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Abstract. Ecologists and managers are motivated to predict the distribution of animals across landscapes
as well as understand the mechanisms giving rise to that distribution. Satisfying this motivation requires
an integrated framework that characterizes multi-scale habitat use and selection, as well as builds predic-
tive models such as resource selection functions. However, the assumption of constant habitat use or selec-
tion is often made in such analyses, which ignores the possibility that individuals experiencing different
conditions might respond differently. Assessing functional responses in habitat use evaluates how animal
behavior changes with differing environmental conditions, which has basic and applied utility. Here, we
combined these ideas into an integrated process that characterizes habitat relationships, predicts habitat,
and assesses behavioral differences with changing environmental conditions. Our species of interest was
Canada lynx (Lynx canadensis) in the Northern Rocky Mountains, which is a rare and federally threatened
forest carnivore. Through our process, we developed multi-scale predictions of lynx distribution and
learned that across scales and seasons, lynx use more mature, spruce-fir forests than any other structure
stage or species. Intermediate snow depths and the distribution of snowshoe hares (Lepus americanus) were
the strongest predictors of where lynx selected their home ranges. Within their home ranges, female and
male lynx increasingly used advanced regeneration forest structures as they became more available (up to
a maximum availability of 40%). These patterns supported the bottom-up mechanisms regulating Canada
lynx in that advanced regeneration generally provides the most abundant snowshoe hares, while mature
forest is where lynx appear to hunt efficiently. However, lynx exhibited decreasing use of stand initiation
structures (up to a maximum availability of 25%). Land managers have an opportunity to promote lynx
habitat in the form of advanced regeneration, but are required to go through the stand initiation phase.
Thus, managers can apply the relative proportions of forest structure classes along with our response
curves to inform landscape actions (e.g., timber harvest) targeted at facilitating the forest mosaic used and
selected by Canada lynx. Collectively, the insights gleaned from our approach advance habitat conserva-
tion efforts and consequently are of broad utility to applied ecologists and managers.
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INTRODUCTION

Ecologists and managers alike are motivated
to understand habitat relationships of animals
and spatially predict their probability of use
(Elith and Leathwick 2009). This is particularly
true for species of conservation concern in that
the designation of “critical habitat” is required
by statutes such as the U.S. Endangered Species
Act (ESA) and Canada Species at Risk Act
(SARA). Consequently, previous researchers
have invested substantial effort to develop spa-
tial maps of habitat (i.e., probability of use) for
many species of conservation concern, including
caribou (Rangifer spp.; Johnson et al. 2004,
DeCesare et al. 2012), Amur tigers (Panthera tigris
altaica; Hebblewhite et al. 2014), brown bears
(Ursus arctos; Peters et al. 2015), fishers (Pekania
pennanti; Olson et al. 2014), and golden eagles
(Aquila chrysaetos; Tack and Fedy 2015). There are
many approaches to predict and understand
habitat relationships (Elith and Leathwick 2009),
but resource selection functions (RSFs; Boyce and
McDonald 1999, Manly et al. 2002) are one of the
most common methods employed.

Resource selection functions commonly imple-
ment a used-available design, whereby the RSF is
used to assess differences in habitat covariates at
areas used by an animal (as measured by radio-
transmitters or global positioning system [GPS]
units) and those areas that are likely available for
selection (Boyce 2006, Johnson et al. 2006).
Generally, this is accomplished by using logistic
regression software as a means to maximize the
use-availability likelihood (McDonald 2013). A
substantial strength of RSFs is that one can use
the coefficients derived from a model to generate
predictive maps of relative probability of use
(Boyce et al. 2002, Johnson et al. 2006), which are
commonly presented as habitat maps (Johnson
et al. 2004, DeCesare et al. 2012, Hebblewhite
et al. 2014). Further, resource selection models are
readily implemented and allow ecologists to eval-
uate habitat selection by animals across spatial
and temporal scales by changing measures of
availability (Johnson 1980, Boyce 2006, Meyer and
Thuiller 2006, DeCesare et al. 2012). Resource
selection analyses do, however, exhibit notable
limitations for species’ conservation planning.

Here, we address two inherent limitations of
resource selection analyses that present

challenges for practitioners wishing to translate
results to on-the-ground conservation. First, co-
efficients characterizing the strength of selection
or avoidance for a particular covariate are sensi-
tive to, and indeed conditioned on, how availabil-
ity is defined (Beyer et al. 2010, Matthiopoulos
et al. 2011, Aarts et al. 2013, Northrup et al.
2013). For example, previous simulations have
demonstrated that for a situation of constant use,
habitat selection can vary widely and even change
sign simply based on the definition of availability
(Beyer et al. 2010). This is concerning because
aligning availability with the perception of an
animal or population can be difficult, particularly
at the first and second orders of selection (Beyer
et al. 2010). The implications of this issue are as
follows: (1) selection may not solely reflect the
behavior of an animal and (2) inferring the impor-
tance of a resource based on the strength of selec-
tion or avoidance is tenuous (Beyer et al. 2010,
Kertson and Marzluff 2010, Northrup et al. 2013).
This is particularly true when examining a subset
of Johnson’s (1980) orders of selection (e.g., only
assessing third-order selection, which is common)
because higher order selection processes may cre-
ate an abundance of an important resource that
appears to be unimportant at lower levels of
selection (Anderson et al. 2012). Therefore, we
contend that simultaneously assessing multi-scale
habitat use and availability, along with habitat
selection, would provide a more contextual
understanding for practitioners concerning habi-
tat relationships of a particular species. Moreover,
habitat use is the direct link between environ-
mental conditions and individual performance
(e.g., reproduction, survival) further emphasizing
its importance (Gaillard et al. 2010).
The second limitation of resource selection

analyses is that RSFs inherently assume that
habitat use is a constant function of availability
(Mysterud and Ims 1998). Many studies, how-
ever, have demonstrated biologically relevant
shifts in habitat use and selection with changing
availability (Mysterud and Ims 1998, Hebble-
white and Merrill 2008, Moreau et al. 2012,
Tardy et al. 2014, van Beest et al. 2016), which
was formally characterized as functional res-
ponses in habitat use by Mysterud and Ims
(1998). Evaluating functional responses provides
basic insight into animal behavior as well as facil-
itates predictions concerning how animals might
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alter their behavior when experiencing spatio-
temporal changes in environmental conditions
(McLoughlin et al. 2010). These insights have
strong applied implications as well because ecol-
ogists can inform the direction of landscape-
altering actions, which ultimately change the
availability of resources. Advancing the under-
standing of animal behavior and providing
tangible recommendations to land managers is
essential for animal conservation and the recov-
ery of endangered species (McLoughlin et al.
2010, Moreau et al. 2012). Functional responses
in habitat use can assist both pursuits.

There are many analytical approaches for mod-
eling functional responses. Mysterud and Ims
(1998) initially proposed assessing functional
responses by characterizing how relative habitat
use changed across relative availability, but more
recently studies generally evaluate relationships
between habitat selection and availability (Moreau
et al. 2012, Tardy et al. 2014, van Beest et al.
2016). Inferring behavioral mechanisms, however,
could be difficult when using selection because
habitat selection can decrease with increasing
availability despite an animal’s habitat use remain-
ing constant (see Figs. 1 and 2 in Beyer et al. 2010
and Aarts et al. 2013, respectively). Thus, consis-
tent with the foundational study (Mysterud and
Ims 1998), we focused on habitat use to advance
the application of functional responses as valuable
tools for conservation planning.

In this paper, we characterize an analytical
process to assist applied ecologists in translating
the results from studies of habitat relationships
to on-the-ground conservation. We applied our
approach to Canada lynx (Lynx canadensis) in the
Northern Rocky Mountains (hereafter Northern
Rockies), USA. The Canada lynx is a rare, elu-
sive, and federally threatened forest carnivore in
the contiguous United States (USFWS 2000). The
first step in our process was to characterize habi-
tat use and selection at two spatial scales (second
and third orders) and across seasons (i.e., winter
and summer) by summarizing habitat use and
availability (i.e., outside a RSF framework). This
allowed us to assess spatio-temporal differences
in habitat use, availability, and selection sepa-
rately rather than relying only on selection coeffi-
cients derived from a RSF, which are conditioned
on the definition of availability. Next, under the
motivation of parsimony and prediction, we built

RSFs at the second and third orders to (1) evalu-
ate multivariate resource selection and (2) pro-
vide single-scale and scale-integrated (DeCesare
et al. 2012) predictions of Canada lynx habitat.
These spatial predictions represent the habitat
maps that are useful for land managers when
making decisions. Lastly, we formally challenged
the assumption of constant habitat use by imple-
menting a novel approach for assessing func-
tional responses (see Methods: Functional response
analysis). Our technique for evaluating and visu-
ally displaying functional responses facilitated
resource-specific insight concerning how Canada
lynx altered their behavior with changing avail-
ability, which consequently generated concrete
suggestions for land managers. More broadly,
our collective analytical process illustrated a
multi-step approach to achieve a common
motivation in applied ecology, which is to (1)
advance the understanding of animal–habitat
relationships and (2) develop spatial predictions
of habitat.

METHODS

Study area
This study took place in the Northern Rockies

of northwestern Montana, USA, within the
known distribution of Canada lynx (e.g., Squires
et al. 2013; Fig. 1). This area covers approxi-
mately 3.6 million ha, follows natural topo-
graphic and vegetative boundaries, and is mostly
composed of public lands (i.e., ~80%) with tribal
and private lands making up the remaining.
Across this gradient in ownership, there are
differing levels of human use and resource
extraction permitted; for instance, multiple
wilderness areas and Glacier National Park occur
within our study area. In addition, this area is
ecologically unique within the contiguous United
States in that the carnivore community remains
intact (e.g., grizzly and black bears [Ursus arctos
and Ursus americanus, respectively], cougars
[Puma concolor], gray wolves [Canis lupus],
wolverines [Gulo gulo], coyotes [Canis latrans],
bobcats [Lynx rufus], and Canada lynx are all pre-
sent). Moreover, our study area exhibits a diver-
sity of forest structure types and species
compositions (i.e., mostly mixed-conifer stands
across structure stages; Appendix S1) and ranges
from 220 to nearly 3400 m in elevation capturing
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a gradient in snow depths (elevation-snow depth
r = 0.72). The mixed-conifer forests within our
study area were mostly composed of ponderosa
pine (Pinus ponderosa) and Douglas-fir (Pseudot-
suga menziesii) in lower elevations, and lodgepole
pine (Pinus contorta), western larch (Larix occiden-
talis), subalpine fir (Abies lasiocarpa), and Engel-
mann spruce (Picea engelmannii) at higher
elevations. Forest structure types range from
stand initiation stages to mature stands.

Canada lynx spatial data and sampling
framework

Between 1998 and 2015, we captured Canada
lynx during winter using a combination of box
(Kolbe et al. 2003) and foothold traps as well as
foot snares, all of which were approved by the
Institutional Animal Care and Use Committee
(University of Montana IACUC permits 4–2008
and TE053737–1). Animals were fitted with very
high frequency (VHF) radio-collars (Advanced
Telemetry Systems, Isanti, Minnesota, USA), some
of which also included Argos platform transmitter
terminals (Sirtrack, Havelock North, New Zeal-
and) or store-on-board GPS units (Lotek Wireless,
Newmarket, Ontario, Canada). We located indi-
viduals with VHF collars every 1–2 weeks using

aerial telemetry, and we programmed GPS collars
to collect a location every 30 min for 24 h every
other day for 6–8 months. For animals with Argos
collars, we attempted to acquire a location twice a
day for the lifetime of the collar. We only used
Argos locations of classes 1, 2, and 3 (i.e., 20% of
total), which have reported precisions of 500–
1500 m, 250–500 m, and <250 m, respectively
(CLS America 2011). Spatial accuracy of VHF and
GPS locations averaged 27–45 m (VHF) and 30 m
(GPS) as reported by Squires et al. (2010, 2013),
respectively, and GPS collars successfully col-
lected locations in 86% of attempts.
We ensured all lynx exhibited space use consis-

tent with an established home range (e.g., a cen-
tral location of use) and removed animals with
<20 locations. We performed further screening
within our GPS data because we only used GPS
locations for our fine-scale models of resource
selection (i.e., third order of selection; Johnson
1980). We removed animals with <3 weeks of
GPS data, as well as implemented the methods
of Bjørneraas et al. (2010) to remove 187 error-
induced spikes (~0.1% of the data). After these
filtering procedures, our total dataset consisted
of 166,064 locations (median = 1887 locations/in-
dividual, range = 20–7714 locations/individual)
for 86 unique individuals (38 females, 48 males).
These data were unevenly distributed across
Argos (four individuals, 547 locations), VHF (16
individuals, 905 locations), and GPS (66 individ-
uals, 164,612 locations) as well as across time
periods (i.e., 2209 locations during 1998–2004,
88,030 locations during 2005–2010, and 75,825
locations during 2011–2015).
We developed RSFs for Canada lynx at the

landscape and home range scale, which corre-
spond to Johnson’s (1980) second and third
orders of selection, respectively. At the second
order, we used our entire dataset to build annual
or multi-annual home ranges (i.e., 95% minimum
convex polygon; MCP) for every individual
(Fig. 1). We used 95% MCPs because our intent
was not to precisely estimate home range sizes,
but rather to capture an approximate home range
at the second order while liberally sampling
availability at the third order (Hebblewhite and
Merrill 2008, Moreau et al. 2012). These 86 home
ranges characterized lynx resource use. We sam-
pled available resources by randomly allocating
1000 circular home ranges across our study area

0 60 120
km

MontanaIdaho

112° W116° W

48° N

46° N

Canada lynx home range
Glacier national park

3363 m

220 m

Fig. 1. Our Canada lynx (Lynx canadensis) study area
in western Montana, USA. The background gradient
indicates elevation (m).
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that were equal in area to the median lynx home
range (55 km2).

At the third order of selection, we used only
our GPS data that we separated into two seasons,
winter (November–March) and summer (April–
October). For each season, we constructed indi-
vidual home ranges (i.e., 95% MCP), which
resulted in 64 and 60 individuals sampled in
winter and summer, respectively. We used indi-
vidual locations within 95% MCPs (winter =
60,036 locations, summer = 96,291 locations) to
sample resource use by Canada lynx (winter:
median = 722 locations/individual, range = 113–
2972; summer: median = 1433 locations/individ-
ual, range = 61–4474). We sampled availability
for each individual by randomly allocating

locations (ratio = 1:1 for used and available loca-
tions) in both winter and summer home ranges.
To build our home ranges for Canada lynx, we
used the adehabitatHR package (Calenge 2006)
in program R (R Core Team 2016) and we used
standard tools in ArcGIS (ESRI 2011) to build our
samples of availability.

Resource variables
We characterized our study area using a tar-

geted suite of biotic and abiotic covariates that
we expected to influence resource use and selec-
tion by Canada lynx (Table 1). We characterized
abiotic characteristics using topographic metrics
including (1) topographic roughness (Jenness
2004), (2) heat load index (McCune and Keon

Table 1. Resource variables used in analyses of habitat use, habitat selection, and functional responses for
Canada lynx (Lynx canadensis) in western Montana, USA.

Variable Units
Base

resolution (m2) Order
Resolution

(m2) Reference

Cover
PICO canopy cover % 30 Both 100, 500 Savage et al. (2015)
PIEN-ABLA canopy cover % 30 Both 250, 250 Savage et al. (2015)
LAOC canopy cover % 30 Both 250, 250 Savage et al. (2015)
PSME canopy cover % 30 Both 100, 100 Savage et al. (2015)
Horizontal cover % 30 Both 250, 250 Holbrook et al. (2017)

Forest structure
Proportion of sparse forest Proportion 30 Both 250, 250 Savage and Lawrence

(2017)
Proportion of stand initiation forest Proportion 30 Both 250, 500 Savage and Lawrence

(2017)
Proportion of advanced regenerating
forest

Proportion 30 Both 500, 250 Savage and Lawrence
(2017)

Proportion of mature forest Proportion 30 Both 100, 100 Savage and Lawrence
(2017)

Climate
Mean snow depth on 1 April
2005–2013†

m 1000 2 — NOHRSC (2004)

Topography
Roughness Index 30 Both 500, 500 Jenness (2004)
Heat load index Index 30 3 250, 250 McCune and Keon

(2002)
Topographic position index Index 30 3 500, 250 Guisan et al. (1999)

Prey
Snowshoe hare occupancy‡ Probability Multi-scale Both NA, NA Holbrook et al. (2017)
Snowshoe hare intensity of use‡ Pellets/Krebs plot Multi-scale Both NA, NA Holbrook et al. (2017)

Notes: AICc, Akaike’s information criterion, corrected for sample sizes; RSF, resource selection function. Covariate codes
PICO, PIEN-ABLA, LAOC, and PSME indicate lodgepole pine (Pinus contorta), Engelmann spruce (Picea engelmannii)–subalpine
fir (Abies lasiocarpa), western larch (Larix occidentalis), and Douglas-fir (Pseudotsuga menziesii), respectively. “Order” indicates
whether the covariate was used for RSFs at the second order (2), third order (3), or both (both). “Resolution” indicates the scale
for a particular covariate that was selected based on lowest AICc during winter (W) and summer (S), respectively, which was
subsequently used in RSFs at the third order.

† Mean snow depth was not included in our third-order RSF models because the resolution (1000 m2) was too coarse.
‡ Snowshoe hare occupancy or intensity of use across multiple scales was not assessed because they were multi-scale com-

posites (Holbrook et al. 2017).
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2002), and (3) topographic position index (Gui-
san et al. 1999). Our heat load index and topo-
graphic position index represented hot-dry to
cool-moist areas and relative concavity or con-
vexity, respectively. We expected Canada lynx to
be associated with cool-moist areas in the context
of concave topographic locations (e.g., basins vs.
ridges; Squires et al. 2008). In addition, we incor-
porated spatially explicit data on snow depth
because Canada lynx are evolutionarily adapted
for success in snowy conditions (Murray and
Boutin 1991), and snow depth and extent are sen-
sitive to changes in temperature (Barnett et al.
2005). We gathered snow depth data from the
Snow Data Assimilation System (SNODAS)
within the National Operational Hydrologic
Remote Sensing Center (NOHRSC 2004). Previ-
ous analyses indicated a strong association
between SNODAS-derived estimates of snow
depth and field measurements in the forested
ecosystems of the Northern Rockies (Clow et al.
2012). We downloaded 1 April snow depth for
2005–2013 and averaged across years to produce
a relatively stable mean estimate for our study
area. At the second order of selection, we
expected a parabolic relationship between snow
depth and Canada lynx resource use because
lynx occupy subalpine environments (vs. high
elevation alpine areas with deeper snow, and
low elevation areas with little snow) in our study
area. All abiotic metrics were calculated within
ArcGIS (ESRI 2011) using standard tools, DEM
Surface Tools for ArcGIS (Jenness 2013), or Geo-
morphometric and Gradient Metrics Toolbox
(Evans et al. 2014).

To characterize forest composition and struc-
ture, we used a set of covariates developed
specifically for the distribution of lynx in the
Northern Rockies. Savage et al. (2015) developed
and independently validated predictions of
canopy cover for five conifer species during 2013:
lodgepole pine, Engelmann spruce, subalpine fir,
western larch, and Douglas-fir. Previous work in
the Northern and Southern Rockies indicated a
positive relationship between Canada lynx and
their primary prey (i.e., snowshoe hare; Lepus
americanus), and spruce-fir habitats (Squires et al.
2010, Berg et al. 2012, Ivan et al. 2014, Holbrook
et al. 2017); thus, we combined our maps of sub-
alpine fir and Engelmann spruce into a spruce-fir
canopy cover map. In addition, Holbrook et al.

(2017) developed and evaluated a map character-
izing horizontal cover during 2013, which is
strongly associated with habitat use and kill site
locations of Canada lynx (Squires et al. 2008,
2010) as well as high densities of snowshoe hares
(Holbrook et al. 2017). We expected a positive
relationship between horizontal cover and habi-
tat use by Canada lynx.
Additionally, we used recently developed

maps characterizing forest structural classes
(Savage and Lawrence 2017). Forest structure
mapping used manual interpretation of National
Agriculture Imaging Program aerial imagery for
reference data to classify 2013 Landsat 8 OLI/
TIRS imagery. Classification was accomplished
by separating structure classes hierarchically by
class similarity and sequentially testing a range
of machine-learning algorithms to determine the
best predicting models. Classification results
were further refined using a time series of forest
structure and applying a series of rules to
improve the accuracy of the final classification.
Overall classification accuracy for the forest
structure map was 80%, with most error occur-
ring between open stands and other sparse
stands. Thus, structural classes used for our anal-
ysis included (1) sparse forests, (2) stand initia-
tion, (3) advanced regeneration, and (4) mature
forests (see Table 2 and Appendix S1).
To further validate and define these predicted

classes of forest structure, we performed an inde-
pendent assessment with field-derived data. We
used subplot (~170 m2) data for 574 locations col-
lected by the United States Forest Service’s Forest
Inventory and Analysis (FIA) program during
2005–2012. We spatially overlapped these field
data with predicted structural classes and calcu-
lated median values of structural metrics includ-
ing basal area-weighted diameter at breast height
(dbh), canopy cover, tree density, and tree height
(Table 2; Appendix S1). This validation provided
two functions: (1) a biological assessment of our
structural classes at our study area extent
(Appendix S1: Fig. S1) and (2) an important cross-
walk to land managers tasked with managing
forests and lynx habitat (Table 2; Appendix S1:
Fig. S2). Results from this assessment confirmed
that structure classes represented distinct forest
conditions and that they captured gradients we
expected to be important to Canada lynx (e.g.,
tree size, canopy cover, stem density). Based on
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previous analyses of habitat selection and fitness–
habitat relationships (Squires et al. 2008, 2010,
McCann and Moen 2011, Simons-Legaard et al.
2013, Kosterman 2014), we expected a positive
association between Canada lynx and structural
classes exhibiting dense trees and closed canopies
(e.g., mature and advanced regeneration). In con-
trast, we expected a negative effect of the open
classes (e.g., sparse and stand initiation) on lynx
habitat use and selection. Given the strong associ-
ation between lynx and forest structure, we
expected to observe behavioral shifts in habitat
use by lynx with changing availabilities of forest
structure (i.e., functional responses).

Finally, we developed maps of predicted snow-
shoe hare occupancy (classification error = 25%)

and intensity of use (root-mean-square error =
4.22) across the distribution of lynx in the North-
ern Rockies (Holbrook et al. 2017). These maps
characterized a composite for dense forests with
high horizontal cover that occurred in intermedi-
ate snow depths (see Holbrook et al. 2017 for
additional details). We used these data within our
analytical process to characterize potential prey
resources for Canada lynx. We expected a positive
effect of these metrics on lynx habitat use and pre-
dicted that snowshoe hare occupancy would
likely be a parsimonious predictor for mapping
habitat of Canada lynx. In addition, we expected
to observe a functional response in habitat use for
both snowshoe hare occupancy and intensity of
use (i.e., more disproportionate use at low values

Table 2. Descriptions of forest structure classes using metrics from the USDA Forest Service Forest Inventory
and Analysis program within modeled structure classes in Canada lynx (Lynx canadensis) habitat as defined by
our RSF (i.e., score of 6–10 from our winter scale-integrated model) in western Montana, USA.

Structural class General description

Sparse Mixed-conifer stands (Appendix S1) that are sparsely stocked (naturally) or mechanically thinned, which
tend to be younger (i.e., ~10–20 yr old) but can occur at any age. Sparse stands exhibited a median basal
area-weighted dbh of 6 inches or 16 cm (IQR = 0–11 inches or 0–27 cm), 28% canopy cover (IQR = 8–49%),
and a median estimated tree height of 34 ft or 10 m (IQR = 1–52 ft or 0.31–16 m). Median basal area of
sparse stands was 40 ft2/acre or 9 m2/ha (IQR = 1–101 ft2/acre or 0.23–23 m2/ha), while tree density for
trees larger than 5 inches (12.7 cm) was 48 trees/acre or 119 trees/ha (IQR = 0–144 trees/acre or
0–357 trees/ha). Tree density for trees <5 inches (12.7 cm) was 900 trees/acre or 2223 trees/ha
(IQR = 0–3000 trees/acre or 0–7410 trees/ha)

Stand
initiation

Stands that have few trees and an open canopy, and are a result of recent (e.g., ≤5 yr) disturbance (forest
harvest or severe fire). Stand initiation exhibited a median basal area-weighted dbh of 0 inches and cm
(IQR = 0–8 inches or 0–20 cm), 8% canopy cover (IQR = 0–36%), and a median estimated tree height of
1 foot or 0.31 m (IQR = 0–50 ft or 0–16 m). Median basal area of stand initiation was 0 ft2/acre or
0 m2/ha (IQR = 0–55 ft2/acre or 0–13 m2/ha), while tree density for trees larger than 5 inches (12.7 cm) was
0 trees/acre and trees/ha (IQR = 0–75 trees/acre or 0–186 trees/ha). Tree density for trees <5 inches
(12.7 cm) was 0 trees/acre and trees/ha (IQR = 0–2249 trees/acre or 0–5557 trees/ha)

Advanced
regeneration

Early–mid-seral stands of age ~25–40 yr with a mixed species composition, but spruce-fir tends to occur the
most frequently (Appendix S1). Advanced regeneration exhibited a median basal area-weighted dbh of
8 inches or 20 cm (IQR = 5–10 inches or 14–27 cm); however, of the 51 plots examined 70% of them were
classified at size classes between 5 and 15 inches (12.7–38 cm). Advanced regeneration exhibited median
canopy cover of 45% (IQR = 30–70%), median tree height of 51 ft or 16 m (IQR = 34–64 ft or 10–20 m), and
median basal area of 89 ft2/acre or 20 m2/ha (IQR = 39–124 ft2/acre or 9–28 m2/ha). Tree density for trees
larger than 5 inches (12.7 cm) was 167 trees/acre or 416 trees/ha (IQR = 72–289 trees/acre or
178–714 trees/ha). Tree density for trees <5 inches (12.7 cm) was 900 trees/acre or 2223 trees/ha
(IQR = 150–2549 trees/acre or 370–6298 trees/ha)

Mature Mid-seral stands of age ≥40 yr arranged in a multi-storied structure with a mixed species composition, but
spruce-fir tends to occur twice as much as any other species (Appendix S1). Mature exhibited a median
basal area-weighted dbh of 10 inches or 25 cm (IQR = 7–14 inches or 18–35 cm). However, of the 194 plots
examined 45% were classified at size classes between 5 and 10 inches (12.7–25.4 cm), 25% at size classes
between 10 and 15 inches (25.4–38 cm), and 21% of them were classified at size classes between 15 and
25 inches (38–64 cm). Mature exhibited median canopy cover of 56% (IQR = 40–70%), median tree height
of 65 ft or 20 m (IQR = 53–88 ft or 16–27 m), and median basal area of 140 ft2/acre or 32 m2/ha
(IQR = 91–209 ft2/acre or 21–48 m2/ha). Tree density for trees larger than 5 inches (12.7 cm) was
217 trees/acre or 535 trees/ha (IQR = 144–331 trees/acre or 357–818 trees/ha). Tree density for trees
<5 inches (12.7 cm) was 1500 trees/acre or 3705 trees/ha (IQR = 300–4200 trees/acre or 741–10,374 trees/ha)

Notes: RSF, resource selection function. Forest inventory data were collected during 2005–2012, and the total sample size
was 366 subplots (subplots = ~170 m2), which included 194, 51, 34, and 87 classified as mature, advanced regeneration, stand
initiation, and sparse, respectively. English and metric units are presented. Abbreviations IQR and dbh indicate the interquartile
range and diameter at breast height, respectively. The calculation for basal area-weighted dbh was as follows: Ʃ(tree basal
area 9 dbh)/total basal area.
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of availability vs. high values) because of the
strong predator–prey relationship between
Canada lynx and snowshoe hares.

Summarizing habitat use, availability, and
selection

We sampled and analyzed our resource vari-
ables differently at the second and third orders
for our initial assessment of habitat use and
selection. We calculated the mean value of
covariates (see Table 1 for covariates used)
within used (n = 86) and available (n = 1000)
home ranges at the second order using the
Geospatial Modelling Environment (Beyer 2012).
At the third order, we attributed covariate values
(Table 1) for used and available locations at the
100 m2 resolution using standard tools in ArcGIS
(ESRI 2011). We then calculated the mean of
covariates at used and available locations for
every lynx and subsequently averaged across
animals (n = 64 for winter and 60 for summer) to
estimate mean (�95% confidence intervals [CIs])
use and availability. To calculate means and 95%
CIs, we used the package Rmisc (Hope 2013) in
program R (R Core Team 2016).

Development of RSF models
We then built RSFs at the second and third

orders using fixed- and mixed-effects logistic
regression (e.g., logit link) software, respectively,
to understand multivariate resource selection by
Canada lynx as well as develop spatial predictions
of lynx habitat. We used a fixed-effects model at
the second order because our design was not at
the individual level; that is, we assessed differ-
ences in use and availability across home ranges of
lynx. We weighted available : used observations
in our second-order RSF at 0.086:1 to balance sam-
ple sizes between used and available home ranges
that was reflective of our 86 lynx. Our second-
order model took the structure:

wðxÞ ¼ expðb1x1 þ b2x2 þ � � � þ bixiÞ (1)

where bi is the RSF coefficient for covariate i, xi is
the vector of covariate i, and w(x) is the predicted
relative probability of use (Boyce et al. 2002).

We built third-order RSFs (i.e., random inter-
cept for lynx) at the seasonal home range level
during winter and summer. We used a mixed-
effects model at the third order because our

design was at the individual level, whereby the
random effect accounted for (1) unbalanced
sampling among lynx and (2) repeated measures
(i.e., locations) within lynx (Gillies et al. 2006).
Our general third-order RSF structure was as
follows:

wðxÞ ¼ expðb1x1j þ b2x2j þ � � � þ bixij þ c0jÞ (2)

where bi is the population-level (i.e., marginal)
RSF coefficient for covariate i, xij is the vector of
covariate i for individual j, c0j is the random
intercept associated with the jth animal, and w(x)
is the same as in Eq. 1. For both our second- and
third-order RSF, we standardized covariates (i.e.,
ðxi � �xÞ=SD) and assessed support for quadratic
terms to allow for curvilinear relationships. We
observed quadratic effects for only mean snow
depth and proportion of advanced regeneration
forest in our second-order and our summer
third-order RSFs, respectively. In addition, we
implemented preliminary analyses to identify
the most predictive scale (i.e., 100, 250, and
500 m2; see Table 1) for each covariate included
in our third-order RSFs. We then assessed
collinearity among all covariates among the suite
being considered at both scales (Table 1) and
removed those that were contributing to high
correlations (|r| > 0.60; Appendix S2). When two
covariates were correlated, we selected the
covariate that was predicted to be more closely
associated with Canada lynx ecology based on
previous work.
With our set of reduced covariates and curvilin-

ear relationships, as well as our motivation to
develop parsimonious and predictive RSFs for
habitat mapping, we implemented a model selec-
tion procedure to exhaustively search for the most
predictive RSF using Akaike’s information crite-
rion, corrected for sample sizes (AICc; Hebble-
white et al. 2014). We developed a global model
for both our second- and third-order RSFs and
evaluated all potential subsets. However, because
of issues with computational time for our mixed-
effects RSFs, we initially searched all potential
subsets using only fixed effects at the third order.
We then selected the top 100 models, introduced
the random intercept for individual lynx (i.e.,
Eq. 2), and selected the top model based on AICc.
For all RSF modeling, when several nested mod-
els received similar support (ΔAICc < 2), we
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applied the principle of parsimony and selected
the model containing the fewest parameters
(Burnham and Anderson 2002). To assess the rela-
tive importance of each covariate (i.e., could be a
linear or quadratic relationship) in our top mod-
els, we iteratively removed each covariate and
documented the ΔAICc.

We evaluated the robustness of our second-
and third-order RSFs using k-fold cross-
validation (Boyce et al. 2002). We used two-fold
and 10-fold cross-validation for our second- and
third-order RSFs, respectively, by randomly divid-
ing the number of lynx home ranges or locations
into k-subsets of equal size and re-estimating the
b coefficients of our best model. We then gener-
ated predicted values for the available sample at
the appropriate order of selection from each sub-
set, merged them into 10 equal-area bins charac-
terizing low to high relative probability of use,
and used Spearman rank correlations (rS) to assess
the association between the bins and the mean
(i.e., across folds) frequency of home ranges or
locations within each bin. A strong Spearman
rank correlation coefficient indicates a robust
model (Boyce et al. 2002). For all RSF modeling,
we used the lme4 (Bates et al. 2015), MuMIn (Bar-
ton 2015), and AICcmodavg (Mazerolle 2016)
package in program R (R Core Team 2016).

Habitat mapping and validation across
the study area

By sampling home ranges and locations at the
second and third orders, respectively, we pre-
served the conditional nature of habitat selection
(sensu Johnson 1980), which allowed us to com-
bine our predictions into scale-integrated habitat
maps (DeCesare et al. 2012). We generated popu-
lation-level RSFs at the second and third orders
and across two seasons (winter and summer).
We used the population-level b coefficients
from Eqs. 1 and 2 to map the relative probability
of use (w(x)) for Canada lynx across our study
area (i.e., second order) at a 30 m2 resolution,
which generated five habitat maps. Because we
summarized our resource variables to used and
available home ranges for our second-order anal-
ysis, we averaged our second-order predictions
using a neighborhood equal to the median
home range size for our lynx (55 km2). To gener-
ate our scale-integrated habitat maps, we multi-
plied our second-order derived map by our two

third-order derived maps, which characterized
the scale-integrated relative probability of use for
Canada lynx during winter and summer. The
scale-integrated maps integrate habitat relation-
ships from the second and third orders into a
single map, which has been demonstrated to be
more predictive of habitat use than a single-order
map (DeCesare et al. 2012). For all five maps, we
sampled the predicted values using 100,000 ran-
dom locations to characterize the distribution of
predictions and reclassified the predicted values
into 10 ordinal categories of equal area (i.e., using
quantiles), which characterized low (i.e., 1) to
high (i.e., 10) relative probability of use for
Canada lynx.
To evaluate the ability of our probability maps

(i.e., habitat maps) to predict frequency of use by
lynx and inform conservation planning, we used
1919 lynx validation locations that were withheld
from our primary analyses. Of the 1919 locations,
920 were collected during the winter (from 20
individuals) and 999 were collected during the
summer (from 22 individuals). These locations
were generally collected during years (i.e.,
75% ≤ 2005) and via platforms (i.e., 75% via
Argos and VHF) that were independent of our
training data, which were primarily collected via
the GPS platform (99%) and after 2005 (82%). We
assessed how the relative frequency of use mea-
sured by Canada lynx locations correlated (i.e.,
using Spearman rank correlation coefficients;
Boyce et al. 2002) with our predicted categories
of relative probability of use. This assessment
was different than the k-fold cross-validation
aforementioned in that it (1) used independent
lynx locations (vs. subsets of the training data),
(2) was applied only at the study area level
(k-fold was at both the second- and third-order
domains of availability) and (3) provided a
model assessment that we believed was most
relevant to conservation planning.
Finally, we developed an approach to empiri-

cally identify a binary cut-point for our continu-
ous habitat maps indicating low and high
probability of use by Canada lynx as a tool for
conservation planning. We applied the concept
of Boyce et al. (2002), but rather than assessing
the relationship between our equal-area bins and
the frequency of use, we assessed how the cumu-
lative percentage of use was distributed across
our bins. In other words, we assessed how many
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equal-area bins (i.e., 1–10) were needed to cap-
ture a given percentage (e.g., 90%) of Canada
lynx use. Not only did this provide a cut-point
for deciding low and high probability of use that
is central to conservation planning, but it also
provided a simple means of assessing the relative
mapping efficiency of each study area habitat
map. In our case, the map that captures 90% of
lynx use with the fewest number of bins indicates
the most efficient map, that is, capturing the
most use for the smallest amount of area. We
used standard tools in ArcGIS (ESRI 2011) and
program R (R Core Team 2016) for habitat map-
ping and assessment.

Functional response analysis
Our approach to modeling functional responses

was a composite from previous studies in that we
first characterized habitat use and availability for
each individual by calculating a mean value (simi-
lar to Hansen et al. 2009, Matthiopoulos et al.
2011, Laforge et al. 2016) for all biotic covariates.
We focused on biotic covariates because land
managers could presumably change their avail-
abilities (vs. abiotic covariates such as slope, ele-
vation, or aspect). We then built linear, second-
degree polynomial, and third-degree polynomial
models (e.g., Pellerin et al. 2010) to test for func-
tional responses in absolute habitat use for male
and female lynx:

y1ij ¼ b0j þ b1jða1ijÞ (3)

y1ij ¼ b0j þ b1jða1ijÞ þ b2jða1ij2Þ (4)

y1ij ¼ b0j þ b1jða1ijÞ þ b2jða1ij2Þ þ b3jða1ij3Þ (5)

where y1ij = predicted value of covariate 1 at used
areas for lynx i during season j, b0j = y-intercept
for lynx during season j, b1–3 = regression coeffi-
cients for lynx during season j, and a1ij = mean
values of covariate 1 at available locations for lynx
i during season j. We assessed the relative fit of
each model to our data using a likelihood-ratio
test (a ≤ 0.05), wherein we retained lower order
polynomials when testing for higher order poly-
nomials. We used standard diagnostics (e.g.,
residual plots) to evaluate the appropriateness of
our most supported model. Support for a curvilin-
ear model (i.e., Eqs. 4 or 5) indicated a functional
response in habitat use, which we could then

assess by plotting the relationships and associated
90% CIs. As mentioned in Mysterud and Ims
(1998), disproportionate habitat use can occur in
some parts of the range of availability and not in
others. If a linear model was supported (i.e.,
Eq. 3), statistical deviations from proportional
habitat use (proportional use: b0 = 0, b1 = 1) indi-
cated additive use and consistent selection
(b0 > 0, b1 = 1), additive use and consistent
avoidance (b0 < 0, b1 = 1), or a functional
response (b1 6¼ 1). Other combinations of b0 and
b1 provide additional insights as well; for
instance, increasing or decreasing habitat use (i.e.,
b0 ≥ 0, b1 > 1 and b0 ≤ 0, b1 < 1, respectively)
relative to random expectation.
We applied our approach to assess how habitat

use by Canada lynx might change in the face of
changing environments (i.e., changing availabili-
ties). This analysis occurred at the third order of
selection, and we separated the data by season
(winter and summer) and sex (females and
males). Preliminary plotting of the data indicated
a substantial outlier and influential observation,
which we elected to remove for subsequent analy-
sis (i.e., female 174). We focused our analysis on
the following covariates: species-specific estimates
of canopy cover, estimated horizontal cover, pro-
portion of forest structural classes, and predicted
snowshoe hare occupancy and intensity of use
(see Table 1 for variable descriptions). We
conducted all analyses of functional responses in
program R (R Core Team 2016).

RESULTS

Habitat use, availability, and selection
Canada lynx demonstrated use of mixed-

conifer forests and a mosaic of forest structural
stages (Fig. 2), suggesting use of predominately
mid-late seral conditions. Within this context,
lynx selected (i.e., use greater than availability
in Fig. 2) canopies composed of spruce-fir and
lodgepole pine, but spruce-fir was used more than
any other species (Fig. 2). In terms of forest struc-
ture, lynx selected mature and advanced regener-
ating forest, but mature forest was used twice as
much as any other forest structure class (Fig. 2).
The mature class was composed of early to mid-
seral forests that included a diversity of tree sizes
(e.g., 45% were 12.7–25.4 cm in diameter, 25%
were 25.4–38 cm, and 21% were 38–64 cm; see
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Table 2 for all forest metrics). Sparse forest and
stand initiation were generally avoided (Fig. 2).

Furthermore, lynx exhibited spatial and sea-
sonal variation in resource selection for specific
variables related to forest composition and struc-
ture. Lynx used about the same amount of lodge-
pole pine and Douglas-fir canopy cover, but
lodgepole pine was strongly selected at the sec-
ond order (Fig. 2; Appendix S3: Table S1).

Canopy cover of western larch, however, was
used the least by lynx and was generally used in
proportion to availability across scales and sea-
sons (Fig. 2). Moreover, sparse forest was used
less than mature forest but more than advanced
regenerating forest at the second order (Fig. 2;
Appendix S3: Table S1). However, sparse forest
was avoided by lynx at the second order as well
as at the third order during winter (Fig. 2;

C D

A B

Fig. 2. Mean (�95% confidence intervals) canopy cover by species and proportion of forest structural classes at
the second order (A, B) and third order (C, D) of selection for Canada lynx (Lynx canadensis) in western Montana,
USA. Covariate codes PICO, PIEN, ABLA, LAOC, and PSME indicate lodgepole pine (Pinus contorta), Engel-
mann spruce (Picea engelmannii), subalpine fir (Abies lasiocarpa), western larch (Larix occidentalis), and Douglas-fir
(Pseudotsuga menziesii), respectively. In addition, Adv Regen and Stand Init indicate advanced regenerating and
stand initiation forest structures, respectively.
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Appendix S3). Advanced regenerating forest and
sparse forest were used similarly by lynx at the
third order, but advanced regenerating forest was
strongly selected by lynx across scales and sea-
sons (Fig. 2; Appendix S3). Stand initiation was
used the least by lynx across seasons and scales
and was avoided at the second order and the
third order during winter (Fig. 2; Appendix S3).

Canada lynx exhibited additional patterns of
selection that were generally consistent with our
expectations. Lynx selected higher values of hori-
zontal cover at the second order, and higher
snowshoe hare occupancy and intensity of use at
both the second and third orders (Appendix S3).
At the second order, lynx selected deeper snow,
but avoided areas of high topographic rough-
ness (Appendix S3: Table S1). Finally, lynx
selected basins at the third order during winter
(Appendix S3: Table S2).

RSF models
Resource variables within our most predictive

and parsimonious RSF models varied based on
scale and season. At the second order, our top
model contained only three covariates, which
included a quadratic relationship with snow
depth and a positive effect of snowshoe hare
occupancy and canopy cover of lodgepole pine
(Table 3). The next four models included one
additional parameter and exhibited a DAICc value
of 1.94–2.12 (i.e., they were penalized the maxi-
mum AIC can allow for the addition of one
parameter), indicating no model uncertainty asso-
ciated with our second-order RSF. Spearman rank
correlations from our two-fold cross-validation
indicated a robust model (rS = 0.91, P < 0.001).

At the third order during winter, our most
parsimonious model included 11 covariates
indicating relative probability of use was posi-
tively related to canopy cover (across species:
lodgepole pine, spruce-fir, western larch, and
Douglas-fir), advanced regeneration and mature
forests, valley bottoms or basins, and snowshoe
hare occupancy (Table 4). We observed negative
effects of stand initiation and rough topographies
exposed to high heat loads (Table 4). The next
closest model (i.e., DAICc = 1.96) included all the
same variables along with intensity of use by
snowshoe hares; thus, we selected the reduced
model (i.e., model without intensity of use by
snowshoe hares) as our top RSF for winter. The
remaining models within our candidate set were
≥15 DAICc values from our top model, indicating
substantial support for our selected model.
Spearman rank correlations from the 10-fold
cross-validation indicated our model was robust
(rS = 1, P < 0.001).
Finally, our most parsimonious model at the

third order during summer also included 11
covariates, but the patterns were different than in
our winter model. The relative probability of use
was positively related to canopy cover of lodge-
pole pine, spruce-fir, and Douglas-fir, as well as
occupancy and intensity of use by snowshoe
hares (Table 4). However, we documented a neg-
ative effect associated with canopy cover of west-
ern larch, proportion of mature forest and stand
initiation, and rough topographies exposed to
high heat loads. We also observed a quadratic
relationship (i.e., probability of use was highest
at mid-ranges) with advanced regenerating for-
est. The next closest model (DAICc = 1.80)
included an additional parameter (i.e., pretend-
ing variable; Anderson 2008), and the remaining
models exhibited a DAICc ≥ 20, collectively indi-
cating substantial support for the selection of our
top model. Spearman rank correlations from the
10-fold cross-validation indicated a robust model
(rS = 1, P < 0.001).

Habitat mapping and validation
We used the RSF coefficients from our predic-

tive and parsimonious models (Tables 3, 4), and
the appropriately scaled covariates (Table 1), to
develop three habitat maps across our study area
(Fig. 3). We then integrated these study area-level
predictions from our second- and third-order

Table 3. Standardized regression coefficients, standard
errors (SE), and P values for our most parsimonious
resource selection function for Canada lynx (Lynx
canadensis) in western Montana, USA, at the second
order of selection.

Covariate b SE DAICc P

PICO canopy cover 0.63 0.20 4.74 0.002
Snowshoe hare occupancy 1.05 0.26 7.56 <0.001
Snow depth 2.22 0.52 24.23 <0.001
Snow depth2 �2.18 0.53 <0.001

Notes: AICc, Akaike’s information criterion, corrected for
sample sizes. The DAICc indicates relative weight of each
covariate. Covariate code PICO indicates lodgepole pine
(Pinus contorta).
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RSFs to provide two additional scale-integrated
habitat maps (one each for winter and summer;
Fig. 3). Our validation indicated that our models
strongly predicted the frequency of lynx use as
measured by independent lynx locations: second-
order derived map rS = 0.94, P < 0.001, third-
order (winter) derived map rS = 0.85, P = 0.003,
third-order (summer) derived map rS = 0.87,
P = 0.003, winter scale-integrated rS = 0.94, P <
0.001, and summer scale-integrated rS = 0.99, P <
0.001. However, as expected, our second-order
and scale-integrated predictions were the most
efficient at characterizing lynx use across our
study area (Fig. 4). That is, only 4 and 5 equal-area
bins were required to capture 90% of our withheld
lynx locations during winter and summer using
our scale-integrated and second-order maps,
respectively, as compared to 6–7 bins using maps
derived from third-order coefficients (Fig. 4).

Functional responses
Our assessment of functional responses in habi-

tat use provided novel insights concerning lynx
habitat ecology and thus was an essential compo-
nent of our analytical process. For instance, we
demonstrated that female lynx during the winter
not only avoided stand initiation and sparse for-
est, but that use decreased (relative to random) as
stand initiation (gradient = ~0.2–22%) and sparse

forest (gradient = ~10–52%) became more avail-
able (Fig. 5, Table 5). In contrast, females exhib-
ited additive use and consistent selection of
advanced regenerating forest across the range of
availability (~10–40%; Fig. 5, Table 5). Mature
forest was used in proportion to its availability
(~16–75%; Fig. 5, Table 5), although 66% of female
home ranges contained ≥50% mature forest.
Together, these results demonstrated that female
lynx occupy home ranges of mostly mature forest
during the winter, and within that context they
reduce their use of open structure classes, but
additively use advanced regeneration as these
structures become more available.
We discovered additional functional responses

in habitat use concerning forest structural stages,
which in some cases differed by sex. Male lynx
exhibited a positive functional response for advan-
ced regenerating forest in that habitat use incre-
ased (relative to random) as availability increased
during winter and summer (Fig. 6, Table 6). Male
and female lynx exhibited decreasing habitat use
(relative to random) with increasing stand initia-
tion, and the response appeared to be stronger for
females (Fig. 6, Tables 5, 6). This response also
indicated that habitat use of stand initiation pla-
teaued at low availabilities and remained similar
as the availability increased. Lastly, males during
winter demonstrated decreasing habitat use

Table 4. Standardized marginal coefficients, standard errors (SE), and P values from our most parsimonious
mixed-effects resource selection function for Canada lynx (Lynx canadensis) during winter (November–March)
and summer (April–October) in western Montana, USA, at the third order of selection.

Covariate

Winter (n = 64 lynx) Summer (n = 60 lynx)

b SE DAICc P b SE DAICc P

PICO canopy cover 0.04 0.01 20.70 <0.001 0.03 0.01 20.20 0.001
PIEN-ABLA canopy cover 0.18 0.01 285.90 <0.001 0.07 0.01 63.00 <0.001
LAOC canopy cover 0.03 0.01 15.30 <0.001 �0.07 0.01 106.70 <0.001
PSME canopy cover 0.27 0.01 988.8 <0.001 0.16 0.01 519.30 <0.001
Proportion stand initiation �0.07 0.01 81.00 <0.001 �0.06 0.01 118.80 <0.001
Proportion advanced regeneration 0.41 0.01 1953.80 <0.001 0.48 0.01 2396.30 <0.001
Proportion advanced regeneration2 – – – – �0.15 0.01 <0.001
Proportion mature 0.07 0.01 57.40 <0.001 �0.05 0.01 42.40 <0.001
Topographic roughness �0.18 0.01 417.60 <0.001 �0.14 0.01 397.70 <0.001
Heat load index �0.05 0.01 51.40 <0.001 �0.07 0.01 168.40 <0.001
Topographic position index �0.13 0.01 421.50 <0.001 – – – –
Probability of snowshoe hare occupancy 0.21 0.01 702.10 <0.001 0.11 0.01 231.60 <0.001
Intensity of use by snowshoe hares – – – – 0.07 0.01 109.50 <0.001

Notes: AICc, Akaike’s information criterion, corrected for sample sizes. The DAICc indicates relative weight of each covariate.
Covariate codes PICO, PIEN, ABLA, LAOC, and PSME indicate lodgepole pine (Pinus contorta), Engelmann spruce (Picea engel-
mannii), subalpine fir (Abies lasiocarpa), western larch (Larix occidentalis), and Douglas-fir (Pseudotsuga menziesii), respectively.

 ❖ www.esajournals.org 13 September 2017 ❖ Volume 8(9) ❖ Article e01939

HOLBROOK ET AL.



A

Summer

Summer

B

C

Winter

Winter

km
0 50 100

Fig. 3. Predicted probability of use for Canada lynx (Lynx canadensis) in western Montana, USA. These maps
were generated from our top resource selection functions at the second order (A) and third order (B) of selection.
Lynx home ranges are highlighted on our second-order map (hashed polygons in A). We then integrated these
maps to develop scale-integrated predictions of use by Canada lynx (C).
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(relative to random) of sparse and mature forest,
respectively (Fig. 6, Table 6).

Finally, lynx exhibited functional responses in
habitat use for predicted snowshoe hare habitat
as well as vegetation cover. We observed a strong
functional response for snowshoe hare occu-
pancy and intensity of use for both sexes and
across seasons (Fig. 7, Tables 5, 6). This indicated
that habitat selection by lynx was strongest at
low snowshoe hare availability and that selection
decreased in strength as snowshoe hare availabil-
ity increased (Fig. 7). In addition, females during
winter demonstrated avoidance of Douglas-fir
canopy cover at low availabilities but propor-
tional use at higher availabilities (Table 5;
Appendix S4). Males exhibited increasing habitat
use with increasing availability of canopy cover
of Douglas-fir during both seasons (Table 6;
Appendix S4), as well as with increasing canopy
cover of spruce-fir (although a slight decrease
toward the maximum value) during winter and

lodgepole pine during summer (Table 6;
Appendix S4). Males also demonstrated additive
use (and consistent selection) for spruce-fir
canopy cover and horizontal cover during the
summer, as well as canopy cover of western larch
during the winter (Table 6). All other relation-
ships indicated proportional habitat use across
sexes and seasons.

DISCUSSION

Translating the advancement of animal–habitat
relationships to on-the-ground conservation is
difficult and requires an integrated analytical
framework. Here, we provided a process that
merged the research motivation of understand-
ing and prediction, as well as embraced the intri-
cacies of exploring animal–habitat relationships.
By examining habitat use, availability, selection,
and functional responses, we were able to
improve the current understanding of Canada

A B

Fig. 4. Cumulative percent of withheld Canada lynx (Lynx canadensis) locations across our predicted probabili-
ties of lynx use in western Montana, USA, using our second- and third-order, as well as scale-integrated, resource
selection function (RSF) during winter (A; November–March) and summer (B; April–October). The x-axis repre-
sents 10 equal-area RSF scores ranging from high to low. The intersection of the “second,” “third,” and “scale-
integrated” curves and the horizontal line indicate the RSF score that was required to capture 90% of lynx use.
Because the RSF scores are of equal area (Boyce et al. 2002), these figures also illustrated that the scale-integrated
RSF mapped more efficiently during winter (A) because it captured the same percent of lynx use over a reduced
area (i.e., lower number of equal-area bins). The intersection of the vertical and horizontal lines illustrates an
example of where managers could determine habitat vs. non-habitat using an empirically derived threshold from
the mapped predictions.
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lynx–habitat relationships while also providing
maps predictive of lynx use. If we had not imple-
mented all parts of our approach, we might have
developed incomplete understandings of lynx–
habitat relationships, which would result in
incomplete conservation recommendations at
best and misleading recommendations at worst.
We illustrate this by presenting the following
two examples.

We demonstrated that considering multi-scale
habitat use and selection is essential when assess-
ing animal–habitat relationships and developing
conservation recommendations. Canada lynx in
the Northern Rockies use a gradient of forest
structures and compositions (Figs. 2, 3), but they
use more mature, spruce-fir forest than any other
structural stage or species. Contrasting these
results with selection coefficients derived from

A B

C D

Fig. 5. Predicted relationships characterizing functional responses in habitat use by female Canada lynx (Lynx
canadensis) during winter in western Montana, USA, across four forest structural stages. The diagonal line indi-
cates random (i.e., proportional) habitat use. Data points indicate 27 female lynx used to develop predicted rela-
tionships and confidence bounds are 90% confidence intervals. Panels (A) and (B) indicate decreasing use, while
panels (C) and (D) indicate additive use (and consistent selection) and proportional use, respectively. See Table 1
and Appendix S1 for details concerning forest structure classes.
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our most predictive RSFs (i.e., selected based on
parsimony) highlighted the potential issues of
solely relying on top RSFs for understanding
habitat relationships. For instance, neither mature
forest nor spruce-fir canopy cover were included
in our most parsimonious RSF at the second
order, despite the evidence that lynx exhibited
selection for both of these resources (i.e., use
greater than availability in Fig. 2). Moreover, our
RSF models at the third order indicated compara-
tively weak selection for mature forest and
spruce-fir canopy cover (Table 4). In fact, and con-
sistent with previous work (Squires et al. 2010),
lynx exhibited avoidance of mature forest in the
summer (Table 4). Taken alone, our RSFs might
lead one to suggest that Canada lynx are indiffer-
ent to the mature forest structure class (as sug-
gested by others; Mowat and Slough 2003) and
spruce-fir canopies. However, as previously men-
tioned, we demonstrated that mature, spruce-fir
forests were used more by lynx than any other
structure or species (Fig. 2). Because we summa-
rized use and availability separately and across
scales, we were able to highlight that (1) mature
forests and spruce-fir canopies were highly avail-
able across our study area, potentially indicative
of first-order selection processes and (2) it was
indeed selection for mature, spruce-fir forests at

the second order (i.e., Fig. 2) that generated a con-
text of broad availability at the third order. And
by definition, it is difficult to strongly select habi-
tat attributes that are abundant (Beyer et al. 2010,
Kertson and Marzluff 2010). This example illus-
trates that characterizing use and availability
prior to identifying predictive and parsimonious
RSFs is essential for inferring covariate impor-
tance and that scale and availability are central to
interpreting selection (as mentioned in Beyer et al.
2010, Matthiopoulos et al. 2011, Aarts et al. 2013,
Northrup et al. 2013).
In addition, characterizing functional responses

in habitat use allowed us to gain a deeper under-
standing of lynx–habitat relationships and pro-
vide land managers with expected responses
under changing environmental conditions. For
instance, during the winter (i.e., the most con-
straining season for lynx; Squires et al. 2010)
female and male Canada lynx exhibited increas-
ing and additive use, respectively, for advanced
regenerating forest as it became more available
(Fig. 6). In contrast, both sexes demonstrated
decreasing use of stand initiation and sparse for-
est (Fig. 6). Placing these responses within their
respective availability ranges (i.e., x-axis in Fig. 6)
illustrated the magnitude of their effects, as well
as indicated they are occurring within a broader

Table 5. Results from functional response analysis for female Canada lynx (Lynx canadensis) during winter
(November–March) and summer (April–October) in western Montana, USA.

Covariate

Winter (n = 27 lynx) Summer (n = 24 lynx)

b0 (90% CI) b1 (90% CI) R2 b0 (90% CI) b1 (90% CI) R2

PICO canopy cover 0.61 (�0.53 to 1.76) 0.99 (0.89–1.08) 0.92 0.62 (�0.32 to 1.56) 0.95 (0.87–1.03) 0.95
PIEN-ABLA canopy cover 0.66 (�1.44 to 2.75) 1.07 (0.97–1.18) 0.92 0.00 (�3.42 to 3.42) 1.01 (0.88–1.27) 0.80
LAOC canopy cover 1.29 (�0.57 to 3.14) 1.01 (0.74–1.28) 0.62 0.76 (�0.67 to 2.20) 0.99 (0.79–1.19) 0.77
PSME canopy cover Second (P = 0.001) 0.96† �0.46 (�2.80 to 1.89) 1.11 (0.88–1.33) 0.77
Horizontal cover �0.27 (�6.12 to 5.58) 1.03 (0.92–1.13) 0.92 �1.14 (�11.27 to 9.00) 1.05 (0.86–1.23) 0.81
Sparse �0.03 (�0.06 to 0.01) 0.87 (0.73–1.01) 0.82‡ �0.01 (�0.07 to 0.05) 0.95 (0.75–1.15) 0.76
Stand initiation Second (P = 0.010) 0.61† Second (P = 0.026) 0.60†
Advanced regeneration 0.05 (0.01–0.09) 1.12 (0.94–1.30) 0.82§ 0.08 (0.02–0.15) 0.96 (0.60–1.32) 0.49§
Mature 0.04 (�0.04 to 0.12) 0.94 (0.79–1.09) 0.82 0.05 (�0.06 to 0.16) 0.81 (0.61–1.02) 0.68
Hare occupancy Second (P = 0.002) 0.62† 0.35 (0.23–0.46) 0.53 (0.35–0.70) 0.55†
Hare intensity 1.30 (0.42–2.17) 0.69 (0.38–0.99) 0.37† 1.60 (0.81–2.39) 0.56 (0.26–0.86) 0.32†

Notes: CI, confidence interval. If a polynomial model was supported, we indicate the complexity of the model (i.e., second
or third degree) and provide the P value of the likelihood-ratio test (v2 distribution). If a linear model was supported, we pro-
vide the estimated intercept (b0) and slope (b1) along with the 90% CI. For all models, we provide the coefficient of determina-
tion (R2). Covariate codes PICO, PIEN, ABLA, LAOC, and PSME indicate lodgepole pine (Pinus contorta), Engelmann spruce
(Picea engelmannii), subalpine fir (Abies lasiocarpa), western larch (Larix occidentalis), and Douglas-fir (Pseudotsuga menziesii),
respectively.

† Functional response.
‡ Perhaps biologically significant functional response, although not statistically significant (a ≤ 0.10).
§ Additive use (and consistent selection).
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context of mature forest (Fig. 6). Interpreting
functional responses within the appropriate con-
text of availability is essential to avoid extrapolat-
ing third-order behavioral responses beyond the
bounds set by second-order selection.

Moreover, these patterns capture some of the
spatio-temporal issues land managers might
consider when implementing landscape-altering
actions to enhance lynx habitat. For example,
managers might want to implement tools (e.g.,
timber harvest or fire) that create advanced
regeneration in the long term, but recognize they
will have to create stand initiation structures in

the short term. To dampen the negative response
by lynx in the short term, managers might focus
their conservation efforts in areas with relatively
low availabilities of existing stand initiation or
sparse forest. This example illustrates the applied
insights and recommendations one can derive
from examining functional responses. Landscape
management can benefit greatly from the
development of habitat maps (Johnson et al.
2004, Fattebert et al. 2015), but maps capture a
spatio-temporal snapshot with no context as to
how habitat use or selection might change with
changing conditions (Hirzel and Le Lay 2008,

A B

C D

Summer

SummerWinter

Winter

Fig. 6. Predicted relationships characterizing functional responses in habitat use by female (A: winter, and B:
summer) and male (C: winter, and D: summer) Canada lynx (Lynx canadensis) in western Montana, USA, across
four forest structural stages. The diagonal line indicates random (i.e., proportional) habitat use, and confidence
bounds are 90% confidence intervals. Data points used to develop predicted relationships are not shown. See
Table 1 and Appendix S1 for details concerning forest structure classes.
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Matthiopoulos et al. 2011, Paton and Matthio-
poulos 2016). Functional responses provide a
means to assess animal responses to changing
environments and as such are essential additions
to characterizing habitat relationships (Moreau
et al. 2012).

On advancing habitat relationships and
conservation of Canada lynx

In this study, we expanded the current under-
standing of lynx–habitat relationships through
our integrated analytical process. This combined
analysis provided a refined lens of lynx resource
use in the context of landscape pattern and con-
servation planning. For instance, we confirmed
that Canada lynx in the Northern Rockies use a
mixture of conifer species and structural stages,
but highlighted that selection and use of mature,
spruce-fir forests appears to be largely a first- or
second-order process (Fig. 2). Additionally, lynx
exhibited the strongest selection for intermediate
snow depths, predicted snowshoe hare habitat,
and lodgepole pine canopy cover at the second
order of selection. These results emphasize the
sensitivity of lynx to consistent and abundant
snow as well as snowshoe hare availability.
Previous work in the Northern Rockies has
demonstrated that advanced regenerating or

multi-storied forests with a substantial compo-
nent of lodgepole pine can provide high-quality
habitat for snowshoe hares (Holbrook et al.
2017). Additionally, the reliance of snowshoe
hares (Zimova et al. 2016) and lynx on snow
conditions highlights foreseeable conservation
challenges because snow extent and depth are
projected to decrease within the Northern Rock-
ies (Klos et al. 2014).
To our knowledge, all previous work on lynx–

habitat relationships has implicitly assumed
habitat use or selection will remain constant with
changing availabilities (Poole et al. 1996, Squires
et al. 2010, Simons-Legaard et al. 2013, Mont-
gomery et al. 2014). Our work is the first to chal-
lenge that assumption. First, female lynx selected
a narrower gradient of forest structures com-
pared to males, and among-female use was most
consistent during the most limiting season (i.e.,
winter R2 > summer R2; Table 5), whereas males
did not display a similar pattern (Table 6). Thus,
conservation planning should be focused on the
needs of females when developing management
plans. Second, both males and females demon-
strated selection of predicted snowshoe hare
occupancy and use, but selection increased as
occupancy and use became less available (Fig. 7).
This pattern was expected and consistent with

Table 6. Results from functional response analysis for male Canada lynx (Lynx canadensis) during winter
(November–March) and summer (April–October) in western Montana, USA.

Covariate

Winter (n = 36 lynx) Summer (n = 35 lynx)

b0 (90% CI) b1 (90% CI) R2 b0 (90% CI) b1 (90% CI) R2

PICO canopy cover 0.07 (�1.49 to 1.62) 1.05 (0.93–1.17) 0.86 �0.44 (�1.22 to 0.34) 1.07 (1.00–1.13) 0.96†
PIEN-ABLA canopy cover Second (P = 0.002) 0.92† 2.35 (0.73 to 3.97) 0.95 (0.87–1.04) 0.91‡
LAOC canopy cover 1.28 (0.07 to 2.48) 1.03 (0.87–1.19) 0.78‡ 0.83 (�0.07 to 1.74) 1.00 (0.87–1.13) 0.83
PSME canopy cover �1.32 (�2.87 to 0.23) 1.20 (1.07–1.33) 0.88† �1.02 (�2.26 to 0.22) 1.11 (1.00–1.21) 0.90†
Horizontal cover 3.19 (�2.25 to 8.63) 0.98 (0.88–1.08) 0.89 4.89 (0.71 to 9.06) 0.95 (0.88–1.03) 0.93‡
Sparse Second (P = 0.015) 0.84† �0.1 (�0.05 to 0.02) 0.97 (0.84–1.11) 0.82
Stand initiation Third (P = 0.018) 0.52† Third (P < 0.001) 0.82†
Advanced regeneration 0.03 (�0.01 to 0.06) 1.28 (1.09–1.46) 0.81† 0.02 (�0.01 to 0.05) 1.42 (1.26–1.59) 0.86†
Mature 0.09 (0.02 to 0.17) 0.86 (0.72–1.00) 0.76† �0.04 (�0.12 to 0.05) 0.96 (0.81–1.12) 0.77
Hare occupancy 0.32 (0.23 to 0.41) 0.61 (0.48–0.74) 0.64† Second (P = 0.015) 0.78†
Hare intensity Second (P = 0.024) 0.80† Second (P = 0.045) 0.85†

Notes: CI, confidence interval. If a polynomial model was supported, we indicate the complexity of the model (i.e., second
or third degree) and provide the P value of the likelihood-ratio test (v2 distribution). If a linear model was supported, we pro-
vide the estimated intercept (b0) and slope (b1) along with the 90% CI. For all models, we provide the coefficient of determina-
tion (R2). Covariate codes PICO, PIEN, ABLA, LAOC, and PSME indicate lodgepole pine (Pinus contorta), Engelmann spruce
(Picea engelmannii), subalpine fir (Abies lasiocarpa), western larch (Larix occidentalis), and Douglas-fir (Pseudotsuga menziesii),
respectively.

† Functional response.
‡ Additive use (and consistent selection).
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Canada lynx specializing on snowshoe hares
(Elton and Nicholson 1942, Krebs et al. 2001,
Ivan and Shenk 2016). Finally, male lynx demon-
strated a positive functional response (increasing
use with increasing availability) for advanced
regeneration while females demonstrated addi-
tive use (Fig. 6). The affinity of lynx to advanced
regenerating forest within a home range, coupled
with the high use of mature forest (Fig. 3), sug-
gests that Canada lynx spend a significant
amount of time at the interface between mature
and advanced regenerating forest. This is consis-
tent with the mechanism that advanced

regeneration likely produces the highest snow-
shoe hare densities (Cheng et al. 2015), but the
mature structure class is where hares are most
accessible for lynx (Fuller et al. 2007, Ivan and
Shenk 2016). This mechanism received demo-
graphic support by Kosterman (2014), who
demonstrated that female lynx with core areas of
highly connected mature forest and intermediate
levels of regenerating forests had the highest
probability of producing a litter. The integration
of resource selection and functional response
analyses begins to define the gestalt of landscape
mosaics and behaviors that give rise to the

A B

C D

SummerWinter

SummerWinter

Fig. 7. Predicted relationships characterizing functional responses in habitat use by male and female Canada
lynx (Lynx canadensis) in western Montana, USA, for snowshoe hare (Lepus americanus) occupancy (A: winter,
and B: summer) and intensity of use (C: winter, and D: summer). The diagonal line indicates random (i.e.,
proportional) habitat use, and confidence bounds are 90% confidence intervals. Data points used to develop
predicted relationships are not shown. See Table 1 for addition details on snowshoe hare covariates.
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distribution of Canada lynx, which facilitates
and informs habitat conservation efforts.

The second motivation for this work was to
provide efficient habitat maps for Canada lynx
with the goal of assisting land managers in their
decision-making processes. Mangers of public
lands are tasked with making multi-scale deci-
sions in the context of social, biological, and legal
complexities and thus require objective and
science-based designations of habitat for species
listed under the ESA, SARA, or similar statutes.
We provided five landscape-level maps character-
izing the probability of use by Canada lynx in the
Northern Rockies (Fig. 3), all of which were
deemed predictive of lynx use (Fig. 4). Although,
consistent with DeCesare et al. (2012), our scale-
integrated habitat maps appeared to perform best
based on validation and mapping efficiency
(Fig. 4). We believed this was the case because the
second-order map had a much wider range in rel-
ative probabilities of use (i.e., more discrimina-
tory) than the third-order map, such that a high
prediction from the third order would seldom
override the second order except on the low end
of the second-order range. Therefore, by integrat-
ing the second order with the third order, the
scale-integrated map appears to capture the hier-
archical nature of habitat selection and generate
efficient maps. Finally, by extending the concept
of Boyce et al. (2002) we provided a simple, objec-
tive, and defensible approach to determine the
threshold value of a habitat map (Fig. 4). This will
be helpful for land managers if they are required
to make decisions in a binary fashion, where a
habitat and non-habitat designation is needed.

The application of our habitat maps, or the
data characterizing lynx habitat, will depend on
the extent and resolution of the management
objective. For instance, our second-order and
scale-integrated habitat map would be best
applied at broad extents (e.g., landscape level).
At the project level (e.g., 40 acres or 16 ha), how-
ever, the third-order derived maps would likely
be the most informative for land managers, but
this is conditioned on the project area occurring
within lynx habitat as modeled at the broad
extent. At fine resolutions (3–10 acres or 1–4 ha),
managers will likely need to couple our maps with
site visits (and field data described elsewhere;
Squires et al. 2010) to develop the most informed
decisions concerning Canada lynx habitat.

Similarly, the absolute values of forest structure
and composition characterizing lynx habitat
(e.g., as in Fig. 2, Table 2; Appendices S1 and S3)
should be applied in a relative and general sense.
All of our metrics are derived from models with
error and characterize resolutions ≥100 m2

(Table 1). Indeed, maps of forest characteristics
and animal habitat are useful tools for conserva-
tion planning and prioritization (Johnson et al.
2004, DeCesare et al. 2012), but will likely need
refinement based on site-specific understandings
derived from direct observation.

CONCLUSIONS

Understanding and predicting habitat is essen-
tial in animal ecology and management (Elith
and Leathwick 2009), particularly for species that
are threatened or endangered. Here, we demon-
strated an integrated process to understand,
prioritize, and predict habitat, which we applied
in the case of the federally threatened Canada
lynx. Our approach was novel because we char-
acterized habitat use, availability, selection, and
functional response across scales, which
embraced the multi-scale behavioral process of
habitat selection (Johnson 1980, Boyce 2006,
Meyer and Thuiller 2006). Although previous
work has demonstrated the conditional nature of
habitat selection, and the potential issues deriv-
ing importance from selection (Beyer et al. 2010,
Anderson et al. 2012, Northrup et al. 2013), our
work is among the first to highlight the conserva-
tion costs of such issues. This is particularly a
concern when examining a subset of Johnson’s
(1980) orders of selection, which is commonly the
case. Further, we developed a synthetic approach
to characterize functional responses in habitat
use, which provided critically important insights
into the behavior of Canada lynx. Indeed, assess-
ing functional responses in habitat use can
inform both ecologists and managers on the
expected responses of animals to changing envi-
ronmental conditions and thus should become
basic tools in applied ecology (Moreau et al.
2012). Successful conservation efforts for most
endangered and threatened species require spa-
tial characterizations of habitat and precise
understandings of the mechanisms giving rise to
those spatial depictions. Our multi-scale and
integrated process offers a means to that end.
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