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Abstract
How are the survival and growth of trees under severe drought affected by their size? While some
studies have shown that large trees are more vulnerable to drought than smaller trees, others found
that small trees are the more vulnerable. We explored the potential relationships between canopy
height and forest responses to drought indicated by tree mortality, tree ring width index (RWI), and
normalized difference vegetation index (NDVI) in the southwestern United States (SWUS) in 2002.
In that year many trees had zero tree ring growth due to mortality and dieback, presumably related to
drought-stress. With RWI data from a tree ring data base and climate data co-located with the field
measurements, we found size-dependent linear correlations between these forest responses and
canopy height in SWUS under severe drought condition. During that drought period, both trunk
growth (RWI) and leaf growth (NDVI) were positively correlated with canopy height of the smaller
trees (less than 18 m) and negatively correlated with canopy height of greater than 18 m. Tree
mortality was negatively correlated with canopy height up to 15 m. Both local-scale and regional-scale
data are consistent in showing that forests with medium canopy height (around 18 meters) showed
the greatest resistance to severe drought. We suggest that negative impacts of severe drought on
forests could be modified with active management of canopy structure.

1. Introduction

The frequency of severe drought is increasing all
over the world (Cook et al 2014), which has caused
profound impacts on forest ecosystems (Allen et al
2010, Yi et al 2015) such as decreased forest pro-
ductivity (Ciais et al 2005, Yi et al 2010) and earlier
dormant period (Xie et al 2015). Forest mortality
is likely in a region when drought is so severe that
zero annual tree-ring growth occurs across the region
(Kolb 2015), which was defined as a drought tipping
point by (Huang et al 2015). Forests resistance to
drought or insects attack are weak around the tipping
point (i.e. narrow or missing ring growth) (Kolb 2015,

Kane and Kolb 2010, McDowell et al 2015), which is
likely related to the structure and function of forest
(Anderson-Teixeira et al 2013).

The impact of drought on forest structure and
function may be sensitive to tree size. Greater
mortality of small trees may modify future forest
succession whereas mortality of large trees causes dis-
proportionate losses of carbon reserve (Phillips et al
2010, Lindenmayer et al 2012). It has not been clear
whether large or small trees would suffer more under
drought stress. Particularly, there were two opposite
findings of size effects on forest response to drought.
Some studies indicated that small trees were more sen-
sitive to water stress (Nakagawa et al 2000, Guarı́n
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Figure 1. Percentage of severe drought (SPEI<−1.64) area in
the southwest United States (SWUS) during 2001–2014. The
percentage were calculated by the pixels (half degree) where
SPEI value less than −1.64 to the total pixels numbers (22 ×
26) in SWUS.

and Taylor 2005, Zhang et al 2017) due to their shal-
low roots and less access to water in the deep soil.
Other studies indicated that drought had a greater
impact on large trees (Aber et al 2001, Nepstad et al
2007, Zhang et al 2009, Bennett et al 2015), as they
have a greater evapotranspiration rate and higher water
demand, than smaller trees.

In this study, we attempted to reveal the relation-
ship between the growth of forests in the Southwest
and canopy height under severe drought condition.
By integrating field measurement data, remote sens-
ing data and climate data, we analyzed the drought
responses in different forests with various canopy
heights. The objective of this study was answer this
question: when a drought reaches the tipping point
that may lead to zero tree ring growth, what is the role
of canopy height in forest resistance to drought?

2. Data and method

The SWUS (Arizona, New Mexico, Colorado, and
Utah) experienced a severe drought event in 2002
(figure 1) (Cook et al 2004). The study area in this
research was the same as with (Huang et al 2015)
(figure S1 available at stacks.iop.org/ERL/13/075003/
mmedia). Many studies showed this event had a great
impact on the local forest ecosystem which resulted
in dieback and morality (Floyd et al 2009, Ganey and
Vojta 2011, Stahl et al 2013, Kane and Kolb 2014),
and have accumulated multi-source data from ground
survey to satellite observation in this region. Pinus
edulis (PIED) and Pinus ponderosa (PIPO) are dom-
inant conifer species and will be used to investigate
how canopy height impacts coniferous forest responses
under severe drought condition in SWUS.

2.1. Data
2.1.1. SPEI data
In this study, we used the Standardized Precipitation
Evapotranspiration Index (SPEI) as the indicator for

drought intensity to quantify surface water deficit and
surplus (Vicente-Serrano et al 2010, 2013). SPEI data
were obtained from the global SPEI data set, which
was based on monthly precipitation and potential
evapotranspiration from the Climatic Research Unit
(CRU) of the University of East Anglia (http://sac.csic.
es/spei/database.html). It provided SPEI timescales
between 1 and 48 months, with a 0.5 degree spatial
resolution and a monthly temporal resolution (Vicen-
teserrano et al 2010, Beguerı́a and Vicente Serrano
2016). Following results from Huang et al (2015), we
used the SPEI between the previous September and
July of the subject year to reveal the impact of canopy
height on forest response under the apparent tip-
ping point of drought in 2002 (SPEI< −1.64) (Huang
et al 2015) at which tree mortality seems to become
frequent.

2.1.2. Mortality data
We obtained data from 10 forest plots with drought-
related mortality in the SWUS from the previous
studies (figure S1, Floyd et al 2009, Negron et al 2009,
Ganey and Vojta 2011, Stahl et al 2013). The data
includedgeographic location, species (PIEDandPIPO)
and drought-related mortality. We matched those plots
to the spatial data by latitude and longitude, and
obtained their canopy heights and SPEI values from
the pixels where the plots were located. From the ten
plots for which we had data, we selected eight plots with
SPEI<−1.64 and height > 0 (table S1).

2.1.3. Tree ring data
The International Tree-Ring Data Bank (ITRDB) is
the world’s largest public archive of tree ring data,
managed by NCEI’s Paleoclimatology Team and the
World Data Center for Paleoclimatology (www.ncdc.
noaa.gov/paleo-search/?dataTypeId=18). We have
extracted geographic location, species and raw ring
width from the ITRDB. Standard chronologies were
created with the program AutoRegressive STANdard-
ization by detrending and indexing (standardizing)
from tree ring measurement series (Cook 1985). The
RWI value of 1000 represents mean growth values
while value of 0 represents no growth. We matched
those plots to the spatial data by latitude and longitude,
and obtained their canopy heights from a 1 km reso-
lution image and SPEI from a 0.5 degree image in the
SWUS (figure S1). Eighteen tree ring records from all
35 sites with SPEI<−1.64 and height > 0 were chosen
to use in this study (table S2).

2.1.4. Remote sensing data (NDVI and canopy heights)
NDVI: The responses of the subject forest to drought
were quantified through use of MODIS NDVI
(MOD13A3) (http://modis.gsfc.nasa.gov/) which
served to evaluate potential changes in forest leaf
activity (Deshayes et al 2006). These data have a spatial
resolution of 1 km and temporal resolution of monthly
and have been widely used for monitoring regional
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vegetation conditions. The increase in atmospheric
or soil water vapor resulted in a lower NDVI signal,
which can be interpreted as an actual change in leaf
growth (Pinheiro et al 2004). In this study, the NDVI
change (ΔNDVI) in the drought year of 2002 were
calculated pixel by pixel by:

ΔNDVI = NDVI2002GS − NDVI2001GS

where NDVI2002GS represents the optimum growth
condition of forest activity in the growing season (July
and August) in the drought year of 2002.NDVI2001GS
represents the optimum growth condition of forest
activity in the pre-drought year of 2001. As the compar-
ison was over different time periods at the same pixel,
it may be assumed to represent the change of growth
status caused by the drought.

Canopy height: In this study, we used the
spatial-specific forest canopy height data (1 km res-
olution) (Simard et al 2011) (figure S1), derived
from LiDAR. This dataset was downloaded from
http://landscape.jpl.nasa.gov. It provided estimated
canopy height values across the land surface, and had
good correlation with the tree height observed in the
field at both global and regional scales (Simard et al
2011, Zhang et al 2014).

Forest map: Conifer forest regions (PIED and
PIPO dominated) are defined herein by the Interna-
tional Geosphere Biosphere Programme (IGBP) as the
distribution map of the needleleaf forest cover types
from the MODIS Land Cover product (MCD12Q1),
with a spatial resolution of 500 m in 2002.

2.2. ΔNDVI average
Based on Huang et al (2015), SPEI around −1.64 is a
threshold below which there would be zero tree ring
growth. For this study we selected all the areas with
SPEI<−1.64 as the study area which was going through
a severe drought. In order to study the relationship
between leaf growth change and canopy height under
severe drought at the regional scale, ΔNDVI in the
region where SPEI <−1.64 were grouped by pixels
with the same canopy height. To avoid extreme out-
liers canopy height categories in which the proportion
pixels were less than 1‰ of the total forest pixels, were
not included.

2.3. Regression analyses
In order to reveal the relationship between forest
response and canopy height under severe drought,
three linear regression models of different forest
response indicators (drought-related Mortality, RWI
and ΔNDVI) and canopy height were established. For
the drought-related mortality and RWI, we matched
the plots with grid data to get their heights and SPEI
and the ΔNDVI were grouped by pixels with the same
canopy heights.

All regression analyses were conducted in EXCEL
(Microsoft Office 2013). All graphs were made in
IDL8.5 and Arcgis10.0.

3. Results and discussion

The relationship between the drought responses and
height of forests are shown in figure 2. When the
forest heights were less than 18 meters, there was a sig-
nificant negative (P< 0.1) linear correlation between
mortality and height, and a significant positive linear
correlation between RWI (P = 0.006) and height. It is
not surprising to see ΔNDVI also has a positive lin-
ear correlation with height for the trees <18 m height
(P< 0.001), as ΔNDVI represents the changing input
to forest growth from canopy leaves. This is interpreted
to mean that mortality was reduced with the increase
in canopy height up to 18 m both RWI and ΔNDVI
were increased with the increase in canopy height. It
is reasonable to consider short trees to be more sen-
sitive to drought when the canopy height was under
18 meter. Soil water was less available to the shallow
root system of short trees, resulting in this weaker
drought tolerance (Nakagawa et al 2000). On the other
hand, when forest heights were over 18 m, both RWI
(P = 0.065) and ΔNDVI (P< 0.001) had significant
negative linear correlation with height under severe
drought condition. We inferred from these results that
there may be a positive correlation between mortality
and height above 18 m, although we didn’t have mor-
tality data for heights over 18 m. It means both the
growth of stem and leaf were reduced with increased
height above 18 m, and that the tall trees were more
sensitive to drought when the canopy height was above
18 m. This phenomenon may result from the greater
water demand in tall trees caused by the longer water
transportation path, higher consumption to main-
tain respiration and the stronger evapotranspiration
of leaf surface (Zhang et al 2009). It might also be
associated with their vulnerability to xylem cavitation
under severe drought (Schnitzer and Bongers 2002,
Nepstad et al 2007).

Above all, our results indicated that forest resis-
tance under severe drought might be inferred from
canopy height. Both short and tall forests were sensi-
tive to severe drought, but the medium-height forests
had the least reduction in leaf (NDVI) and stem (RWI)
growth which indicates greater resistance to severe
drought. This resistance may be especially important
in an early-middle stage of forest growth as this is
the period with the strongest ability to produce and
store dry matter, i.e. carbohydrates needed for future
growth. For example, light-use efficiency (LUE), which
is a key physiological parameter for vegetation pri-
mary production, has a significant relationship with
stand age (Zhou et al 2015). The maximum LUE
appeared at the early-middle stage (Zhou et al 2015),
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Figure 2. The relationship between forest growth variables and canopy height under severe drought.

when trees can produce and store much more dry
matter, as well as water, that is available to sup-
port tree metabolism during drought. These reserves
would increase with stomatal closure as water supply
becomes limited, thereby reducing lossofwater reserves
in the tree and soil by evapotranspiration, provid-
ing increased resistance to water loss during drought
(Waggoner and Turner 1971). Another reason for the
different resistance might be because medium-size
trees have all the advantages of both large and small
trees. Compared to the larger trees, medium-size trees
have lower water demand, but compared to smaller
trees, they have a more developed root system that can
seek and absorb more soil water.

Our results helped to reconcile the two oppos-
ing hypotheses on size-dependent response to drought
and explain why they can coexist. Severe drought had
a greater impact on both small and large trees than
on medium size trees. The canopy structure should
be considered in such research, because the distri-
bution of canopy height may be skewed toward one

height class and affect the conclusion. The impact of
drought on forest heterogeneity (spatial and temporal)
also should be considered. As our results were obtained
under severe drought conditions, the conclusion with
less severe drought conditions can not be inferred.
But it is certain that differences in the drought intensity
and duration will have an impact on forest responses
(Allen et al 2010). Our results also imply that forests
with primarily short and tall trees will face a higher
risk of death and degradation as a result of climate
change. These results should help forest mangers focus
more attention on the population dynamics of forests
(Bellassen and Luyssaert 2014).

The canopy height data with spatial continuity
were derived from the LiDAR rather than from the
field observations. Forest heterogeneity and topogra-
phy will increase the error of height estimation (Lefsky
et al 2005, Duncanson et al 2010, Simard et al 2011),
but the height data used here was one of the best
descriptionsof forest vertical structure at regional scales
currently available (Simard et al 2011). Given the
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limitation of canopy and tree height from field obser-
vations, it is difficult to verify the accuracy of the height
data by measuring tree and canopy height over such a
large region. From known validation of the global and
regional scales (Simard et al2011,Zhang et al2014), it is
reasonable to assume that this set of canopy height data
correlate well with field observations. At global-scale
these canopy height data have a good correspondence
with site canopy height at 66 sites from the FLUXNET
La Thuille database (R2 = 0.69 and root-mean-square
error (RMSE) = 4.36 m). Many forest sites in this
database, located in US (Baldocchi 2008), also have a
good correlation with the field observation tree height
in different parts of China at the regional scale reported
by Zhang et al (2014) (R2 = 0.41 and RMSE = 3.15 m;
R2 = 0.64andRMSE = 4.18 m).Greenet al (2013) fused
this 1 km resolution canopy height data with higher-
resolution land cover data, resulting in 30 m resolution
estimates of canopy height. Results at 30 m resolution
showed a good correlation with reference to airborne
LiDAR data from 262 randomly located 1 km2 areas
within nine study sites (R2 = 0.77) (Green et al 2013).
It is undeniable that this canopy height data may cause
uncertainty in the results, but the canopy heights in
our study area ranged from (5–18 m) and (18–31 m),
which were larger than the regional and global errors.

4. Conclusion

In this study, we analyzed the characteristics of severe
drought responses in forests with different canopy
heights based on multi-resource data. Our results
demonstrated that when drought reached the tipping
point of SPEI <−1.64, the amount of tree mortality
and reductions in stem growth (RWI) and leaf growth
(NDVI) of the forests was correlated with canopy
height in SWUS. Both short and tall forests were more
vulnerable and susceptible to drought than medium-
height forest stands. The medium height forests had the
greatest drought resistance. Considering the increase
in the frequency and duration of severe drought in
the context of global climate change, more atten-
tion needs to be given to canopy structure in forest
management and risk assessments in the future.
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