America; red line in Figure 2) for this species agrees closely with 
the current distribution based on the FIA and NFI-kNN abundance 
estimates. Tracking habitat lost, gained and retained (Figure 3a,b) is 
useful for gauging how the HQ model is predicting the dynamics of 
changes in abundance (HQ) under future climates, without consider-
ing migration. The amount of habitat lost (shades of red in Figure 3) 
is much less than that gained (shades of green) or retained (shades of 
blue), because sugar maple extends its habitat northward under warm-
ing climates. The area of habitat lost is greater for RCP 8.5 compared 
to RCP 4.5, especially in the southern range of the species. The amount 
of habitat gained in Canada is much greater than the United States, 
although much of the habitat gained is in the low and medium HQ 
classes. The majority of new habitat in the United States is found in 
Alaska, especially under RCP 8.5; though there is little chance that the 
species would migrate there naturally within the next century as de-
termined by the HQCL analysis in the next section. It should be noted 
that the habitats retained (shades of blue, Figure 3) show how portions 
of the area currently occupied are projected to fare based on future 
predictions by the HQ model. The maps of habitat lost, gained and re-
tained for all 25 species are provided in the Data Availability section.

F I G U R E  2   Relative abundance (RIV) and current distribution 
of Acer saccharum (sugar maple) based on USA’s FIA and Canada's 
NFI-kNN spatial datasets. The low, medium and high classes are 
reclassifications of RIV. See Methods section for details on the 
merger of these two spatial datasets. The red line is the Little's 
range boundary



     |  1149PRASAD et Al.

3.3 | Quantifying Habitat Quality and 
Colonization Likelihood

The combination of HQ & CL (Figure 4a,b) allows for the evaluation 
of future suitable habitats, both where there is virtually no chance 
of natural colonization (HQCL combinations with CLnull—shades 
of grey), and where colonization is more likely (coloured HQCL 

combinations—shades of yellow, blue and green). The black areas 
show the current distribution (FIA + NFI-kNN) of sugar maple to con-
trast it from those that show HQ and CL combinations under future 
climates. Under future climate, substantial amounts of uncolonized 
suitable habitat appear to the north and northwest of the current 
sugar maple distribution (Figure 4, shades of grey). This is particu-
larly true for the warmer RCP 8.5, which projects suitable habitat 

F I G U R E  3   Acer saccharum (sugar maple) habitats lost, gained and retained by the end of the century under the RCP 4.5 (a, left) and RCP 
8.5 (b, right) emissions scenarios. Shades of red (habitat lost), green (habitat gained) and blue (habitat retained) depict three classes of habitat 
quality (HQ)—low, medium and high—which are reclassifications of raw HQ values. Note that retained habitat cells present predicted, not 
current, HQ values

F I G U R E  4   Acer saccharum (sugar maple) future suitable habitats (HQ) combined with colonization likelihoods (CL) under the RCP 4.5 
(a, left) and RCP 8.5 (b, right) emissions scenarios. Currently occupied regions are shown in black. Shades of yellow (HQlow; CLlow; HQlow; 
CLmed; HQlow; CLhi), blue (HQmed; CLlow; HQmed; CLmed; HQmed; CLhi) and green (HQhi; CLlow; HQhi; CLmed; HQhi; CLhi) depict 
the three classes of HQ (low, med and hi) and CL (low, med, hi), which are reclassifications of raw HQ and CL values. See section Combining 
suitable habitats and colonization likelihoods for a description of how the classes were combined
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as far north and west as Alaska. Of the HQ that shows colonization, 
areas of ‘infilling’ migration are apparent in the mid-western United 
States (Figure 4, shades of yellow denoting lower HQ), where appar-
ent gaps in the current distribution become colonized, in addition to 
some westward migration. Central Ontario and Quebec in Canada 
show higher combinations of HQ and CL (Figure 4, shades of blue 
and green) denoting ‘outfilling’ migration at the edge of the species 
range. Maps of HQCL combinations for all 25 species are provided in 
the Data Availability section.

3.4 | Habitat dynamics, all 25 species

In addition to the species-specific maps and graphs, assessing all 25 
species together provides insights into general patterns in habitat 
and colonization dynamics. This analysis also allows comparison of 
the HQ gained and lost for the two climate scenarios (RCP 4.5 and 
RCP 8.5) separately for the United States and Canada (Figure. 5, 6, 7 
& 8), as well as the per cent colonized in all the newly gained habitats 
(Figure 9).

For the United States, the trends in suitable habitats gained 
(Figure 5a,b) do not change dramatically between the two climate 
scenarios, except for generally more widespread habitat gains under 
the RCP 8.5 scenario for many species. For Canada (Figure 6a,b), 
there are much larger increases in habitat gained under the RCP 8.5 
scenario compared to the RCP 4.5 scenario. This is consistent with 
the greater warming, and consequently larger northward shifts, as-
sociated with RCP 8.5 scenario. However, the degree to which spe-
cies exhibited differential responses to the two emissions scenarios 
appear tied to current range location, with boreal species (e.g. black 

spruce) that are already close to the northern boundaries of the 
continent showing less change between scenarios, while more 
southerly positioned species (e.g. sugar maple) exhibiting much 
greater gains under RCP 8.5. Additionally, it is primarily the low 
and medium HQ classes that increase in both countries (blue and 
orange), much less of the high HQ (grey) changes except for a few 
species. For example, bur oak (Quercus macrocarpa) gains nearly a 
million square km of high HQ habitat under RCP 8.5 in Canada. For 
species that show large gains in suitable habitat, a major portion of 
the gain for the United States is due to the expansion of habitats 
into Alaska.

Generally, there is a greater amount of habitat lost in the con-
terminous United States (under RCP 8.5 as compared to RCP 4.5 
- Figure 7a,b). As noted above, our study did not include FIA plots 
in Alaska (due to limited spatial coverage)—so, current habitats are 
absent, but future habitats are present due to HQ model predic-
tions. The quality of habitat lost varies across species; however, 
balsam fir (Abies balsamea; under RCP 8.5), tamarack (Larix laricina), 
black spruce (Picea mariana), jack pine (Pinus banksiana), eastern 
white pine (Pinus strobus), northern white cedar (Thuja occidenta-
lis), eastern hemlock (Tsuga canadensis), quaking aspen (Populus 
tremuloides) and white oak (Quercus alba) all lost considerably 
more high-quality habitat than either of the other HQ classes. The 
amount of habitat lost was generally lower in Canada (Figure 8a,b) 
because most species expand their habitats northward under 
climate warming. However, significant habitat losses were pro-
jected for primarily northern species such as black spruce (Picea 
mariana; especially under RCP 8.5, for which a sizeable amount of 
high-quality habitat is lost), jack pine (Pinus banksiana; especially 
under RCP 4.5 for which a sizeable amount of low-quality habitat 

F I G U R E  5   Area of low-, medium- and high-quality habitat gained by 25 tree species in the United States by the end of the current 
century under RCP 4.5 (a, left) and RCP 8.5 (b, right). The low, medium and high classes are reclassifications of predicted suitable habitats
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is lost) and balsam poplar (Populus balsamifera). Conversely, tem-
perate hardwood species, such as white oak (Quercus alba) and 
black cherry (Prunus serotina), had most of their habitat losses in 
the United States. Note that the amount of habitat gained (Figures 
5 and 6) is often an order of magnitude larger compared to habitat 
lost (Figures 7 and 8).

3.5 | Colonization likelihood of gained habitats

While climatically suitable habitats generally increase for most 
species in the future, a relevant consideration is the likelihood 
of these habitats being naturally colonized in a similar time 
frame. Areas with positive combinations of both HQ and CL 

F I G U R E  6   Area of low-, medium- and high-quality habitat gained by 25 tree species in Canada by the end of the current century under 
RCP 4.5 (a, left) and RCP 8.5 (b, right). The low, medium and high classes are reclassifications of predicted suitable habitats.

F I G U R E  7   Area of low-, medium- and high-quality habitat lost by 25 tree species in the United States by the end of the current century 
under RCP 4.5 (a, left) and RCP 8.5 (b, right). The low, medium and high classes are reclassifications of predicted suitable habitats
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F I G U R E  8   Area of low-, medium- and high-quality habitat lost by 25 tree species in Canada by the end of the current century under RCP 
4.5 (a, left) and RCP 8.5 (b, right). The low, medium and high classes are reclassifications of predicted suitable habitats

F I G U R E  9   The percentage of newly 
gained habitat that was projected to 
be colonized by the end of the current 
century for 25 tree species under RCP 4.5 
and RCP 8.5 emissions scenarios
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were projected to have some probability of colonization within 
~100 years under future climates (e.g. coloured cells in Figure 4), 
as compared to cells that had essentially no chance of colonization 
(grey cells in Figure 4). For each species and emissions scenario, 
we calculated the percentage of new habitats (depicted as shades 
of green—GainLow, GainMedium and GainHigh, in Figure 3) that 
have the potential to be colonized (Figure 9). In general, the pro-
portion of habitats colonized is much higher under RCP 4.5 than 
for RCP 8.5, reflecting the greater amount—and more northerly 
distribution—of habitat gained under RCP 8.5. For example, for 
sugar maple, only 17 per cent of the habitat gained under RCP 8.5 
has any potential to be colonized (CL > 0), compared to 40 per cent 
under RCP 4.5. For some species the per cent colonized, especially 
under RCP 8.5, is rather low (e.g. eastern hemlock—Tsuga canaden-
sis, eastern white pine—Pinus strobus) and may require special at-
tention from managers. Species that currently occupy widespread 
northern habitats (e.g. black spruce—Picea mariana, tamarack—
Larix laricina, jack pine—Pinus banksiana) do not show appreciable 
difference between RCP 4.5 and RCP 8.5 scenarios.

4  | DISCUSSION

To our knowledge, this is the first attempt to combine the forest 
inventories of the United States and Canada to model range-wide 
habitat suitability, using a continuous response variable of rela-
tive abundance in combination with potential tree migration under 
climate change. In the following sections, we first discuss species 
dynamics by evaluating changes in suitable habitats (HQ) and then 
focus on how colonization likelihood (CL) computed by the migration 
model supports a more realistic picture of HQCL dynamics.

4.1 | Changes in suitable habitats and management 
implications

Changes in climatically suitable habitats provide useful metrics 
to understand how habitat expansion under future climates can 
impact the United States differently compared to Canada. The fu-
ture habitat projections also provide a visual map of the altered 
climatic landscapes in which these species will exist in the future. 
Many species that are currently in the eastern United States are 
projected to gain suitable habitat in Canada. The maps of habi-
tats gained, lost and retained (Figure 3, and Data Availability sec-
tion), and the multispecies summaries for each country separately 
(Figures 6 to 9), show how these dynamics play out for individual 
species, which is useful for forest managers in both countries. 
Species whose current range is primarily in the United States 
(red maple—Acer rubrum, silver maple—Acer saccharinum, sugar 
maple—Acer saccharum, white ash—Fraxinus americana, bigtooth 
aspen—Populus grandidentata, northern red oak—Quercus rubra) 
and especially those that just reach the southern edge of Canada 
(bitternut hickory—Carya cordiformis, black walnut—Juglans nigra, 

eastern hophornbeam—Ostrya virginiana, black cherry—Prunus 
serotina, white oak—Quercus alba, bur oak—Quercus macrocarpa, 
American elm—Ulmus americana) are expected to gain habitat in 
Canada in the future under both RCP 4.5 and RCP 8.5 scenarios 
and lose habitat in the United States (Figures 6 to 9).

All 25 species gained more habitat than they lost under fu-
ture warming scenarios, often by an order of magnitude (Figures 
6, 7 versus Figures 8, 9). The species that are projected to have 
the highest gains in the United States include silver maple (Acer 
saccharinum), black walnut (Juglans nigra), bur oak (Quercus mac-
rocarpa) and American elm (Ulmus americana)—these species have 
relatively low R-square values (Table 1), so these outcomes should 
be interpreted cautiously. The species projected to suffer the 
greatest losses in habitat quantity and/or quality within the United 
States include quaking aspen (Populus tremuloides), bigtooth aspen 
(Populus grandidentata), paper birch (Betula papyrifera), yellow 
birch (Betula alleghaniensis), eastern hemlock (Tsuga canadensis), 
white pine (Pinus strobus), white oak (Quercus alba) and red maple 
(Acer rubrum)—the latter three of which are of major commercial 
importance, followed by aspen and birch. White pine (Pinus stro-
bus), white oak (Quercus alba) and red maple (Acer rubrum) are also 
projected to increase their habitats elsewhere within the United 
States, but the bulk of the newly gained habitat is in the lowest 
HQ class. Our models do not show an overall major threat for the 
sugar maple industry currently or in the future in the northeast 
(Figure 3), although habitat losses are projected for locations 
where the industry is currently not prominent, primarily in the 
southern states of the United States. In Canada, most species 
gained habitat along the northern edge of their ranges, including 
species that are currently limited to the far southern portion of 
the country such as black walnut (Juglans nigra) and bitternut hick-
ory (Carya cordiformis). Most habitat loss was associated with the 
southern range limits of boreal species such as black spruce (Picea 
mariana), jack pine (Pinus banksiana) and quaking aspen (Populus 
tremuloides). These are all major commercial species and such 
losses could have important implications for forest industry in the 
longer run (Pedlar & McKenney, 2017).

In the United States, almost all species lost more habitats under 
the harsher RCP 8.5 scenario compared to RCP 4.5 (Figure 7). In 
Canada, this trend is reversed, with the notable exception of black 
spruce (Picea mariana; Figure 8). This pattern is consistent with the 
notion that habitats will shift further northward under more extreme 
warming scenarios. For many species in our study, this translates into 
habitat gains in Canada, though northern species that already ex-
tend to nearly the northern land limits of the continent (e.g. black 
spruce - Picea mariana) would be expected to gain little habitat from 
such shifts.

The loss of the high HQ class is greater relative to low and me-
dium HQ (Figure 7) for the United States, which is cause for con-
cern. The extent of this trend varies among species, but should be 
factored into management protocols. More focused management in 
areas where the models are depicting this trend may be warranted. 
In Canada, although the amount of habitat lost is lower compared to 
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the United States, black spruce, balsam poplar and quaking aspen 
all lose sizeable amounts of habitat. In fact, quaking aspen (Populus 
tremuloides) loses a significant amount of high-quality habitat in both 
the United States and Canada. While these losses in habitat are 
cause for concern, species like black spruce (Picea mariana) are also 
quite opportunistic and can colonize relatively rapidly under chang-
ing conditions (Joyce & Rehfeldt, 2017; Truchon-Savard et al., 2019).

The magnitude of the habitat losses reported here is relatively 
small compared to those reported in some earlier studies. For exam-
ple, McKenney, Pedlar, Lawrence, Campbell, and Hutchinson (2007b) 
reported that over half of the tree species in their study were pro-
jected to have smaller climatic niches in the future (compared to 
none in the current study)—with the majority of losses happening at 
species’ southern range limits. One reason for these different find-
ings may be the use of abundance (as opposed to occurrence) data 
in the current study, which allows for a more detailed (and nuanced) 
delineation of suitable habitat. In fact, for many of the species exam-
ined here, southern range limits are projected to remain relatively 
intact, albeit with reduced habitat quality. Thus, while leading-edge 
habitats are projected to expand rapidly due to greater warming at 
these latitudes, trailing-edge populations may remain viable, but 
subject to greater climatic stress. Findings such as this illustrate the 
value of the range-wide abundance data employed here.

For the United States, the state of Alaska is poised to gain climat-
ically suitable habitat for many of the 25 species according to our HQ 
model under both RCP 4.5 and RCP 8.5, but with the latter result-
ing in greater gains of high-quality habitat (Figure 3—see Appendix 
for maps of habitats lost, gained and retained for all 25 species). 
This finding reflects the rapid rate of warming projected for the 
north-western region of North America (Bintanja, 2018; Coumou, Di 
Capua, Vavrus, Wang, & Wang, 2018; Goosse et al., 2018). This gain 
in HQ via Alaska signals future potential possibilities for the United 
States, but, as indicated by our colonization models, many species 
would have essentially no chance of reaching this region by means 
of natural migration by the end of the century, as discussed in the 
next section.

4.2 | Colonization of suitable habitats—HQCL 
combinations

While our HQ models provide valuable insights into future habi-
tat shifts, it is well understood that only a portion of future suit-
able habitats will be naturally colonized by the end of the century. 
Therefore, the combination of HQ with CL allows for a more realistic 
assessment of the future habitat occupancy by incorporating coloni-
zation likelihoods of future suitable habitats based on an optimistic 
historical migration rate of ~50 km/century (Figure 4, online maps). 
As might be expected, the area of HQ colonized is much smaller 
than that uncolonized for most species (grey shades dominate over 
coloured ones in Figure 4, especially under RCP 8.5). However, for 
species with scattered, spotty distributions (e.g. bitternut hickory—
Carya cordiformis, black cherry—Pinus serotina, black walnut—Juglans 

nigra, white ash—Fraxinus americana, silver maple—Acer saccharinum, 
eastern hophornbeam—Ostrya virginiana), the per cent colonized is 
quite high because there is a lot of infilling migration wherein gaps in 
the current distribution are colonized. For the remaining species, that 
are more continuous in distribution (e.g. balsam fir—Abies balsamea, 
sugar maple—Acer saccharum, yellow birch—Betula alleghaniensis, 
black spruce—Picea mariana and bur oak—Quercus macrocarpa), the 
per cent colonized is much lower because the majority of coloniza-
tion tends to be ‘outfilling’ at the range borders. These species also 
tend to have larger future habitat envelopes that extend far beyond 
current range limits, which further contributes to their low coloniza-
tion percentages. It should be noted that these are optimistic re-
sults because we consider all suitable habitats, and any likelihood of 
colonization—including rare events. However, this approach is useful 
for comparison purposes as it should not alter the relative variation 
among the 25 species.

These findings (Figure 9, Figure 4 and rest of the maps in Data 
Availability section) can help to identify suitable conservation strat-
egies for the various tree species examined here. For example, for 
the species listed above with considerable potential for infilling mi-
gration, efforts could focus on facilitating within-range movements, 
while for those species relying primarily on migration at range edges, 
efforts aimed at assisted range expansion may be appropriate. Our 
results suggest that differing approaches could be featured in the 
two countries—for example, a focus on within-range conservation in 
the United States and range expansion in Canada. These contrasting 
situations require different approaches, but a common paradigm of 
international cooperation to combat the consequences of rapid cli-
mate change.

4.3 | Role of assisted migration

As outlined above, this study identifies a number of situations in 
which various forms of assisted migration could be considered as 
potential tools for promoting forest conservation and adaptation 
under climate change (Pedlar et al., 2012). Within-range movements 
of climatically suitable genotypes represent a relatively low-risk 
form of assisted migration that could help better align population-
level climate preferences with projected future climate (Ste. Marie, 
A. Nelson, Dabros, & Bonneau, 2011). Such movements would be 
particularly useful for encouraging within-range colonization (i.e. 
infilling migration), which was identified as a potential source of 
habitat gain for many species in the current study. For example, the 
infilling migration could focus on encouraging species to establish 
in more mesic landscape positions, to combat the forecasts of in-
creasing drought, or simply to manage for increasing the species 
abundance in their current positions for enhanced potential for local 
expansion. Near-range movements, which aim to assist range expan-
sion at northern/upslope boundaries (Ste. Marie et al., 2011), are an-
other form of assisted migration that could be employed to promote 
forest conservation under climate change. In this case, HQCL maps 
such as those presented here, by highlighting both ‘infilling’ and 
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‘outfilling’ migration, could be used to identify general planting loca-
tions that aim to mimic natural migration patterns. For example, the 
focus could be in assessing regions just beyond the colonized areas 
(the coloured regions in Figure 4) for assisted migration. Such efforts 
may be required in the event that migration rates are slowed due 
to human-made and/or natural barriers. Finally, assisted migration 
efforts that involve long-distance movements well beyond current 
range limits (Ste-Marie et al., 2011) may be of interest for certain 
species and regions. As noted above, Alaska is projected to gain suit-
able habitat for nearly every species in this study. However, for tem-
perate tree species that are currently limited to the eastern United 
States and south-eastern Canada (i.e. 15 of the 25 species examined 
here), translocation to Alaska would involve movement distances on 
the scale of thousands of kilometres and the creation of highly novel 
species assemblages. Such movements have been the source of on-
going ethical and ecological debate (Aubin et al., 2011) and would 
require careful assessments before being undertaken.

Proactive efforts to elucidate climate responses by trees, includ-
ing carefully designed provenance trials in regions of interest, could 
have concrete benefits in the future. HQ and HQCL maps, such as 
those presented here, can be very helpful in evaluating the suitabil-
ity of test sites, along with post-model filters to censor areas that 
are unsuitable in terms of land cover, elevation or edaphic factors. 
Regardless of the exact approach taken, efforts to conserve forest 
habitats across United States (including Alaska) and Canada will 
call for close cooperation between the two countries, not only for 
mitigating ill effects, but also for realizing the opportunities these 
changes offer.

4.4 | Post-model filter

Even though a sizeable portion of the gained climatic habitats are 
colonized according to our models (Figure 9), these are estimates 
under a full climatic response and optimistic historical migration rate 
(50 km/century). While these ‘first-stage’ estimates give us reason-
ably good approximations for how the species are likely to respond 
under future climates, they do not consider ground realities like land 
cover, topography and soils that can modify the outcomes for spe-
cies. This was intentional, given that we wanted to focus on climate 
and not confound the HQ model with extraneous considerations. 
While we cannot accurately predict how land cover will change in 
the future, current land use patterns can help determine where 
management activities, such as assisted migration efforts, could be 
implemented. To explore the use of post-model filters, we used the 
North American land cover map (NALC, 2010, a 30-metre Landsat-
based dataset that distinguishes 19 land cover classes and vegetation 
types) to mask certain land cover classes from our sugar maple HQ 
map. Specifically, we filtered cells where current land cover would 
preclude forest establishment (i.e. cells classified as water, per-
mafrost, barren land, cropland, urban/built-up land and wetlands). 
According to our HQ model, under the RCP 8.5 scenario (Figure 3, 
right), approximately 4.31 million km2 of HQ-low, 2.5 million km2 of 

HQ-medium and 0.38 million km2 of HQ-high become available by 
the end of the current century. These amounts, with the land cover 
mask overlaid, shrink by 35% for HQ-low; 20% for HQ-medium; and 
9% for HQ-high. Additionally, in line with our multistage scheme, re-
gions where topography, soil depth or type (Carteron et al., 2020) 
are major modifiers can be further filtered or modelled by more ac-
curate regional databases, depending on the interest/expertise of 
the manager, to produce locally relevant maps.

4.5 | Limitations and strengths of the 
FIA + NFI approach

One of the novel aspects of this study is the combination of relative 
importance data (derived from the USA’s FIA dataset) with per cent 
composition data (derived from Canada's NFI-based data product), 
which allowed us to model the entire range of almost all the spe-
cies considered here. Though there are differences between the two 
data sources, and the merger of FIA and NFI data while not optimal, 
can be justified in terms of ‘information gain’ derived from our MME 
approach for predicting HQ. Additionally, because FIA data were 
not available for interior Alaska that area could not contribute to the 
MME; however, these data would have included only a few species, 
such as black spruce and quaking aspen, and not changed our overall 
conclusions.

One of the consequences of post-processing of the NFI data 
(via MODIS and k-nearest neighbour approach) is that the relative 
abundance is smoothed (because it tends to eliminate the tails of 
the distribution) compared to the FIA plot-based data. This may have 
resulted in more conservative migration potentials, but our optimis-
tic assumption of the migration rate of 50 km/century should com-
pensate for this deficiency (Davis, 2001; McLachlan & Clark, 2004; 
McLachlan et al., 2005; but see Snell & Cowling, 2015; Ordonez & 
Williams, 2013).

4.6 | Future directions

An important consideration with respect to tree responses to cli-
mate change is that populations may be adapted to climate in only 
a portion of the range (i.e. local adaptation). This means that, for 
widespread species, populations may respond differently to cli-
mate across the species’ range (Leites, Rehfeldt, & Steiner, 2019; 
Peterson, Doak, & Morris, 2019). In addition, natural popula-
tions tend to occur in climates colder than where they grow the 
best—that is, populations occur in climates suboptimal for their 
growth and productivity—this discrepancy increases with the de-
gree of winter cold of the provenance (Rehfeldt, Leites, Joyce, & 
Weiskittel, 2018). However, capturing this variability across the 
entire species’ range via habitat suitability models is not possible 
without data from provenance studies and/or genetic analysis, 
which tend to be sparse or non-existent for many species. One 
way to approximately assess this variability in the absence of these 
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data is to split the range into three regions based on plant hardi-
ness zones (PHZ): leading cold-adapted, a trailing warm-adapted 
and the ‘optimal’ middle (Prasad, 2015). We are in the process of 
using this approach for the 25 species studied here to evaluate in-
traspecific variability in conjunction with the range-wide analysis 
to understand how the leading-edge and trailing-edge responses 
can be different. Our current multistage approach, when com-
bined with the analysis of intraspecific variability, will have direct 
relevance to future climatic changes because the leading and trail-
ing regions can be under greater climatic stress, although they may 
possess genotypes better adapted to extreme climates (Hampe & 
Petit, 2005; Isaac-Renton et al., 2018; Rehm, Olivas, Stroud, & 
Feeley, 2015).

In conclusion, our study underscores the importance of eval-
uating range-wide habitat suitability and colonization potential 
of tree species when examining climate change impacts on future 
tree distributions. For the species examined here, habitat losses 
were primarily experienced along southern range limits, while 
habitat gains were associated with northern range limits—though 
there was also a significant amount of infilling migration within 
the ranges of species with discontinuous distributions. However, 
even with optimistic tree migration rates, our models predict 
that, for most of the species examined here, only a small por-
tion of the climatic habitat generated by climate change will be 
colonized naturally by the end of the current century. Significant 
management efforts, including assisted migration of populations 
and species, may need to be considered in order to conserve and 
promote tree species that are deemed important for economic or 
ecological reasons. Our work highlights the need for increased 
cross-border cooperation as management demands can differ 
between the United States and Canada owing to the differing 
species-specific objectives and responses under future climates.
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