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Cover Image: Understanding nutritional resources and habitat use of large 
herbivores like elk (Cervus canadensis) can benefi t their management across 
multiple land ownerships and management regimes. Dietary digestible energy, 
distance to open roads, distance to cover-forage edge, and slope were the best 
predictors of habitat use by elk during summer in a landscape model developed 
for western Oregon and Washington. Photo by Michael P. Middleton, 
Muckleshoot Indian Tribe.
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Rocky Mountain elk (Cervus canadensis) in the Green River drainage, Washington, are likely descendants 
from Yellowstone transplants in the early 1900s. Elk in this region provided much of the telemetry data used 
in modeling elk habitat use in the Westside region. Photo by Michael P. Middleton, Muckleshoot Indian Tribe.
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ABSTRACT Studies of habitat selection and use by wildlife, especially large herbivores, are foundational for
understanding their ecology and management, especially if predictors of use represent habitat requirements that can
be related to demography or fitness. Many ungulate species serve societal needs as game animals or subsistence
foods, and also can affect native vegetation and agricultural crops because of their large body size, diet choices, and
widespread distributions. Understanding nutritional resources and habitat use of large herbivores like elk (Cervus
canadensis) can benefit their management across different land ownerships and management regimes. Distributions
of elk in much of the western United States have shifted from public to private lands, leading to reduced hunting
and viewing opportunities on the former and increased crop damage and other undesired effects on the latter.
These shifts may be caused by increasing human disturbance (e.g., roads and traffic) and declines of early-seral
vegetation, which provides abundant forage for elk and other wildlife on public lands. Managers can benefit from
tools that predict how nutritional resources, other environmental characteristics, elk productivity and performance,
and elk distributions respond to management actions. We present a large-scale effort to develop regional elk
nutrition and habitat-use models for summer ranges spanning 11 million ha in western Oregon and Washington,
USA (hereafter Westside). We chose summer because nutritional limitations on elk condition (e.g., body fat levels)
and reproduction in this season are evident across much of the western United States. Our overarching hypothesis
was that elk habitat use during summer is driven by a suite of interacting covariates related to energy balance:
acquisition (e.g., nutritional resources, juxtaposition of cover and foraging areas), and loss (e.g., proximity to open
roads, topography). We predicted that female elk consistently select areas of higher summer nutrition, resulting in
better animal performance in more nutritionally rich landscapes. We also predicted that factors of human
disturbance, vegetation, and topography would affect elk use of landscapes and available nutrition during summer,
and specifically predicted that elk would avoid open roads and areas far from cover-forage edges because of
their preference for foraging sites with secure patches of cover nearby. Our work had 2 primary objectives: 1) to
develop and evaluate a nutrition model that estimates regional nutritional conditions for elk on summer ranges,
using predictors that reflect elk nutritional ecology; and 2) to develop a summer habitat-use model that integrates
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the nutrition model predictions with other covariates to estimate relative probability of use by elk, accounting for
ecological processes that drive use. Tomeet our objectives, we used 25 previously collected data sets on elk nutrition,
performance, and distributions from 12 study areas. We demonstrated the management utility of our regional-scale
models via application in 2 landscapes in Washington.
The elk nutritionmodel predicts levels of digestible energy in elk diets (DDE; kcalDE/g of consumed forage) during

summer. Model input data were from foraging experiments using captive female elk and field measurements of site
characteristics atfine scales (�0.5 ha).Thenutritionmodel includeda setof equations thatpredicted foragebiomass as a
function of site characteristics and a second set that predictedDDEprimarily as a function of forage biomass.We used
the nutrition model to develop a DDE map across the Westside. We then evaluated performance of the model by
comparingpredictedDDEtonutritional resource selectionbyelk and topopulation-level estimates of autumnbody fat
and pregnancy rates of lactating elk. Tomodel elk habitat use, we compiled 13 unique telemetry data sets from female
elk (n¼ 173) in 7 study areas (data collected June–August 1991–2009).We used a generalized linear model with 5 of
thedata sets, coupledwith ecologically relevant covariates characterizingnutrition,humandisturbance, vegetation, and
physical conditions, to estimate intensity of usewith thenegative binomialmodel.Weevaluatedmodel performanceby
mapping predicted habitat use with the regionalmodel and comparing predictions with counts of elk locations using 8
independent telemetry data sets.
Thenutritionmodel explaineda reasonablyhighamountof variation in foragebiomass (r2¼ 0.46–0.72) and included

covariates of overstory canopy cover, proportion of hardwoods in the canopy, potential natural vegetation (PNV) zone,
and study area.DietaryDE equations in themodel explained about 50%of the variation inDDE (r2¼ 0.39–0.57) as a
functionof forage biomass byPNVzone and study area.Broad-scale application of thenutritionmodel in theWestside
region illustrated thepredominanceof landscapes that failed tomeetnutritional needs of lactating females (�2.58 kcal/
g) and their calves, especially atmoderate elevations in closed-canopy forests in both theCoastRange and the southern
Cascades. Areas providing DDE at (>2.58–2.75 kcal/g) or in excess (>2.75 kcal/g) of the basic requirement of
lactating females were uncommon (<15% of area) or rare (<5% of area), respectively, and primarily occurred in early-
seral communities, particularly at higher elevations. Wild elk avoided areas with DDE below basic requirement and
selected for areas with DDE >2.60 kcal/g. Percentage of elk ranges providing DDE levels near or above basic
requirement was highly correlated with pregnancy rates of lactating females. Autumn body fat levels were highly
correlated with percentage of elk ranges providing DDE levels above basic requirement.
The regional model of elk habitat use with greatest support in the empirical data included 4 covariates: DDE,

distance to nearest road open to motorized use by the public, distance to cover-forage edge, and slope. Elk preferred
habitats that were relatively high in DDE, far from roads, close to cover-forage edges, and on gentle slopes. Based
on standardized coefficients, changes in slope (�0.949) were most important in predicting habitat use, followed by
DDE (0.656), distance to edge (�0.305), and distance to open road (0.300). Use ratios for the regional model
indicated these changes in relative probability of use by elk: a 111.2% increase in use for each 0.1-unit increase in
DDE; a 22.7% increase in use for each kilometer away from an open road; an 8.1% decrease in use for each 100-m
increase in distance to edge; and a 5.3% decrease in use for each percent increase in slope. The regional model
validated well overall, with high correlation between predicted use and observed values for the 4 Washington sites
(rs� 0.96) but lower correlation in southwestern Oregon sites (rs¼ 0.32–0.87).
Our results demonstrated that nutrition data collected at fine scales with captive elk can be used to predict nutritional

resources at large scales, and that these predictions directly relate to habitat use and performance of free-ranging elk across
theWestside region. These results also highlight the importance of including summer nutrition in habitat evaluation and
landscapeplanningforWestsideelk.Themodels can informmanagementstrategies toachieveobjectives forelkacross land
ownerships. The regionalmodel provides a useful tool to understand and document spatially explicit habitat requirements
and distributions of elk in current or future landscapes. The 2 examples of management application demonstrated how
effects of management on elk nutrition and habitat use can be evaluated at landscape scales, and in turn how animal
performance and distribution are affected. Results further illustrated the importance of managing for nutrition in
combination with other covariates (i.e., roads, slope, cover-forage edges) that affect elk use of nutritional resources to
achieve desired distributions of elk. Our meta-analysis approach to habitat modeling provides a useful framework for
research and management of wildlife species with coarse-scale habitat requirements by identifying commonalities in
habitat-use patterns that are robust across multiple modeling areas and a large geographic range. Use of such methods
in future modeling, including application in monitoring programs and adaptive management, will continue to
advance ecological knowledge andmanagement of wildlife species like elk.� 2018 The Authors.WildlifeMonographs
published by Wiley on behalf of The Wildlife Society. This is an open access article under the terms of the Creative
CommonsAttribution-NonCommercial-NoDerivsLicense,whichpermitsuseanddistribution inanymedium,provided
the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

KEY WORDS animal performance, Cervus candensis, elk, habitat-use model, land management, meta-analysis, nutritional
ecology, Pacific Northwest.
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Modelando la Nutrici�on de Alce y el Uso del H�abitat en el
Oeste de Oregon y Washington

RESUMEN Los estudios de selecci�on y uso de h�abitats por la vida silvestre, especialmente herb�ıvoros grandes, son
fundamentales para comprender su ecolog�ıa y gesti�on, especialmente si los predictores de uso representan requisitos de
h�abitat que pueden estar relacionados con la demograf�ıa o aptitud f�ısica. Muchas especies de ungulados sirven a las
necesidades de la sociedad como animales de caza o alimento sustancial, y tambi�en pueden afectar la vegetaci�on nativa y
los cultivos agr�ıcolas debido a sus grande opciones de dieta de tama~no corporal y su amplia distribucion. El
entendimiento de los recursos nutricionales y el uso de h�abitat de grandes herb�ıvoros como el alce (Cervus canadensis)
puede beneficiar su gesti�on en diferentes propiedades de la tierra y reg�ımenes de gesti�on. Distribuciones de alce en gran
parte del oeste de los Estados Unidos han cambiado de tierras p�ublicas a privadas, conduciendo a oportunidades a la caza
y observaci�on reducidas en la primera y el aumento del da~no a los cultivos y otros efectos no deseados en este �ultimo.
Estos cambios pueden ser causados por el aumento de la perturbaci�on humana (por ejemplo, carreteras y tr�afico) y la
disminuci�on de la vegetaci�on serals-tempranas, que proporcionan abundante forraje para los alces y otros animales
salvajes en las tierras p�ublicas. Los gerentes pueden beneficiarse de t�ecnicas que predicen c�omo los recursos nutricionales,
otras caracter�ısticas ambientales, la productividad y el rendimiento de los alces y las distribuciones de alces responden a
las acciones de la administraci�on. Presentamos un esfuerzo a gran escala para desarrollar modelos regional de nutrici�on
de alces y uso de h�abitats para las zonas de distribuci�on de verano que abarcan 11 millones de hect�areas en el oeste de
Oregon y Washington, EE. UU. (en lo sucesivo Westside). Elegimos verano porque limitaciones nutricionales a
condici�on del alce (por ejemplo, niveles de grasa corporal) y la reproducci�on en esta temporada son evidentes en gran
parte de los EstadosUnidos. Nuestra hip�otesis general era que el uso de h�abitat de alces durante el verano est�a impulsado
por un conjunto de covariables que interactuan relacionadas con el equilibrio energ�etico: adquisici�on (por ejemplo,
recursos nutricionales, yuxtaposici�on de �areas de cobertura y �areas de forrajeo) y p�erdida (por ejemplo, proximidad a
caminos abiertos, topograf�ıa). Predijimos que las alces hembra seleccionan consistentemente �areas de mayor nutrici�on
de verano, lo que resulta en un mejor rendimiento animal en paisajes m�as ricos nutricionalmente. Tambi�en predijimos
que los factores de perturbaci�on humana, vegetaci�on y topograf�ıa afectar�ıan el uso de alces de los paisajes y la nutrici�on
disponible durante el verano, y predijimos espec�ıficamente que el alce evitar�ıa caminos abiertos y�areas lejos de los bordes
de forraje debido a su preferencia por los sitios de forrajeo con parches seguros de cobertura cerca. Nuestro trabajo tuvo
dos objetivos principales: 1) desarrollar y evaluar un modelo de nutrici�on que estima las condiciones nutricionales
regionales para el alce en las zonas de distribuci�on de verano, utilizando predictores que reflejan la ecolog�ıa nutricional de
los alces; y 2) desarrollar unmodelo de verano de uso del h�abitat que integre las predicciones delmodelo de nutrici�on con
otras covariables para estimar la probabilidad relativa de uso de alces, teniendo en cuenta los procesos ecol�ogicos que
impulsan el uso. Para cumplir nuestros objetivos, utilizamos 25 conjuntos de datos recopilados previamente sobre
nutrici�on, rendimiento y distribuciones de alces de 12 �areas de estudio. Demostramos la utilidad de gesti�on de nuestros
modelos a escala regional a trav�es de la aplicaci�on en 2 paisajes en Washington.
El modelo de nutrici�on de alces predice niveles de energ�ıa digestible en las dietas de alces (DDE; kcal DE/g de

forraje consumido) durante el verano. Los datos de entrada del modelo proven�ıan de experimentos de forrajeo
utilizando alces femeninos cautivos y mediciones de campo de las caracter�ısticas del sitio a escalas finas (� 0.5 ha). El
modelo de nutrici�on incluy�o un conjunto de ecuaciones que predijeron la biomasa del forraje como una funci�on de
las caracter�ısticas del sitio y un segundo conjunto que predijo DDE principalmente como una funci�on de la biomasa
del forraje. Usamos el modelo de nutrici�on para desarrollar un mapa DDE a trav�es del Westside. Luego evaluamos
el desempe~no del modelo comparando DDE predicho con la selecci�on de recursos nutricionales por alces y con las
estimaciones a nivel poblacional de la grasa corporal oto~nal y las tasas de embarazo de alces lactantes. Para modelar el
uso del h�abitat de alces, compilamos 13 conjuntos �unicos de datos de telemetr�ıa de alces hembra (n¼ 173) en 7 �areas
de estudio (datos recogidos en Junio�Agosto de 1991� 2009). Utilizamos un modelo lineal generalizado con 5 de
los conjuntos de datos, junto con covariables ecol�ogicamente relevantes que caracterizan la nutrici�on, la perturbaci�on
humana, la vegetaci�on y las condiciones f�ısicas, para estimar la intensidad de uso con el modelo binomial negativo.
Evaluamos el rendimiento del modelo mapeando el uso previsto del h�abitat con el modelo regional y comparando las
predicciones con los recuentos de las ubicaciones de los alces utilizando 8 conjuntos independientes de datos de
telemetr�ıa.
El modelo de nutrici�on explic�o una cantidad razonablemente alta de variaci�on en la biomasa de forraje

(r2¼ 0.46–0.72) e incluy�o covariables de la cubierta del dosel, la proporci�on de maderas duras en el dosel, la zona
de vegetaci�on natural potencial (PNV) y el �area de estudio. Diet�etica DE ecuaciones en el modelo explican
aproximadamente el 50% de la variaci�on en DDE (r2¼ 0.39–0.57) como una funci�on de la biomasa de forraje por
zona PNV y �area de estudio. Aplicaci�on a gran escala del modelo de la nutrici�on en la regi�on Westside ilustr�o el
predominio de los paisajes que no cumpli�o con las necesidades nutricionales de hembras lactantes (�2.58 kcal/g) y
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sus terneros, especialmente en elevaciones moderadas en los bosques de dosel cerrado tanto en el Coast Range y el
sur de Cascades. �Areas que proporcionan DDE al (>2.58–2.75 kcal/g) o en exceso (>2.75 kcal/g) del requisito
b�asico de hembras lactantes eran poco frecuentes (<15% de �area) o raras (<5% de �area), respectivamente, y ocurri�o
principalmente en las comunidades serales tempranas, particularmente en las elevaciones m�as altas. Alces salvajes
evitadas �areas con DDE por debajo del requisito b�asico y se seleccion�o para �areas con DDE >2.6 0 kcal/g. El
porcentaje de rangos de alces que proporcionan niveles de DDE cercanos o superiores a los requisitos b�asicos
estuvo altamente correlacionado con las tasas de embarazo de las hembras lactantes. Los niveles de grasa corporal
en oto~no estuvieron altamente correlacionados con el porcentaje de rangos de alces que proporcionan niveles de
DDE por encima del requisito b�asico.
El modelo regional de uso de h�abitat de alces con mayor apoyo en los datos emp�ıricos incluy�o 4 covariables: DDE,

distancia a la carretera m�as cercana abierta al uso motorizado por el p�ublico, distancia al borde cubierta-forraje y
pendiente. Alce prefiri�o h�abitats que eran relativamente altos en DDE, lejos de las carreteras, cerca de los bordes del
forraje de cobertura y en pendientes suaves. Basado en los coeficientes estandarizados, los cambios en la pendiente
(�0.949) fueron los m�as importantes para predecir el uso del h�abitat, seguidos por DDE (0.656), distancia al borde
(�0.305) y distancia al camino abierto (0.300). Las relaciones utilizadas para los modelos regionales indicaron estos
cambios en la relativa probabilidad de uso por alce: un aumento del 111.2% en el uso para cada 0.1-unidad de
aumento en DDE; un aumento del 22.7% en el uso por cada kil�ometro de distancia de una carretera abierta; una
disminuci�on 8.1% en el uso de cada 100-m aumento de la distancia hasta el borde; y una disminuci�on del 5.3% en el
uso para cada incremento porcentual en la pendiente. El modelo regional se valid�o bien en general, con una alta
correlaci�on entre el uso previsto y los valores observados para los 4 sitios de Washington (rs� 0.96) pero una
correlaci�on m�as baja en los sitios del suroeste de Oreg�on (rs¼ 0.32–0.87).
Nuestros resultados demuestran que datos de nutrici�on recopilados en escalas finas recogida en escalas finas con

alces en cautividad puede ser utilizado para predecir los recursos nutricionales a grandes escalas, y que estas
predicciones se relacionan directamente con el uso del h�abitat y el rendimiento de los alces que pasan libremente en
toda la regi�on Westside. Estos resultados tambi�en destacan la importancia de incluir la nutrici�on de verano en la
evaluaci�on del h�abitat y la planificaci�on del paisaje para alces en el Westside. Los modelos pueden informar
estrategias de gesti�on para alcanzar objetivos para alces en todas las propiedades de la tierra. El modelo regional
proporciona una t�ecnica �util para comprender y documentar espacialmente requisitos expl�ıcitos de h�abitat y
distribuciones de alces en paisajes actuales o futuros. Los 2 ejemplos de aplicaci�on de gesti�on demostraron c�omo los
efectos del gesti�on sobre la nutrici�on de alces y el uso del h�abitat pueden evaluar a escala de paisaje y, a su vez, c�omo
se afectan el rendimiento y la distribuci�on del animal. Los resultados ilustran adem�as la importancia de la gesti�on de
la nutrici�on en combinaci�on con otras covariables (es decir; carreteras, pendiente, la cobertura de los bordes del
forraje) que afectan el uso de los recursos nutricionales de alces para lograr la distribuci�on deseadas de alces. Nuestro
enfoque de metan�alisis para el modelado de h�abitats proporciona un marco �util para la investigaci�on y el gesti�on de
especies silvestres con requisitos de h�abitats de escala gruesa al identificando elementos comunes en los patrones de
uso del h�abitat que son s�olidos enm�ultiples �areas de modelado y un amplio rango geogr�afico. El uso de tales m�etodos
en modelos futuros, incluida la aplicaci�on en programas de monitoreo y gesti�on adaptativo, continuar�a avanzando el
conocimiento ecol�ogico y el gesti�on de especies silvestres como el alce.

Mod�elisation de L’alimentation du Wapiti et de son
Utilisation de L’habitat dans L’ouest des �Etats de l’Oregon
et de Washington

R�ESUM�E Les �etudes sur la s�election et l’utilisation d’un habitat par un animal sauvage, en particulier les grands
herbivores, sont cruciales pour comprendre son �ecologie et sa gestion, surtout si les pr�edicteurs de l’utilisation de
l’habitat repr�esentent des besoins qui peuvent être reli�es �a la d�emographie ou �a l’�etat de sant�e de l’animal. De
nombreux ongul�es comblent des besoins soci�etaux en tant que gibier ou nourriture de subsistance, et peuvent aussi
avoir un effet n�egatif sur la v�eg�etation indig�ene et les cultures agricoles en raison de leur grande taille, de leurs choix
alimentaires et de leur aire de r�epartition �etendue. Comprendre le type de ressources nutritionnelles disponibles aux
grands herbivores tels que le wapiti (Cervus canadensis) et l’utilisation de leur habitat peut faciliter leur gestion sous
des r�egimes de gestion diff�erents et sur des terres bois�ees ayant des propri�etaires diff�erents. Dans la plupart des
r�egions de l’ouest des �Etats-Unis, l’aire de r�epartition du wapiti a migr�e des terres publics vers des terres priv�ees, ce
qui a r�eduit les possibilit�es de chasse et d’observations sur les terres publics et accru les dommages aux r�ecoltes et
d’autres effets ind�esirables sur les terres priv�ees. Il est possible que ce d�eplacement soit le r�esultat de perturbations
humaines accrues (p. ex. chemins et trafic) et du d�eclin de la v�eg�etation dans les forêts aux premiers stades de
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succession �ecologique qui offrent un fourrage abondant aux wapitis et autres animaux sauvages sur les terres
publiques. Les outils qui pr�edisent la r�eponse des ressources nutritionnelles et d’autres caract�eristiques
environnementales ainsi que la productivit�e et la performance du wapiti et sa r�epartition suite �a l’implantation de
mesures de gestion peuvent aider les gestionnaires. Nous pr�esentons un travail r�ealis�e �a grande �echelle qui avait pour
but de d�evelopper des mod�eles r�egionaux sur l’alimentation du wapiti et son utilisation de l’habitat dans des aires de
r�epartition estivale s’�etendant sur 11 millions d’hectares dans l’ouest des �etats de l’Oregon et de Washington des
�Etats-Unis (r�egion ci-apr�es appel�ee Westside). Nous avons choisi la saison estivale parce que les contraintes
nutritionnelles sur la condition et la reproduction du wapiti (p. ex. le pourcentage de r�eserves lipidiques) durant cette
saison sont apparentes dans la plupart des r�egions de l’ouest des �Etats-Unis. Notre hypoth�ese fondamentale �etait la
suivante: l’utilisation de l’habitat par le wapiti durant l’�et�e est r�egie par une s�erie de covariables interd�ependantes
reli�ees au bilan �energ�etique, soit les gains (p. ex. ressources nutritionnelles, juxtaposition des sites pour s’alimenter et
s’abriter) et les pertes (p. ex. proximit�e de chemins ouverts, topographie). Nous avons pr�edit que la femelle wapiti
choisit toujours des sites plus nutritifs en �et�e, ce qui donne un animal plus performant dans les paysages plus riches
en nutriments. Nous avons aussi pr�edit que les facteurs de perturbations humaines, la v�eg�etation et la topographie
auraient une influence sur la nourriture disponible durant l’�et�e et sur l’utilisation des paysages par le wapiti, et pr�edit
particuli�erement que le wapiti �eviterait les chemins ouverts et les sites d’alimentation loin de la fronti�ere limitrophe
entre la zone d’alimentation et la zone d’abri en raison de sa pr�ef�erence pour des sites d’alimentation o�u il y a des
endroits �a proximit�e pour s’abriter de faScon s�ecuritaire. Nos travaux avaient 2 objectifs principaux: 1) d�evelopper et
�evaluer un mod�ele sur l’alimentation qui permettrait d’estimer les conditions nutritionnelles r�egionales dans les aires
de r�epartition estivale du wapiti �a l’aide de pr�edicteurs qui tiendraient compte de l’�ecologie nutritionnelle du wapiti;
et 2) d�evelopper un mod�ele sur l’utilisation de l’habitat en �et�e qui int�egre les projections issues du mod�ele sur
l’alimentation avec d’autres covariables pour estimer la probabilit�e d’utilisation d’un habitat par le wapiti en tenant
compte des processus �ecologiques qui d�eterminent l’utilisation d’un habitat. Pour atteindre nos objectifs, nous avons
utilis�e 25 ensembles de donn�ees d�ej�a recueillis sur l’alimentation, la performance et la r�epartition du wapiti dans 12
sites d’�etude. Nous avons d�emontr�e l’utilit�e de nos mod�eles r�egionaux �a des fins de gestion en les appliquant dans 2
paysages de l’�etat de Washington.
Le mod�ele sur l’alimentation du wapiti a calcul�e l’�energie digestible des aliments du wapiti (EDA; kcal ED/g de

fourrage ing�er�e) durant l’�et�e. Les donn�ees d’entr�ee dans le mod�ele provenaient d’exp�eriences sur la quête alimentaire
effectu�ees avec des femelles wapitis en captivit�e et de mesures de terrain sur les caract�eristiques des sites �a petites
�echelles (�0,5 ha). Le mod�ele sur l’alimentation contenait une premi�ere s�erie d’�equations qui calculaient la quantit�e
de biomasse fourrag�ere en fonction des caract�eristiques d’un site et une deuxi�eme s�erie qui calculaient l’EDA en
fonction principalement de la biomasse fourrag�ere. Nous nous sommes servis du mod�ele sur l’alimentation pour
dresser une carte de l’EDA dans toute la r�egion du Westside. Nous avons ensuite �evalu�e la performance du mod�ele
en comparant les projections faites par le mod�ele sur l’EDA au choix des ressources nutritionnelles faits par les
wapitis et �a des estimations faites sur le taux de gestation des femelles en lactation et sur leurs r�eserves lipidiques �a
l’automne, et ce, �a l’�echelle des populations. Pour mod�eliser l’utilisation de l’habitat du wapiti, nous avons compil�e
13 ensembles de donn�ees t�el�em�etriques sur la femelle wapiti (n¼ 173) dans 7 sites d’�etude (donn�ees recueillies entre
1991 et 2009 durant les mois de juin, juillet et août). Nous avons utilis�e un mod�ele lin�eaire g�en�eralis�e avec 5 des
ensembles de donn�ees qui ont �et�e combin�es �a des covariables �ecologiquement pertinentes sur l’alimentation, les
perturbations humaines, la v�eg�etation et les conditions physiques afin d’estimer l’intensit�e d’utilisation de l’habitat �a
l’aide du mod�ele binomial n�egatif. Nous avons �evalu�e la performance du mod�ele en cartographiant l’utilisation
pr�evue de l’habitat �a l’aide du mod�ele r�egional et en comparant les projections au nombre de sites utilis�es par le
wapiti �a l’aide de 8 ensembles ind�ependants de donn�ees t�el�em�etriques.
Le mod�ele sur l’alimentation a expliqu�e un assez grand nombre de variations dans la biomasse fourrag�ere

(r2¼ 0,46–0,72) et contenait des covariables sur le couvert forestier de l’�etage dominant, la proportion de feuillus
dans le couvert forestier, la zone de v�eg�etation naturelle potentielle (VNP) et le site d’�etude. Les �equations sur
l’�energie digestible des aliments (EDA) dans le mod�ele a expliqu�e environ 50% des variations de l’EDA
(r2¼ 0,39–0,57) en fonction de la biomasse fourrag�ere par zone de VNP et site d’�etude. Une application �a grande
�echelle du mod�ele sur l’alimentation dans la r�egion du Westside a fait ressortir une quantit�e importante de
paysages qui ne r�eussissaient pas �a combler les besoins nutritionnels des femelles en lactation (�2,58 kcal/g) et
leurs faons, en particulier dans des forêts �a couvert ferm�e �a des altitudes mod�er�ees �a la fois dans la châıne côti�ere et
dans le sud des monts Cascades. Les sites qui fournissaient une EDA �egale aux (>2,58–2,75 kcal/g) ou sup�erieure
aux (>2.75 kcal/g) besoins de base des femelles en lactation �etaient peu courants (<15% du site) ou rares (<5% du
site), respectivement, et se trouvaient principalement dans des forêts aux premiers stades de succession �ecologique,
particuli�erement �a des altitudes plus �elev�ees. Les wapitis sauvages �evitaient les sites qui fournissaient une EDA
sous les besoins de base et choisissaient des sites qui fournissaient une EDA >2,60 kcal/g. Le pourcentage des
aires de r�epartition des wapitis qui fournissaient une EDA �a peu pr�es �egale ou sup�erieure �a leurs besoins de base
�etait fortement corr�el�e aux taux de gestation des femelles en lactation. Les r�eserves lipidiques des wapitis en
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automne �etaient fortement corr�el�ees au pourcentage de leurs aires de r�epartition qui fournissaient une EDA
sup�erieure �a leurs besoins de base.
Lemod�ele r�egional sur l’utilisation de l’habitat par lewapiti qui corroborait le plus les donn�ees empiriques contenaient 4

covariables: EDA, distance au chemin ouvert le plus proche o�u circulent des v�ehicules motoris�es, distance de la fronti�ere
limitrophe entre la zone d’alimentation et la zone d’abri et pente. Leswapitis ont pr�ef�er�e les habitats qui fournissaient une
EDArelativement�elev�ee et qui�etaient loin des chemins, pr�es de la fronti�ere limitrophe entre la zone d’alimentation et la
zone d’abri, et situ�es sur des pentes douces. Bas�es sur des coefficients normalis�es, les changements dans la pente (�0,949)
pr�edisaient lemieux l’utilisationde l’habitat, suivisde l’EDA(0,656),de ladistance�a la fronti�ere limitrophe (�0,305)etde
la distance �a un chemin ouvert (0,300). Les ratios d’utilisation dans le mod�ele r�egional ont fait ressortir les changements
suivantsdans laprobabilit�e relativeque lewapitiutilise l’habitat: uneaugmentationde111,2%dans l’utilisationde l’habitat
par 0,1 unit�e d’augmentation de l’EDA, une augmentation de 22,7% dans l’utilisation de l’habitat par kilom�etre
additionnel entre le site d’alimentation et un chemin ouvert, une diminution de 8,1% dans l’utilisation de l’habitat par
100md’augmentation de la distance�a la fronti�ere limitrophe et une diminution de 5,3%dans l’utilisation de l’habitat par
1% d’augmentation dans la pente. Dans l’ensemble, le mod�ele r�egional a effectu�e une bonne validation, �etablissant une
forte corr�elation entre l’utilisationprojet�ee et les valeurs observ�ees pour les 4 sites de l’�etat deWashington (rs> 0,96),mais
une plus faible corr�elation pour les sites situ�es dans le sud-ouest de l’�etat de l’Oregon (rs¼ 0,32–0,87).
Nos r�esultats d�emontrent qu’il est possible d’utiliser des donn�ees sur l’alimentation recueillies �a de petites �echelles

avec des wapitis en captivit�e pour pr�edire les ressources nutritionnelles �a de grandes �echelles et que ces projections
sont directement reli�ees �a la performance des wapitis en libert�e et �a leur utilisation de l’habitat dans l’ensemble de la
r�egion du Westside. Ces r�esultats montrent aussi l’importance d’inclure l’alimentation estivale dans l’�evaluation de
l’habitat et la planification du paysage pour le wapiti de la r�egion duWestside. Les mod�eles peuvent être une source
d’information pour �etablir les strat�egies de gestion n�ecessaires pour atteindre les objectifs relativement aux wapitis
qui se trouvent sur des terres bois�ees priv�ees. Le mod�ele r�egional est un outil utile pour comprendre et documenter
de faScon spatialement explicite les besoins de l’habitat et la r�epartition des wapitis dans des paysages existants ou
futurs. Les 2 exemples d’application sur le plan de la gestion ont d�emontr�e de quelle faScon il �etait possible d’�evaluer
les effets de la gestion sur l’alimentation du wapiti et son utilisation de l’habitat �a l’�echelle des paysages et, par
ricochet, les effets sur la performance et la r�epartition de l’animal. Les r�esultats illustrent �egalement l’importance
d’une gestion en fonction de l’alimentation combin�ee �a d’autres covariables (c.-�a-d. les chemins, la pente, la fronti�ere
limitrophe entre la zone d’alimentation et la zone d’abri) qui ont une influence sur l’utilisation des ressources
nutritionnelles par le wapiti, et ce, afin d’obtenir la r�epartition d�esir�ee pour cet animal. Notre approche m�eta-
analytique dans la mod�elisation de l’habitat fournit un cadre utile de recherche et de gestion des esp�eces fauniques
qui int�egre des besoins en habitat �a une �echelle grossi�ere, en identifiant des �el�ements communs dans les profils
d’utilisation de l’habitat qui sont robustes dans de multiples sites mod�elis�es et dans une large aire g�eographique.
L’utilisation de telles m�ethodes dans de futurs travaux de mod�elisation, notamment dans les programmes de
surveillance et de gestion adaptative, continuera �a faire avancer les connaissances en mati�ere d’�ecologie et de gestion
des esp�eces fauniques comme le wapiti.
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INTRODUCTION

Elk (Cervus canadensis) are among the most charismatic and
popular wildlife species in North America. Their widespread
distribution on public lands provides hunting and viewing
opportunities that rival those for many species (Toweill and
Thomas 2002). The economic contributions of elk hunting and
viewing are substantial, with multi-million dollar benefits to rural
towns throughout the western United States (Bunnell et al. 2002).
The social contributions of elk to rural communities are equally
strong, with elk hunting established as one of the most traditional
activities associated with rural lifestyles (Bunnell et al. 2002).
Native Americans throughout the central and western United
States also considered elk an essential item in traditional tribal diets
and integral to tribal culture and survival (McCabe 2002).
Despite the popularity of elk, the species also is one of the most

controversial. The potential for elk and cattle to compete for food
and space has been a topic of heated debate for over a century
(Wisdom and Thomas 1996, Heydlauff et al. 2006). Herbivory
by elk also has a strong but often ignored effect on vegetation
development (Hobbs 1996, Wisdom et al. 2006, Averett et al.
2017). Poor nutrition and extensive road access on public lands
can cause elk populations to shift distribution to adjacent private
lands, diminishing public hunting and viewing opportunities
(Wisdom and Cook 2000, Conner et al. 2001, Proffitt et al.
2010). In turn, when elk populations re-distribute seasonally or
year-round to private lands, they can damage agricultural crops
and commercial tree regeneration, and compete with domestic
livestock for forage (Lyon and Christensen 2002, Heydlauff et al.
2006). Some private landowners design management specifically
to entice elk populations to spend more time on private lands for
lease hunting, thereby reducing opportunities for viewing and
hunting on public lands (Toweill and Thomas 2002).
Issues of elk distribution are intimately linked with how

landscapes are managed among land ownerships and manage-
ment jurisdictions (Wisdom and Cook 2000, Lyon and
Christensen 2002, Cleveland et al. 2012, Proffitt et al. 2013).
To address these issues, accurate prediction of how elk use and

respond to changes in habitat conditions within and across these
large landscapes is essential. We addressed this need with the
development of regional nutrition and habitat-use models for
application on summer ranges in western Oregon and
Washington (hereafter, Westside region), an area of 11.8 million
ha between the crest of the Cascade Range and the Pacific Ocean
in these 2 states (Fig. 1).
Our work was motivated by recommendations of the Sporting

Conservation Council (SCC), a federal advisory committee that
advised the Secretaries of Agriculture and Interior of the United
States Government in the 2000s under the Federal Advisory
Committee Act of 1972 (Public Law 92-46, 6Oct 1972). In a letter
sent to the Secretaries on 4 December 2007, the SCC formally
endorsed development of new elk habitat models for the Westside
region to address urgent landmanagement needs of federal agencies
(Sporting Conservation Council 2007). The SCC addressed 2 key
management needs in their dialogue with federal managers: 1) new
models to accurately predict elk distributions within and across
land ownerships in response to forest management and human
disturbances at landscape scales; and 2) new models that reflect
contemporary scientific paradigms and methods.
Deficiencies in past habitat modeling approaches for elk

motivated the rationale and direction of the SCC. Elk habitat
models first developed in the late 1970s and 1980s (Brunt and
Ray 1986; Thomas et al. 1979, 1988; Leege 1984; Lyon et al.
1985; Wisdom et al. 1986) provided practical methods to
evaluate and manage habitat at landscape scales based on key
variables that affect or account for elk use of landscapes. The
models, however, were based on small-scale, observational
studies with little or no spatial replication; did not accurately
quantify the effects of multiple, interacting covariates; were not
spatially explicit or were difficult to incorporate spatially; typically
ignored elk nutrition; and often failed to clearly quantify the
response variable, instead relying on a qualitative rating of
habitats difficult to interpret. Most importantly, model
predictions were not validated with independent data.
One of the 1980s models was developed to evaluate elk

distributions and landscapes in the Westside region (referred to
as the 1986 model; Wisdom et al. 1986). The 1986 model had 4
covariates: forage quality, open road density, cover quality, and
size and spacing of cover and forage areas. The model was

1Current affiliation: Eagle Environmental, Inc., 30 Fonda Rd., Sante Fe,

NM 87508, USA.
2Retired.
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intended for use within and across land ownerships at watershed
or larger landscape scales, similar to our current modeling
(Rowland et al. 2018). Despite these similarities, the 1986 model
had deficiencies like those of other elk habitat models of the
1970s and 1980s. Most importantly, the 1986 model was never
validated with independent data, an essential requirement
identified for its use (Wisdom et al. 1986).
Here we describe hypotheses, objectives, rationale, and a

conceptual framework for our approach to nutrition and habitat-
use modeling in the Westside region. We first describe the
Westside region, status of elk populations, and current
management issues as context to introduce our modeling
approaches; we then provide details of modeling methods,
results, and interpretations (Cook et al. 2018, Rowland et al.
2018, Wisdom et al. 2018b).

WESTSIDE MODELING REGION AND ELK

The Westside region is bounded to the East by the crest of the
Cascade Range, to the West by the Pacific Ocean, to the North
by the Canadian border, and to the South by the Coquille and
Umpqua Rivers in southwest Oregon (Fig. 1). The region is

dominated by coniferous, temperate rainforests and is considered
one of the most productive ecosystems on earth (Franklin and
Dyrness 1988). The region’s environment has similar climate,
geology, and vegetation types but follows a north–south gradient
of higher to lower precipitation and associated changes in
productivity (Appendix A, available online in Supporting
Information; Franklin and Dyrness 1988). High amounts of
precipitation (>200 cm annually) occur primarily during fall-
spring in coastal and high-elevation forests (Franklin and
Dyrness 1988). Vast forests of Douglas-fir (Pseudotsuga
menziesii), western hemlock (Tsuga heteropyhlla), and western
redcedar (Thuja plicata) dominate landscapes at lower and mid-
elevations, and forests of Pacific silver fir (Abies amabilis) and
mountain hemlock (T. mertensiana) dominate at higher
elevations. Alpine communities are prevalent in the high
montane areas of the Cascade Range and Olympic Mountains.
Forested lands are common above valley floors, and agricultural

lands and urban areas dominate valley bottoms. Over 7 million
people occupy urban areas, but rural areas are sparsely populated.
Land ownerships include national forests or other federal lands
(36%), private forests (44%), state lands (8%), agricultural areas

Figure 1. Location and distribution of 12 study areas in western Oregon and western Washington, USA (Westside region) where data were collected (1988–2009) to
develop or validate elk nutrition and habitat-use models. Three study areas used to develop independent prediction equations for dietary digestible energy (DDE) and
forage biomass using captive elk are denoted by shaded squares; color shading indicates the respective regions to which those equations apply: Nooksack,Willapa Hills,
and Springfield. Study areas used for comparisons of predicted DDE levels with pregnancy rates and autumn body fat of wild elk are denoted by stars. Study areas used
only for habitat use modeling are denoted by circles.
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(8%), and urban areas or other lands (4%). Forested lands provide
a variety of goods and services with emphasis on timber
production in private forests (Adams and Latta 2007).
Elk populations in the region vary in size and distribution by

geographic area and management regimes on different land
ownerships (Washington Department of Fish and Wildlife
2002a, b, c, 2004, 2008, 2013; Oregon Department of Fish and
Wildlife 2003; McCorquodale et al. 2012). Current populations
are a mix of Roosevelt (C. c. roosevelti) and Rocky Mountain elk
(C. c. nelsoni) subspecies, resulting frommultiple translocations of
Rocky Mountain elk into the native range of Roosevelt elk that
encompasses the Westside region (Toweill and Thomas 2002;
Washington Department of Fish and Wildlife 2002a, b, c, 2004,
2008, 2013). Populations are mostly stable but substantially lower
in some state management units compared to the latter half of the
20th century, whereas a few are increasing (Appendix A;
Washington Department of Fish and Wildlife 2002a, b, c, 2004,
2008, 2013; Oregon Department of Fish and Wildlife 2003).
The only other wild ungulate that is common to the Westside
region is black-tailed deer (Odocoileus hemionus columbianus),
which largely co-occur with elk (Witmer et al. 1985). Common
predators of elk in theWestside region include black bears (Ursus
americanus), cougars (Puma concolor), coyotes (Canis latrans), and
bobcats (Lynx rufus). Gray wolves (Canis lupus) have been
functionally extirpated from the region for many decades,
including the time periods of data collection used in our
modeling.
Although elk remain widely distributed in the region, early-

seral vegetation has declined substantially during the past
25 years (Spies et al. 2007, Swanson et al. 2011). Because of mild
temperatures and high precipitation, forest succession is rapid in
the Westside region, and early-seral vegetation is quickly
replaced by dense overstory canopies 10–20 years after timber
harvest or stand-replacement fires (Hall et al. 1985). Up to 35%
of forested landscapes in the Westside region burned at 25-year
intervals or longer since at least the 1400s, helping to maintain a
mosaic of early-seral vegetation communities (Weisburg and
Swanson 2003). The size and frequency of disturbances required
to establish these communities has declined sevenfold in the past
25–50 years (Weisburg and Swanson 2003).
Recent declines in early-seral vegetation have been concen-

trated on federal lands in response to a major reduction in
timber harvest (Thomas et al. 2005, Adams and Latta 2007) in
the early 1990s, based on direction established in the
Northwest Forest Plan (U.S. Department of Agriculture
[USDA] Forest Service and U.S. Department of the Interior
[USDI] Bureau of Land Management 1994a, b). Timber
harvest on many private lands increased over the same period
(Adams and Latta 2007), resulting in a greater percentage of
private land area in early-seral vegetation (Cook et al. 2018).
However, the duration of early-seral vegetation has been
truncated substantially by intensive conifer regeneration
practices (Swanson et al. 2011, 2014).
Because early-seral forest vegetation provides highly nutritious

forage for elk in the region (Witmer et al. 1985, Jenkins and
Starkey 1996, Cook et al. 2016), the uneven distribution of early-
seral vegetation on public versus private lands has raised concerns
about maintaining elk numbers on public lands for hunting and

viewing (USDA Forest Service 2001a, b; Washington Depart-
ment of Fish and Wildlife 2002a). The widespread loss of early-
seral vegetation is considered central to the current nutritional
challenges for elk in the Westside region, and the absence of
early-seral vegetation on public forests has resulted in nutrition-
ally depauperate conditions (Cook et al. 2013, 2016). Thus the
main management issue for Westside elk is not population size
per se, but the disproportionately low numbers of elk on public
forest lands (USDA Forest Service 2001a, b; Washington
Department of Fish and Wildlife 2002a).
In addition, roads open to motorized traffic and trail-based

summer recreational uses are common on public lands in the
Westside region, and private lands often are closed to public
access. On summer range, shifts in elk distribution away from
open roads (Rowland et al. 2000, 2005; Wisdom et al. 2005b;
Frair et al. 2008; Montgomery et al. 2012), and trail-based
recreational uses are common on public forests (Wisdom et al.
2005a). Consequently, the potential for elk in the Westside
region to shift distributions to private lands, in response to
reduced nutrition and increased road and trail access on public
lands, served as context for our modeling.

Study Areas and Data Sets for Regional Inference
Boundariesof theWestside regionencompassed12studyareas that
weused formodeling elknutrition andhabitat use (Fig. 1;Table 1).
Study areas included geographic and environmental variation in
vegetation types, elevational and climatic gradients, forest
structural conditions, and land ownerships (Fig. 1; Appendix A;
Hall et al. 1985; Franklin and Dyrness 1988; Cook et al. 2016,
2018; Rowland et al. 2018). Consequently, the region’s boundaries
represent a logical, targeted inference space for modeling and
applications.
We used 25 data sets from the 12 study areas for analyses

(Fig. 1; Table 1). We defined a data set as a specific type of
empirical data (nutrition, animal performance, or habitat use)
collected within a given study area and time period that we used
to develop or validate nutrition or habitat-use models (Table 1;
Appendix A). We defined a study area as a distinct geographic
area within which �1 data sets were collected. We defined
validation as the evaluation of model predictions with indepen-
dent observations of those predictions, or evaluation of
hypothesized relationships of model predictions with animal
performance or habitat use. Model validation therefore is any
independent evaluation of a priori expectations of model
performance, an inclusive approach that follows definitions
and guidance of Power (1993), Rykiel (1996), and Johnson
(2002).
Of the 25 data sets used for modeling, 3 were composed of

nutrition data (e.g., estimates of elk nutritional resources during
summer) collected from grazing trials of captive elk that served
as the foundation for development of nutrition models (Table 1;
Cook et al. 2016, 2018). Nine additional data sets were
composed of estimates of animal performance (pregnancy rates
and body fat estimates from lactating female elk; Cook et al.
2013) used for validation of nutrition models (Cook et al. 2018).
Thirteen other data sets were composed of animal telemetry
locations used to develop or validate habitat-use models
(Table 1).
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CONTEMPORARY HABITAT MODELING
FOR THE WESTSIDE REGION

Hypotheses, Objectives, and Rationale
Recent advances in data collection technologies and analytical
methods for habitat modeling provided a significant opportunity
to address the deficiencies associated with the 1986 model.
During the mid-2000s, new data on elk nutrition, habitat use,
and animal performance were collected across a variety of study
sites in the region (Fig. 1; Table 1; Appendices A, B, available
online in Supporting Information; Cook et al. 2013, 2018;
Rowland et al. 2018). These data were not collected under any
overarching design or unifying theme, but their availability across
multiple study areas and conditions provided an opportunity to
initiate a meaningful new round of model development and
validation (Table 1). For our modeling, we define habitat as the
resources and conditions present in an area that produce
occupancy, including survival and reproduction needed for
persistence of an organism (adapted fromHall et al. [1997]). This
definition relates habitat to the environmental requirements of a
species, not just vegetation.
Our goal was to replace the 1986 model using these new data in

contemporary landscape models of nutrition and habitat use that
could accurately account for elk distributions during summer
across the Westside region. We focused on summer (Jun–Aug)
because nutritional resources in most forest successional stages in
the Westside region do not meet the maintenance requirements
of lactating female elk during this period (Cook et al. 2016).
Consequently, conditions on many summer ranges pose
substantial constraints on animal condition, pregnancy rates,
and lactation status in the region (Cook et al. 2013).

The overarching hypothesis driving our work was that elk
habitat use during summer is driven by a collection of interacting
covariates that influence energy balance: acquisition (e.g.,
nutritional resources), and expenditure (e.g., travel on steep
slopes). We predicted that female elk consistently select areas of
higher summer nutrition, resulting in better animal performance
in more nutritionally rich landscapes. We also predicted that
non-nutritional factors of human disturbance, vegetation, and
topography further affect summer elk use of landscapes and
available nutrition. Because the ecological mechanisms that drive
these hypotheses operate across space and time, we further
predicted that the same or similar nutrition and habitat-use
models would perform well across the environmental conditions
of the Westside region and years of data collection.
We had 2 major objectives to support our goal: 1) to develop and

evaluate a nutrition model that could accurately estimate region-
wide nutritional conditions for elk on summer ranges, based on
predictors that reflect the ecological processes of animal nutrition;
and 2) to develop and validate a summer habitat-use model that
integrates the nutrition model predictions with other covariates to
estimate relative probability of use by elk. For the second objective,
we used a combination of covariates that most accurately predict
and account for ecological processes of elk habitat use in the region
(Fig. 2). Our objectives relied on analyses conducted at the
population scale (Cook et al. 2018, Rowland et al. 2018), which
combined attributes of second- and third-order selection defined
by Johnson (1980). This combined order of selection provided
population-level estimates of nutrition and habitat use across the
range of the species in theWestside region (Wisdom et al. 2018b).
We identified2 requirements tomeetobjectives.First, themodels

should be designed to gain new knowledge of the ecological

Table 1. Study areas, data sets and years of data collection, type of data collected, and use of data sets in elk nutrition and habitat-use modeling in western Oregon and
Washington, USA.

Study area Data seta Data type Modeling use

Coquille Coquille North 1991–1992 Habitat use Habitat-use model validation
Coquille North 1993–1994 Habitat use Habitat-use model validation
Coquille South 1991–1992 Habitat use Habitat-use model validation
Coquille South 1993–1994 Habitat use Habitat-use model validation

Forks Forks 2000–2003 Animal performance Nutrition model validation
Quileute 2006–2008 Habitat use Habitat-use model validation

Green River Green River 1998–2006 Animal performance Nutrition model validation
Green-Cedar 2008 Habitat use Habitat-use model development
Green-Cedar 2006–2007, 2009 Habitat use Habitat-use model validation

Makah Makah 2000–2003 Habitat use Habitat-use model validation
Nooksack Nooksack 2002 Nutrition Nutrition model development

Nooksack 2000–2002 Animal performance Nutrition model validation
Nooksack 2008–2009 Habitat use Habitat-use model validation

Pysht Pysht 2009 Habitat use Habitat-use model development
Siuslaw 1 Siuslaw 1 1988–1989 Animal performance Nutrition model validation
Siuslaw 2 Siuslaw 2 1988–1989 Animal performance Nutrition model validation
Springfield Springfield 2000 Nutrition Nutrition model development

Springfield 2000–2002 Animal performance Nutrition model validation
White River White River 1998–2007 Animal performance Nutrition model validation

White River 2004 Habitat use Habitat-use model development
White River 2005 Habitat use Habitat-use model development
White River 2007 Habitat use Habitat-use model development

Willapa Hills Willapa Hills 2001 Nutrition Nutrition model development
Willapa Hills 2000–2002 Animal performance Nutrition model validation

Wynoochee Wynoochee 2003–2005 Animal performance Nutrition model validation

a Data sets for habitat-use modeling were assigned to modeling or validation areas by Rowland et al. (2018).
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processes that serve as drivers of elk nutrition and habitat use. The
literature on habitat use contains many models that provide useful
predictions but not always with understanding of how model
covariates represent underlying ecological processes that drive
animal use in a robust manner across time and space (Morrison
2001, 2012). Second, these types of process-driven covariates,
referred to as mechanistic covariates, should be foundational to
modeling to ensure robust management applications. We define a
mechanistic covariate as one that explicitly represents a species’
habitat requirements and that can bemanipulated bymanagers in a
cause-effect manner to change nutrition or habitat use.Mechanis-
tic covariates should have a documented or highly plausible
connection to the ecological processes of energy acquisition or
energy loss that underlie the species’ ecology, nutrition, and habitat
choices (Rowland et al. 2018).

Modeling Structure and Approach
We established a modeling structure (Fig. 2) to address our
hypotheses, predictions, and objectives with use of the 25 data
sets. The structure follows the philosophy and guidance of Levins
(1966), who emphasized process-drivenmodels sufficient to meet
objectives with minimal parameters. This approach follows the
principle of parsimony, where the balance between models with
strongest empirical support and lowest number of parameters is
identified (Burnham and Anderson 2002).
The nutrition model was designed as a stand-alone tool to

estimate and map nutritional resources based on elk diet quality.
These resources varied empirically by potential vegetation type,
structural condition, and topography onWestside summer ranges
(Cook et al. 2016, 2018). We assumed that fine-scale nutrition
data collected from captive elk in theWestside region (Cook et al.
2016), rescaled to regional nutrition models, would reflect the
nutritional levels and landscape-selection patterns of wild elk,
and would correlate well with population performance metrics of
pregnancy rates and body fat. Predictions from the nutrition
model are intended for spatial application at scales of the local or
regional landscape, or can be obtained using the model in a
tabular format for planning scenarios (Rowland et. al 2013, Cook
et al. 2018, Wisdom et al. 2018b).

The habitat-use model estimates the relative probability of
animal use (Nielson and Sawyer 2013) on the same summer
ranges and landscape scales in which nutrition is estimated
(Rowland et al. 2018). We used elk telemetry locations to model
the intensity of use in relation to habitat characteristics (Nielson
and Sawyer 2013), which is considered an analysis of habitat use.
Note that this definition is somewhat different than an analysis of
habitat selection (Manly et al. 2002). By modeling habitat use
along a continuum, more information is gained about the
relationships between habitat characteristics and probability of
use by the animal (Rowland et al. 2018). We modeled habitat use
by considering covariates in 4 categories: nutrition (the response
variables from the nutrition model), human disturbance,
vegetation, and physical conditions that best explain use by elk
(Fig. 2; Rowland et al. 2018).
Neithermodel predicts carrying capacity (Hett et al. 1978,Hobbs

et al. 1982, Hobbs and Swift 1985, Beck et al. 2006), but both are
necessary components of carrying-capacitymodels.Nutrition is the
foundation for estimation of carrying capacity (Caughley 1979,
Hobbs et al. 1982), and factors of human disturbance can reduce
carrying capacity (Beck et al. 2006). In addition, neither the
nutrition nor the habitat-use model was designed to predict
population characteristics like density, recruitment, survival, or
growth rate because these characteristics can be greatly influenced
by additional factors such as predation and hunting (Sinclair and
Krebs 2002, Johnson et al. 2013, Clark 2014). The habitat-use
model was designed to predict elk distribution (relative probability
of elk use) within local and regional landscapes, however, and these
predictions represent the relative abundance of elk at those scales
(Rowland et al. 2018).
Both models evaluate summer conditions for elk populations

assumed to be hunted later in the year, either on the same summer
ranges or on different fall ranges. Populations that live year-round
near or within urban areas where hunting is prohibited behave
differently thanwild, hunted elkherds (Thompson andHenderson
1998, Starr 2013).Our objectives did not includemodeling habitat
use by unhunted elk in these special situations.
Our modeling approach used different types of validation (see

definition provided earlier). For nutrition modeling, we did not
evaluate predicted versus observed nutrition because independent
data were not available to do so (i.e., we did not have direct
observations of elk diet quality from captive elk in additional study
areas that could be withheld for validation). Instead, we evaluated
model performance based on a priori hypotheses of how nutrition
model predictions related to selection ratios, measures of population
performance, andhabitatuse (Cooketal. 2018,Rowlandetal. 2018).
These more-inclusive types of evaluation and validation have been
advocated and used in ecological modeling per Rykiel (1996). For
habitat-use modeling, predictions were validated in the more
traditional sense, using independent observationsofhabitat use from
data sets and study areas withheld from model development
(Rowland et al. 2018). Cook et al. (2018) and Rowland et al. (2018)
provide detailed rationale, methods, results, and interpretations of
our modeling structure and approach for nutrition and habitat use,
respectively. Wisdom et al. (2018b) then describe key implications
for research and modeling of wildlife, provide example applications
for elk, and discuss management challenges.

Figure 2. Conceptual structure of elk nutrition and habitat use models developed
and validated for the Westside region, western Oregon and westernWashington,
USA. Types of covariates considered during model development and types of data
used for validation of each model are shown below each model or type of
validation. Three zones of potential natural vegetation (PNV) occurred in the
Westside region: western hemlock at lower elevations, Pacific silver fir at moderate
elevations, and mountain hemlock at higher elevations.
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INTRODUCTION

Nutrition influences productivity of ungulates by affecting many
aspects of animal performance, including nutritional condition
(defined as the state of body components [principally fat and lean
mass] controlled by nutrition, which influences an animal’s future
fitness [Harder and Kirkpatrick 1994]), ovulation, timing of
breeding and subsequent parturition, juvenile growth, primi-
parity, and susceptibility to a variety of causes of mortality (Verme
and Ullrey 1984; Cook et al. 2004, 2013). Although nutritional
limitations of ungulates in winter are commonly recognized
(Wallmo et al. 1977, Houston 1982, Coughenour and Singer
1996), world-wide documentation of limiting effects of nutrition
in summer and early autumn is increasing (Hjeljord and Histol
1999, Dale et al. 2008, Cook et al. 2013, Hurley et al. 2014,
Rolandsen et al. 2017). Such also is the case in the temperate
rainforests in western Oregon and Washington (hereafter, the
Westside region), where depressed pregnancy rates and low
autumn body fat levels of elk are well-documented (Trainer 1971,
Smith 1980, Harper 1987, Stussy 1993, Cook et al. 2013).
Nevertheless, substantial variation in nutritional condition and
pregnancy rates of elk populations exists across the region (Cook
et al. 2013), at least in part as a function of vegetation disturbance,
succession, and ecological context (Merrill 1987, 1994; Hutchins
2006; Cook et al. 2016).
Because nutrition has quantifiable, cause-and-effect influences

on nutritional condition, reproduction, and survival in ungulates,
nutritional ecology offers a quantitative basis for scaling-up key
relations between individual animals and their habitats to
populations (Fryxell 1991, Parker et al. 1999). It also offers value
for landscape assessments and resource planning on behalf of
large ungulates. Many approaches have been used to quantify
nutritional resources for ungulates, including 1) surveys of
forage quantity and, sometimes, forage quality for carrying
capacity models (Hanley et al. 2012); 2) complex, spatially
explicit simulation models intended to predict distribution and

performance of ungulates (e.g., Coughenour and Singer 1996,
Moen et al. 1997); and 3) a variety of proxy variables assumed to
represent nutritional influences (e.g., Thomas et al. 1988,
Johnson et al. 2001, Garroutte et al. 2016). Whatever modeling
approach is used, considerable uncertainty exists regarding the
relevance and rigor of measures used to represent nutritional
resources (Babin et al. 2011). For example, proxy variables and
even some standard metrics of forage quality and quantity have
rarely been validated as measures of nutritional resources (Searle
et al. 2007, Cook et al. 2016). Also, appropriate approaches
remain unclear for translating nutritional responses of herbivores
to vegetation at fine scales to estimate individual animal
performance and population dynamics at broad scales, especially
in spatially and temporally heterogeneous environments (Owen-
Smith 2002, Hobbs 2003). Particularly for management and
planning applications, nutrition models should reflect influences
of disturbance, succession, and ecological context and integrate
these with routine land management and landscape planning
protocols (Haufler 1994).
We used foraging ecology data collected using captive elk in

western Oregon and Washington, USA (Cook et al. 2016) to
develop a nutrition model designed for landscapes in summer and
early autumn that can be linked with a spatially explicit habitat-
use model (Rowland et al. 2018) for practical management
applications (Wisdom et al. 2018b). In the temperate rainforests
of western Oregon and Washington, nutritional value of plant
communities, as indexed by digestible energy (DE) content of
forage consumed by elk, is strongly driven by forest succession,
disturbance, and ecological site conditions (plant phenology,
climate, soils, composition and abundance of plant species;
Merrill 1994, Merrill et al. 1995, Cook et al. 2016). Thus, we
strove to develop our nutrition model to reflect these influences in
landscapes ranging from relatively dry, low-elevation forests to
wet and cold forests near timberline. Incorporating successional
influences also should facilitate predictions of changes in
nutritional resources over time and identify management options
for modifying the nutritional environment across landscapes
(Haufler 1994). Cook et al. (2016) developed regression
equations to predict dietary digestible energy (DDE)—the
content of digestible energy (kcal/g) in elk diets—as a function of
the types of forage available to foraging elk, and used these

1Current affiliation: Natural Resource Conservation Management, Western

Carolina University, Cullowhee, NC 28723, USA.
2Current affiliation: Eagle Environmental, Inc., 30 Fonda Rd., Sante Fe,

NM 87508, USA.
3Retired.
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equations to describe successional trajectories of DDE from
newly harvested stands to late seral stages for each of the major
vegetation zones of the region. However, they did not provide
equations to estimate biomass of the forage classes that are
required as input data to predict DDE. We adopted these DDE
equations in our nutrition model, developed equations to predict
these forage-class amounts based on environmental data (e.g.,
overstory canopy cover, ecological site potential) that were readily
available in geographic information systems (GIS), and
combined them into an overall nutrition model. Although
Cook et al. (2016) explored various currencies for their prediction
equations (e.g., energy, protein, intake rates of energy and
protein), they concluded that DDE was the most valuable for
describing nutritional value of plant communities and identifying
nutritional limitations; it also was the most predictable
nutritional metric for elk in the Westside.
Past work has established that elk performance, as measured by

indices of nutritional condition and pregnancy rates, is relatively
low in many elk populations (Trainer 1971, Harper 1987, Cook
et al. 2013), and that nutritional value of many vegetation types
provide inadequate nutrition for lactating elk and their calves
during summer (Cook et al. 2016). However, direct links
between fine-scale measures of nutritional value of vegetation
types and broad-scale measures of performance (population-level
pregnancy rates and nutritional condition) largely remain
untested. Elk may compensate for poor nutritional resources
by strongly selecting for those vegetation types that offer
adequate nutrition and avoiding those that do not (Moen et al.
1997). In addition, other environmental influences such as
herbivore density or harassment by predators or humans may be
responsible for relatively poor performance in some populations.
Hence, our overarching hypothesis was that elk preferentially
seek those vegetation types that provide relatively high nutrition
to compensate for inadequate nutritional resources, but
compensation may be incomplete and elk performance reduced
on elk ranges with strongly depauperate nutritional resources.
We had the following predictions: 1) vast areas of our study
region are dominated by nutritional resources that are inadequate
(<�2.6 kcal/g of DDE/g) to support high pregnancy rates and
relatively high body fat levels; accordingly, elk will significantly
select for areas that provide relatively high levels of DDE (e.g.,
>�2.6 kcal/g where low DDE levels predominate); 2) popula-
tion-level pregnancy rates and autumn body fat levels of lactating
elk will vary with estimated DDE expressed as percentages of elk
ranges offering differing levels of DDE; and 3) relatively high
levels of body fat (i.e., �12%) are more likely to occur on elk
ranges that offer a higher proportion of good nutrition
(�2.75 kcal/g) than ranges that do not but nevertheless are
able to support high pregnancy rates (Cook et al. 2004). Our
references to differing levels of DDE and their relevance to elk
reflect findings of Cook et al. (2004) (Table 2).
We had 5 primary objectives for the nutrition model: 1) to use

the model to construct spatially explicit nutritional resource maps
that predict DDE across ecological gradients and forest
succession using a GIS; 2) to assess the nutrition model
developed with fine-scale data of vegetation characteristics by
evaluating relationships between predicted DDE and nutritional
resource use by elk, autumn body fat levels, and pregnancy rates

for elk populations at broad scales; 3) to explicitly test our
predictions that elk would select for areas offering relatively high
DDE and that pregnancy rates and autumn body fat levels would
vary with predicted levels of DDE across landscapes; 4) to
summarize current nutritional resources for Westside elk and
thus illustrate differences among ecological provinces and
landowners; and 5) to integrate the nutritional resources map
with other environmental variables to develop a habitat-use
model for the study region (Rowland et al. 2018).

STUDY AREAS

We acquired data to develop our nutrition model from 3 study
areas located in the temperate rainforests of western Oregon and
Washington, USA (Fig. 1; Table 1; see Cook et al. 2016 for
additional details). The Nooksack area was located in the
Cascade foothills and mountains south of Mt. Baker, Wash-
ington, the Willapa Hills area was located in the Coast Range of
southwest Washington, and the Springfield study area was in the
foothills of the central Oregon Cascades (Appendix A). At
Nooksack, topography was relatively steep, with broad, glaciated
valley bottoms and elevations ranging from 100m to 1,400m.
Topography was gently rolling to steep at Willapa Hills and
Springfield and elevation ranged from 100m to 700m, with
occasional mountain peaks to 1,000m. Annual precipitation
varied from 100 cm to 300 cm, depending on elevation and
latitude (Daly et al. 1994).
Three primary forest zones, based on potential natural vegetation

(PNV) categories (Franklin and Dyrness 1988, Henderson et al.
1992), predominated across the 3 study areas: thewestern hemlock
zone (WHZ) at lower elevations, thePacific silver fir zone (SFZ) at
moderate elevations, and the mountain hemlock zone (MHZ) at
higher elevations. Alpine areas were present at Nooksack, but we
did not acquire data from this type. The higher elevation forest
zones—SFZ and particularly the MHZ—were well represented
only in theNooksack study area. In general, diversity of understory
vegetation increased with elevation across the WHZ, SFZ, and
MHZ and declined as plant succession advanced (Franklin and
Dyrness 1988, Cook et al. 2016).
For evaluating the nutrition model, we used data on pregnancy

rate and autumn body fat from lactating female elk in 7 wild
populations described by Cook et al. (2013) and 2 populations
described by Stussy (1993) (Fig. 1; Table 3). These included the
Forks, Wynoochee, and Willapa Hills populations in the Coast
Range of western Washington; the Nooksack, Green River, and
the White River populations in the Cascades of western
Washington; a population near Springfield in the Cascades of
western Oregon; and 2 adjacent populations (Stussy 1993) in the

Table 2. Classes of dietary digestible energy (DDE) used to summarize nutrition
modeling results for elk (modified from Cook et al. 2004). Basic requirements of
lactating female elk during summer are met at the high-marginal class.

Class Description DDE (kcal/g)

1 Poor <2.40
2 Low-marginal 2.40–2.58
3 High-marginal >2.58–2.75
4 Low-good >2.75–2.83
5 High-good >2.83–2.90
6 Excellent >2.90
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Coast Range of west-central Oregon. Data from elk in the
Mount St. Helens population in southwest Washington were
presented by Cook et al. (2013) but not used herein for statistical
analyses for 2 reasons. First, the autumn fat data were collected
during an October drive-trapping operation within a very small
sub-portion of the population’s range that was still highly
affected by the eruption of Mount St. Helens (Cook et al. 2013).
Second, the pregnancy data were collected during spring and thus
could not be partitioned by lactation status as they were for the
other populations (i.e., females with a calf at heel commonly cease
lactating before spring).
In general, elk in the Coast Range largely occurred within the

WHZ, and those in theCascadeRangewere in theWHZat low to
moderate elevations and in theSFZandMHZathigher elevations.
However, elk at Springfield had little access to the higher elevation
PNVzones. Elkwere considered to be theRoosevelt subspecies for
all populations in the Coast Range and the Rocky Mountain
subspecies in the Cascades (Cook et al. 2013). Elk were
predominately non-migratory, although some elk populations of
the Washington Cascades migrated to higher elevation ranges.
Study area descriptions were presented by Cook et al. (2013) and
Stussy (1993), andAppendix A contains additional descriptions of
the Nooksack, Green River, White River, and Forks areas.

METHODS

Background
Cook et al. (2016) used 25 captive adult, lactating Rocky
Mountain elk and their calves to investigate foraging dynamics in
the 3 study areas of Nooksack, Willapa Hills, and Springfield. In
addition, they measured overstory and understory vegetation
characteristics in �1-ha macroplots at these 3 study areas, with 1
field season (late Jun–Oct 2000–2002) devoted to each. Foraging
behavior was sampled in macroplot pens (electrified enclosures),

with 4 elk and their calves per pen and 3–4 pens operated
simultaneously. Bite-count methods (Collins and Urness 1983,
Wickstrom et al. 1984, Parker et al. 1999) were used to estimate
key dietary metrics for elk, including patterns of selection among
forage species, and intake rates of dry matter, DDE, and dietary
digestible protein content, with intake rates of these nutrients
expressed per minute and per 24-hour period. Digestible energy
and protein were determined using detergent fiber assays coupled
with assays of tannin astringency (Robbins et al. 1987a, b).
Overstory and understory vegetation sampling was conducted
along 5 parallel transects. Understory vegetation included current
year’s dry-matter biomass of each vascular plant species clipped in
2, 2-m2 circular plots per transect (n¼ 10 clip plots/macroplot).
Measures of overstory characteristics included canopy cover (CC)
determined using a moosehorn ocular sighting tube (Bunnell and
Vales 1990, Cook et al. 1995), stand height, mean diameter at
breast height, and basal area using a variety of standard forest
mensuration techniques, and composition of tree species along
the transects. Evidence of thinning and PNV type (Franklin and
Dyrness 1988, Henderson et al. 1992) was recorded, and stand
age was acquired from landowner records. At each study area,
Cook et al. (2016) sampled approximately 30 macroplots using
the captive elk and an additional �90 macroplots where only
vegetation characteristics were measured.
The equations developed by Cook et al. (2016) to predict DDE

were generally a function of the biomass (kg/ha) of palatable and
relatively nutritious food in the plant community. They
partitioned plant biomass into 3 selection categories: those
that elk significantly selected (selected biomass; SB), those
significantly avoided (avoided biomass), and those consumed in
proportion to availability (neutral biomass; NB). Avoided
biomass, mainly shade-tolerant evergreen shrubs, conifers, and
evergreen ferns, composed 80% to 95% of the understory
vegetation biomass in mid- and late-seral stages, particularly in

Table 3. Characteristics of elk populations in western Oregon and Washington, USA, used for elk nutrition model evaluation. Data are from prime-age (2–14 yr),
lactating elk only unless otherwise noted. Body fat and pregnancy data were from Cook et al. (2013) and Stussy (1993), the latter for the 2 Siuslaw populations.

Population Years sampled na Autumn body fat (%)b Pregnancy (%)c Study area methodd Number of elk locations Study area size (ha)

Forks, WAe 2000–2003 31 6.0 61 MCPþ 500 400 27,847
Green River, WA 1998–2006 58 10.0 91 Study area 39,072
Nooksack, WA 2000–2002 21 12.5 95 MCPþ 500 556 49,061
Springfield, OR 2000–2002 23 10.2 73f MCPþ 500 444 14,699
Siuslaw 1, OR 1988–1989 13 3.2 21 Study area 17,743
Siuslaw 2, OR 1988–1989 13 3.7 46 Study area 25,096
White River, WA 1998–2007 72 11.0 95 Study area 58,060
Willapa Hills, WA 2000–2002 22 6.2 78 MCPþ 500 621 18,759
Wynoochee, WA 2003–2005 40 6.0 67 MCPþ 500 1,719 76,444

aNumber of unique elk captured at each study area (most elk were captured and sampled at least twice/yr for 2 yr). Relocations from these elk also were used to
calculate home range boundaries except for the Siuslaw, Green, and White River study areas.
b Estimated from scaled LIVINDEXusing ultrasonography of rump fat and a body condition score (Cook et al. 2001, 2010). For elk in the Siuslaw populations, body
fat was estimated using the trimmed kidney fat index (Riney 1955) and converted to estimates of percent body fat using equations presented in Cook et al. (2001) for
elk ranging from 4–12 years old (considered prime age in this study).

c Determined via ultrasound and palpation with the negatives confirmed with Pregnancy-Specific Protein B (Noyes et al. 1997). For the Siuslaw populations,
pregnancy was determined by examination of uteri from uncollared hunter-harvested elk (Stussy 1993).

d MCPþ 500¼minimum convex polygon around elk relocations plus 500-m buffer. Study area boundaries for the Siuslaw populations were provided by R. Stussy
(Oregon Department of Fish and Wildlife, personal communication; Stussy 1993) and by D. Vales (Muckleshoot Indian Tribe, personal communication) for the
White and Green River populations.

e Population overlaps with the Quileute telemetry data set.
f Pregnancy rates are from spring captures based on those females known to be lactating the previous autumn (n¼ 15) because the autumn captures were too early to
detect pregnancy.
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the WHZ. In general, as abundance of the palatable, nutritious
plants declined, elk increased consumption of the unpalatable
forage. Because the unpalatable forage offered lower DE, this
change in dietary composition substantially reduced DDE.
When SB and NB were combined into a category referred to as
accepted biomass (AB), DDE was asymptotically correlated with
biomass of AB, with some differences evident among PNV zones
(Fig. 3). This relationship forms the general basis of our nutrition
model. Instantaneous intake rates of forage and DE generally
failed to decline with biomass of AB, except at very low levels of
AB, because elk increased consumption of avoided species, most
of which provided significantly larger bite mass and thus
relatively high intake rates of dry matter. In many cases, DDE
levels were low enough to affect animal performance, despite
relatively high instantaneous intake rates. Thus, DDE was a
considerably more sensitive indicator of the nutritional value of
plant communities to elk than was instantaneous intake rate of
DE (Cook et al. 2016).

Data Analysis
Cook et al. (2016) developed equations to predict DDE as a
function of forage biomass (with AB, NB, and SB as covariates)
for the 3 study areas and PNV zones in which they sampled
vegetation and elk diets (Fig. 4; Table 4). We expanded on that
work by developing equations to predict biomass of AB, NB, and
SB using covariates reflecting site characteristics (e.g., PNV zone,
overstory canopy cover) and study area (Fig. 4). Cook et al. (2016)
found no evidence that biomass of avoided species provided
additional value in predicting DDE, and thus we did not develop
equations for this forage biomass class. Finally, Cook et al. (2016)
found no significant influences of season on DDE, and thus we
used all data collected from late June to early November for
nutrition model development, although we restricted the
Westside habitat-use model to June–August because of hunting
seasons (Rowland et al. 2018).

To integrate analyses and summaries that we present here with
DDE-elk performance relationships described by Cook et al.
(2004:55), we modified their original 4 classes to create 6 DDE
classes:<2.40, 2.40–2.58,>2.58–2.75,>2.75–2.83,>2.83–2.90,
and >2.90 kcal/g (Table 2). Specifically, we halved the original
good (2.75–2.90) and marginal (2.40–2.75) DDE classes to
define the nutritional landscape of the Westside region more
precisely. We defined basic DDE requirement as that level
required for lactating elk to hold constant body fat levels over
summer (�2.65–2.70 kcal/g of DDE; Cook et al. 2004) while
raising a calf. Herein, we broadened this class by assuming that
this basic requirement ranges from about 2.58 kcal to 2.75 kcal of
DE/g of ingested food. However, this basic requirement
inadequately provides for levels of autumn body fat of lactating
elk, calf, and yearling growth rates, and early timing of breeding
of which elk are capable if nutrition is excellent during summer
(DDE >2.9 kcal/g; Table 2; Cook et al. 2004). We included
analyses of DDE levels that not only satisfied the basic
requirement but also those that exceeded the basic requirement.
Model development.—We developed equations to predict SB,

NB, and AB based on overstory and other site characteristics
using stepwise regression with backward elimination. In prior
work, Cook et al. (2016) investigated a large number of potential
overstory and site covariates, including their interactions; here,
we reduced these into a more practical subset. Our first
variable reduction step primarily reflected a priori expectations
of importance but also reflected the reliability and coverage of
data available in GIS for our entire mapping region. In light of
this, we included 2 forest overstory variables (CC and proportion
of overstory trees composed of hardwood species, the latter
included because development of understory vegetation may be
greater in hardwood forests than in conifer forests [Hanley et al.
2006]), PNV zone (to account for biophysical effects on

Figure 3. Non-linear relations of digestible energy (DDE) in elk diets and
accepted biomass (biomass of neutral and selected species combined) by potential
natural vegetation zones at Nooksack, Willapa Hills, and Springfield study areas
in western Oregon andWashington, USA, 2000–2002 (adapted from Cook et al.
[2016]). Potential vegetation zones are WHZ¼western hemlock zone;
SFMHZ¼Pacific silver fir and mountain hemlock zones combined. The
equation for the WHZ was DDE¼ 0.47� (5.755–e(�0.0041(AB))) and for the
SFMHZ, DDE¼ 0.92� (3.218� e(�0.0052(AB))), where AB¼ accepted biomass
in kg/ha.

Figure 4. Illustration of basic components of the elk nutrition model for western
Oregon and Washington, USA. The modeling process consisted of 2 basic steps
to develop equations for 1) predicting biomass of forage based on forest overstory
characteristics (e.g., overstory canopy cover, proportion of trees that are hardwood
species) and ecological site potential as described for local potential natural
vegetation (PNV) zones, and 2) predicting elk nutrition (dietary digestible energy
[DDE]) based on forage biomass characteristics in 2 primary PNV zones of the
region: western hemlock (WHZ) and Pacific silver fir-mountain hemlock
(SFMHZ). Field data for both steps were collected by Cook et al. (2016), 2000–
2002, at Nooksack, Washington (Nk), Springfield, Oregon (Spr), and Willapa
Hills, Washington (WH) study areas. Equations to predict DDE based on
biomass of 3 forage classes (AB¼ accepted biomass; NB¼ neutral biomass; and
SB¼ selected biomass) within the 2 PNV zones were developed by Cook et al.
(2016) from data collected using captive elk at the 3 study areas. Equations to
predict forage biomass from selected site and forest overstory characteristics were
developed herein. The final nutrition model combined both sets of equations into
an overall model used to predict DDE across the Westside region.
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vegetation composition, development, and plant chemistry
[Franklin and Dyrness 1988, Henderson et al. 1992]), and
study area.
We initially used the approach described by Stage (1976) to

incorporate effects of slope and aspect on understory vegetation
into our analyses. We found early in our analyses, however, that
including slope and aspect in the regression equations resulted in
a twofold overestimation of biomass on the steeper slopes of our
study region. The fundamental problem was that most of the data
were collected on flat and moderate slopes, and extrapolating
results to the steeper slopes of the study area resulted in
unrealistic estimates of forage biomass. Thus, we excluded slope
and aspect from development of our final forage biomass
prediction models.
We developed separate prediction models for each PNV zone

because differences in vegetation and nutritional responses were
greater among zones than among study areas (Cook et al. 2016).
We alsomodeled differenceswithin PNVzones among study areas
using indicator variables. However, theMHZ and SFZwere well-
represented in our sample only at Nooksack. Therefore, we pooled
data across study areas for these 2 types, as was done for the DDE
equations (Cook et al. 2016), and excluded indicator variables
representing study areas for the MHZ and SFZ. Finally, because
Cook et al. (2016) found no differences in DDE between the SFZ
and MHZ, we pooled data, as they did, in these 2 high-elevation
zones (hereafter referred to as SFMHZ).
Because forage abundance typically was nonlinearly related to

CC (Cook et al. 2016), we used CurveExpert (CurveExpert 1.37;
Daniel Hyams, Hixson, TN, USA) to identify functions to
describe the nonlinear relations for our initial forage biomass-CC
univariate analyses. This program provides multiple equations
between response variables and covariates (1 covariate per run)
and ranks each based on Sy.x (the standard error of the estimate).
We selected the best formulations based on lowest Sy.x, and then
reran these using PROC NLIN (Gauss-Newton method, SAS
Institute 1988) to identify their statistical significance. If
nonlinear versions were significant (P< 0.05) and provided
lower Sy.x than linear versions, we considered the relationship to
be nonlinear. However, we used nonlinear equation types (e.g.,
quadratic, logarithmic) that could be readily combined with other
variables (proportion hardwoods, PNV) in stepwise multiple
regression analyses for those CC-forage biomass relationships
that were found to be nonlinear.
Using each biomass variable (SB, NB, AB) as dependent

variables in separate analyses, we used stepwise regression with

backward elimination (PROC REG, SAS Institute 1988) to
select a final model, based on a full model containing predictor
variables for CC, hardwood proportion, PNV, and study area.
We included the 2-way interactions between study area and CC
but did not evaluate the interaction between proportion
hardwoods and study area because stands with appreciable levels
of hardwoods only occurred at Nooksack. We set the significance
level for a variable to remain in the model at P¼ 0.15 for the
stepwise analyses.We elected to use normal linear models for this
analysis, preferring to avoid transformations of the response
variables and thus retain data in their original units for simplicity
and ease of application by users. We nevertheless evaluated
residuals from the final models to identify 1) heteroscedasticity;
2) patterns in residuals that might flag inappropriate models;
3) non-normal distribution of residuals; and 4) deviation from 0
of residual means (Zar 2010). Our primary intent for using the
residuals was an initial check that our modeling assumptions were
met and provided reliable estimates of forage biomass.
We considered 10 independent variables in the stepwise

regression analyses. Four of these were overstory canopy variables:
percent CC and percent CC2, where both were included to
represent the nonlinear effect of CC, proportion hardwoods, and
the interaction of CC and proportion hardwoods (the latter only
applied in the WHZ because hardwood trees were largely absent
from samples in the SFMHZ). We included 2 indicator variables
representing the main effects of study area (STARWH, STARSpr,
where STARWH¼ study area forWillapaHills, STARSpr¼ study
area for Springfield, and Nooksack was the reference study area).
We also included the interaction of the indicator variableswithCC
andCC2 (a total of 4 variables: STARWH�CC, STARSpr�CC,
STARWH�CC2, STARSpr�CC2).
As an additional check for consistent errors of our forage biomass

prediction equations, we plotted predicted and observed
biomass estimates for SB, NB, and AB for our entire data set in
relation to standage, and thenfit a linearmodel to thepredicted and
observedvalues to estimate the slopecoefficientof eachrelationship
(slopes significantly different from 1.0 would indicate consistent
errors in our prediction equations).To check for errors in our entire
suite of DDE and biomass prediction equations, we compared
observed versus 2 sets of predicted values of DDE for 1) early-
successional stages and closed-canopy forests within study areas in
the WHZ, 2) early-successional and closed-canopy forests across
study areas in the SFMHZ, and3) thinned and unthinned forest in
WHZ with stand age limited to 20–60 years. We generated
thefirst set ofpredictedDDEvalues fromestimatesofAB,NB,and

Table 4. Equations to predict dietary digestible energy (DDE) for elk based on biomass (kg/ha) of 3 forage classes by potential natural vegetation zones (Pacific silver fir
andmountain hemlock zones [SFMHZ] and western hemlock zone [WHZ]) and 3 study areas (Nooksack [Nk],WillapaHills [WH], and Springfield [Spr]) in western
Oregon and Washington, USA (from Cook et al. [2016]).

Equationa n R2 R2
adj Sy.x

b P

SFMHZ habitats, all seasons, all study areas
DDE¼ 2.44þ 0.000889(NB)þ 0.00308(SB)� 0.00000546(SB�NB) 14 0.56 0.43 0.134 0.036
WHZ habitats, all seasons, by study area
DDENk¼ 2.362þ 0.00108(NB)þ 0.000504(SB)� 0.00000361(SB�NB) 19 0.49 0.39 0.223 0.015
DDEWH¼ 2.278þ 0.00062(NB)þ 0.00120(SB)� 0.00000172(SB�NB) 26 0.52 0.46 0.177 0.001
DDESpr¼ 2.300þ 0.00108(NB)þ 0.00129(SB)� 0.00000418(SB�NB) 28 0.62 0.57 0.115 <0.001

a Forage class codes (variable names) are NB¼ biomass (kg/ha) of neutral plant species (those plants that elk neither significantly avoided or selected), SB¼ biomass
(kg/ha) of selected plant species (those plant species that elk significantly selected), and AB¼ biomass (kg/ha) of accepted species (SB and NB combined).

b Standard error of the estimate.
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SB actually measured in each macroplot, and the second set of
DDE values from predicted AB, NB, and SB for each macroplot.
We calculated a paired t-test for each predicted-observed pair to
identify errors from predicting biomass of our understory plant
groups versus using actual data for each PNV-study area-thinning
group.
Nutritional resource mapping.—To predict forage biomass and

DDE levels for each 30-m� 30-m pixel across the Westside, we
combined the DDE and associated AB, NB, and SB prediction
equations into a GIS-based model (ModelBuilder, ArcGIS 9.3
and 10.0, Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). We derived estimates for the forage
biomass covariates from existing GIS layers (Appendix B,
Table B2, available online in Supporting Information). Values of
CC and hardwood proportion were from the Landscape
Ecology, Modeling, Mapping, and Analysis (LEMMA) project
(http://www.fsl.orst.edu/lemma/main.php?
project=nwfp&id=studyAreas, accessed 20 Feb 2014; Appendix
B). We used a digital elevation map (http://ned.usgs.gov) to
calculate slope and aspect and obtained PNV data from the
United States Forest Service (USFS; http://ecoshare.info/
products/gis-data/, accessed 20 Feb 2014; Appendix B).
We used equations developed at Willapa Hills for prediction

throughout the Coast Range including the Olympic Mountains
west of Puget Sound and the Klamath Mountains at the extreme
southwest portion of our study region (Fig. 1), those developed at
Nooksack for areas in the northern Cascades, and those
developed at Springfield for the western Cascades from the
Washington-Oregon border to our southern boundary (Fig. 1).
For agricultural areas, we used a constant DDE value of
2.83 kcal/g (National Research Council 1984), assuming that
crops in this high-rainfall region would provide high-quality
forage in most cases (crop types were variable, but pasture and hay
lands, cereal grains, and orchards were common). We selected
this DDE constant without specific knowledge of what crops
were actually planted in a given year and locale, and thus it should
be considered a rough estimate. However, agricultural areas were
uncommon for most elk habitat-use modeling areas on the

Westside and composed only 8% of the Westside region
(Wisdom et al. 2018a). We did not derive predictions of DDE
for areas we assumed to be non-habitat for elk (e.g., suburban and
urban areas, snow fields; Appendix B, Table B3).
We applied our DDE and forage biomass prediction equations

developed from data collected in the WHZ and SFMHZ,
without modification, in PNV zones for which we had no
empirical data based on similarities of plant species composition
between unsampled and sampled PNV types (Table 5).We chose
appropriate crosswalks (i.e., assignment of unsampled zones to
the 2 sampled ones) using vegetation descriptions from Franklin
and Dyrness (1988) and Henderson et al. (1992). In general, we
predicted forage biomass and DDE for unsampled PNV zones at
low to moderate elevations using equations for the WHZ, and
predicted biomass and DDE for unsampled PNV zones at
relatively high elevations using equations for the SFMHZ.
Nutrition model evaluation.—We evaluated the performance of

the nutrition model using 3 response variables of wild elk in
relation to predicted DDE levels: 1) resource selection; 2) levels
of autumn body fat of prime-aged (2–14 years of age) lactating
elk; and 3) pregnancy rates of prime-aged lactating elk. Thus, our
approach involved evaluating relationships between DDE
predictions from the nutrition model developed at fine scales
and higher-order responses of wild elk at broad scales. For the
first, we calculated selection ratios (use/availability) for several
categories (i.e., bins) of DDE, where a ratio >1 indicates
selection and <1 indicates avoidance (Manly et al. 2002). We
conducted this analysis simply to illustrate selection for different
levels of DDE, without accounting for influences of other
environmental covariates. Analyses of habitat use, in which
nutritional resources and other covariates were combined in a
multivariable framework, are presented by Rowland et al. (2018).
For the 5 model development areas where location data were
available from elk with global positioning system (GPS) collars
(Table 1), we used 279,339 elk locations and a roughly equal
sample of systematic points (284,110 points) in the same areas to
calculate proportions used, proportions available, and selection
ratios for each of 8 DDE bins. We divided the bins into

Table 5. Crosswalks, or assignments, of unsampled potential natural vegetation (PNV) zones in theWestside region, western Oregon, andWashington, USA, to the 2
sampled zones (crosswalked zones; i.e.,WHZ, SFMHZ) used to predict elk nutritional conditions sampled in westernOregon andWashington, arranged in decreasing
order from most to least abundant.

Original PNV zone Crosswalked zonea Area (ha) % region

Western hemlock WHZ 6,581,853 56.14
Pacific silver fir SFMHZ 1,541,776 13.15
Douglas-fir WHZ 1,077,866 9.19
Sitka spruce WHZ 820,183 7.00
Mountain hemlock SFMHZ 710,532 6.06
Grand fir WHZ 332,700 2.84
Parkland SFMHZ 315,591 2.69
Alpine SFMHZ 87,805 0.75
White fir 81,385 0.69
Oregon white oak 74,567 0.64
Steppe WHZ 57,244 0.49
Subalpine fir SFMHZ 38,712 0.33
Grassland WHZ 2,044 0.02
Ponderosa pine 1,290 0.01
Jeffrey pine 10 0.00

a WHZ¼western hemlock zone, SFMHZ¼Pacific silver fir and mountain hemlock zones (combined). Empty cells are PNV zones masked from analysis owing to
their dissimilarity to the 2 primary modeling zones.
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increments that ensured all bins included at least �5% of the
landscape. We used bins of 0.05 kcal/g and truncated at DDE
<2.45 kcal/g at the lower extent and >2.75 kcal/g at the upper
extent. Equal-sized binning is a standard practice when
calculating selection ratios or conducting analyses of predicted
versus observed data for validation (e.g., Manly et al. 2002). This
analysis was not a formal test of statistical significance; instead,
we estimated selection ratios to identify the extent to which elk
were associated with various levels of nutritional resources
indexed by DDE. We calculated 90% confidence intervals (CIs)
for the selection ratios by bootstrapping individual elk with
n¼ 2,000 iterations and identified CI endpoints using the
percentile method (Manly 2006).
We used population-level estimates of body fat in autumn and

pregnancy rates from 9 populations described by Cook et al.
(2013) and Stussy (1993) to evaluate the relation between these 2
performance measures and percentage area by DDE class in each
elk range (Fig. 1). All body fat and pregnancy estimates were for
elk that raised a calf the previous summer based on presence of
milk in the udder (Cook et al. 2013) because performance (body
fat and ovulation dynamics) is considerably more sensitive to
nutrition in summer and early autumn in lactating versus non-
lactating elk (Cook et al. 2004, 2013).
Cook et al. (2013) estimated body fat using an arithmetic

combination of ultrasound measures of thickness of the
subcutaneous rump fat layer and a body condition score
(scaledLIVINDEX; Cook et al. 2010) collected during at least
2 autumns (1998–2005) for each population. Stussy (1993)
measured kidney fat index (Riney 1955) in 1988 and 1989 from
hunter-harvested elk; we converted kidney fat to percent body fat
using equations from Cook et al. (2001). The body fat estimates
were obtained in November and early December with 3
exceptions: those at Springfield were sampled in early October
(Cook et al. 2013), and those of Stussy (1993) for the 2 Siuslaw
populations were obtained mostly in January (late Dec–Feb).
Because body fat declines over winter and probably over autumn
in these areas (Kohlmann 1999, Cook et al. 2013), we attempted
to account for this decline using a conservative estimate of change
of �0.5 percentage point/month in the Coast Range and �0.9
percentage point/month in the Cascade Range (Cook et al. 2013;
i.e., �1 for Springfield and þ1 for both Siuslaw populations) to
be consistent with an average late-November sampling date for
the other populations. Cook et al. (2013) determined pregnancy
using rectal entry with ultrasound and confirmed non-pregnancy
with pregnancy-specific Protein B of serum (Noyes et al. 1997),
whereas Stussy (1993) inspected uteri of harvested elk to
determine pregnancy. Research involving animal capture and
handling was conducted in accordance with approved animal
welfare protocol for the Starkey Experimental Forest and Range
(#92-F0004; Wisdom et al. 1993) as reported in Cook et al.
(2013, 2016).
To develop DDE estimates for each population using data from

Cook et al. (2013), we defined population range boundaries with
minimum convex polygons (MCPs) plus a 500-m buffer around
the MCP boundary of elk locations from very high frequency
(VHF) collars for many of the populations (Table 3; most elk
sampled for body fat and pregnancy carried collars). R. Stussy
(Oregon Department of Fish and Wildlife, personal

communication) provided population boundaries of sampled
elk for both Siuslaw populations and D. Vales (Muckleshoot
Indian Tribe, personal communication) provided boundaries for
the Green River and White River populations (Table 3).
We calculated percentage of area within the population

boundaries for 5 DDE classes that relate to performance
measures of elk: >2.58–2.75, >2.75–2.90, >2.58, >2.75, and
�2.90 kcal/g.
We then used logistic regression with a binomial link function

(Hosmer et al. 2013) to predict pregnancy rates for the 9 elk
populations, with the percentage of each population’s range in
each DDE class as the predictor. We computed r2 values for
logistic regression as described by McFadden (1974), and used 1
regression for each class to identify which level of DDE, if any,
was related to pregnancy rate. We used the number of elk
sampled in each population as an offset term to account for
differences in sample size (Ramsey and Schafer 2012). We used
linear regression on autumn body fat levels of each population
with percent of area by DDE category to determine if any
categories were related to body fat. We expected that areas with
higher percentages of relatively good nutrition (DDE >2.75
kcal/g) would best predict body fat levels, whereas areas with
somewhat lower nutrition (DDE>2.58–2.75 kcal/g) would best
predict pregnancy rates (Cook et al. 2004).
We created a nutritional resource map for the entire Westside

region, grouping DDE in 6 categories (Table 2), to provide an
overview of the current (�2006) status of nutritional resources for
elk and to comparenutritional resources among landowners.Based
on this map, we calculated the percentage of area in each of the 6
DDEclasses for theWestside region and for 7 ecological provinces
as defined by Franklin andDyrness (1988).We also calculated the
amount (ha) and percentage of area by the 6 DDE classes for
individual landowners, separated byPNVzones, and total area (ha)
providing DDE >2.58 kcal/g to illustrate contributions by
landowner. Landowners included the Bureau of Indian Affairs,
Bureau of Land Management (BLM), USFS, National Park
Service (NPS), states (primarily Washington Department of
Natural Resources and Oregon Department of Lands), other
government entities (counties, towns, and other miscellaneous),
and private corporations (primarily forest management companies
such as Weyerhaeuser Company, Plum Creek Timber Company,
andHancockTimberResourcesGroup).We excluded agricultural
lands from these regional summaries.
We compared ambient temperature and precipitation levels

during the summers for which vegetation and DDE data were
collected (Cook et al. 2016) to 30-year averages (1981–2010) to
evaluate potential deviations of our DDE and forage biomass
data from long-term patterns. We determined temperature and
precipitation levels for May–July and August–October for each
study plot where captive elk were deployed during the year the
plot was sampled and calculated the 30-year averages for these
sites. We generated climate data with the ClimateWNA v4.62
software package (http://tinyurl.com/ClimateWNA) based on
methodology described by Hamann et al. (2013).

RESULTS

Data from 346 macroplots from Cook et al. (2016) were available
for model development: 276 macroplots in the WHZ, roughly
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equally distributed among the Nooksack, Willapa Hills, and
Springfield study areas; 33, 8, and 7 in the SFZ at the 3 areas,
respectively; and 22 in the MHZ, all at Nooksack. We used
captive elk in 32, 28, and 30 of the macroplots at the 3 study areas,
respectively.

Model Development
Of the predictor variables examined, CC exhibited a strong
relation with biomass of our 3 forage classes (AB, NB, and SB) in
the WHZ at all study areas. For AB, the relation was nonlinear
and was best fit overall with an exponential equation, with
relatively high biomass levels occurring in early-seral stages with
low overstory CC and low biomass levels under moderate and
very high levels of CC (Fig. 5A). Modeling the nonlinear
relationships using a quadratic function (CC and CC2) provided
similar fit, and thus we opted to use a quadratic function to
provide a simpler formulation for modeling the nonlinear
relations in the subsequent stepwise regression. At very high
levels of CC, several macroplots supported AB levels substantially
in excess of that typically found in such stands. Nearly all of these
were hardwood stands (inset of Fig. 5A). The general pattern for
NB was nearly identical to that of AB; however, the relation
between SB and CCwas linear (Fig. 5B), with higher levels of SB
in early-seral stands.
For our stepwise regression for data from the WHZ, analyses

for both AB and NB included CC and CC2, proportion
hardwoods, and interactions of study area�CC and CC2, with
adjusted R2� 0.65 (Table 6). All independent variables included
in both models were significant (P< 0.002). The regression
equation for SB provided similar, though more variable results
(adjusted R2¼ 0.46), except that the relation between SB and
CCwas linear rather than nonlinear (Table 6). Equations for all 3
forage classes reflected declining forage biomass as overstory CC

Figure 5. Relations of overstory canopy cover and biomass of accepted (A) and
selected (B) plant species in the western hemlock zone (WHZ) at Nooksack,
Willapa Hills, and Springfield study areas in western Oregon and Washington,
USA 2000–2002 (relations between neutral biomass and canopy cover were
virtually identical to those for accepted biomass and canopy cover; thus, only
results for accepted biomass are displayed). Of the 10 anomalous points included
in the square in the lower right corner in panel A, 8 were in hardwood stands, 1 in
a thinned stand, and 1 in an untreated coniferous forest. Equations were
significant at P< 0.005.

Table 6. Equations to predict biomass (kg/ha) of 3 forage classes for elk based on stand and forest overstory conditions by potential natural vegetation zones (Pacific
silver fir andmountain hemlock zones [SFMHZ] and western hemlock zone [WHZ]) and 3 study areas (Nooksack [Nk],WillapaHills [WH], and Springfield [Spr]) in
western Oregon and Washington, USA.

Equationa n R2 R2
adj Sy.x

b P

SFMHZ, all seasons, all study areas
AB¼ 657.6� 11.28(CC)þ 0.0458(CC2)þ 553.06(HW) 70 0.71 0.70 187.51 <0.001
NB¼ 527.8� 6.09(CC)þ 590.49(HW) 70 0.73 0.72 151.39 <0.001
SB¼ 1/((0.00833þ 0.00062(CC)) 70 0.30 nac 68.45 <0.001
WHZ, all seasons, by study area
ABNk¼ 707.3� 13.93(CC)þ 0.0731(CC2)þ 383.2(HW) 276d 0.69 0.68 187.06 <0.001
ABWH¼ 707.3� 6.28(CC)� 0.0154(CC2)þ 383.2(HW)
ABSpr¼ 490.5� 11.70(CC)þ 0.0731(CC2)þ 383.2(HW)
NBNk¼ 671.8� 16.91(CC)þ 0.1092(CC2)þ 268.1(HW) 276d 0.66 0.65 158.76 <0.001
NBWH¼ 477.4� 3.90(CC)� 0.0151(CC2)þ 268.1(HW)
NBSpr¼ 308.5� 7.59(CC)þ 0.0473(CC2)þ 268.1(HW)
SBNk¼ 80.1� 0.66(CC)þ 99.83(HW) 276d 0.47 0.46 70.48 <0.001
SBWH¼ 212.6� 2.20(CC)þ 99.83(HW)
SBSpr¼ 166.2� 1.68(CC)þ 99.83(HW)

a Forage class codes (variable names) are NB¼ biomass (kg/ha) of neutral plant species (those plants that elk neither significantly avoided nor selected), SB¼ biomass
(kg/ha) of selected plant species (those plant species that elk significantly selected), and AB¼ biomass (kg/ha) of accepted species (SB and NB combined). Predictor
variable codes are CC¼ overstory canopy cover (%); HW¼ proportion of stems in dominant canopy layer that are hardwood tree species (red and other alders [Alnus
spp.], bigleaf maple [Acer macrophyllum], and paper birch [Betula papyrifera]).

b Standard error of the estimate.
c na¼ not applicable.
d Separate equations developed from one regression analysis using indicator variables with interactions to provide separate coefficients, among study areas, for the
intercept and both CC variables.
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increased and modestly higher biomass in stands dominated by
hardwood trees despite relatively high overstory canopy cover.
Equations produced slightly negative estimates (i.e., less than 0)

of AB and NB at overstory CC�91% and at CC�95% for SB at
Willapa Hills. Thus, we set any predicted value of forage biomass
<0 to 0 to eliminate negative predicted values.
In the SFMHZ, canopy cover again was the primary covariate for

all 3 biomass classes. ForAB and SB, the relationwas nonlinear, but
forNB, the relationwas linear (Fig. 6A–C).The stepwise regression
for AB included CC,CC2, and hardwood proportion (Table 6) and
accounted for70%of thevariationinAB.Thestepwise regression for
NB included CC (P< 0.001) and proportion hardwoods
(P¼ 0.002) and accounted for 72% of the variation inNB (Table 6).
The CC2 term (P¼ 0.262) provided no improvement in either the
Sy.x or adjusted R2. For SB in the SFMHZ, proportion hardwood
was not significant (P¼ 0.86), and thus, our options for SB included
only 2 equation types, the multiple regression formulation with CC
and CC2 and the nonlinear reciprocal equation originally identified
using CurveExpert. Because of the lower Sy.x, we selected the
reciprocal equation for prediction (Table 6).
Residuals from the prediction models, when plotted with

overstory CC, generally indicated only modest heteroscedastic
variances of each forage class across the range of CC, reflecting
declining variance as CC increased (Figs. 5 and 6). We suspect
that the greater variance at low CC reflected influences of factors
that we did not include in the analysis, including site treatments
just after logging, influences of vegetation communities that
existed before logging (i.e., legacy influences), planting versus
natural regeneration of conifers, time since logging, and other
related factors. Overall, however, we observed no systematic
patterns in the residuals (Appendix C, available online in
Supporting Information), plots of residuals generally exhibited a
normal distribution, and means of the residuals were �0,
together suggesting the equations were robust. In addition, plots
of observed and predicted values of our forage biomass types,
though variable, illustrated good overall congruence across our
data, and suggested that the equations were, in aggregate,
unbiased (Fig. 7). Finally, estimates of DDE calculated directly
from AB, NB, and SB field estimates in each macroplot using the
DDE equations, and estimates of DDE calculated for each
macroplot using predicted values of AB, NB, and SB, were
consistently similar to observed DDE across high- and low-
elevation forest zones, early-seral stages and closed-canopy
forests among the study areas, and in thinned and unthinned
stands (Fig. 8). We found no differences using paired t-tests
between observed DDE and each estimate of predicted DDE by
seral stage, PNV zone, nor study area (P> 0.05).
Based on the final model and vegetation data collected at each

macroplot, predictions of DDE varied among PNV zones and
defined a nutritional-succession sequence that illustrated
substantial differences by seral stage and PNV zone (Fig. 9).
These patterns illustrate the considerable nutritional value of
early-seral communities, particularly those on moister soils and at
higher elevations (Cook et al. 2016).

Westside Nutritional Resources for Elk
We identified 15 PNV types within our study area (Table 5). Of
these, we considered 11 sufficiently similar to those sampled by

Cook et al. (2016) for direct application of our DDE and forage
biomass equations (Table 5). This group included 4 PNV types
that were permanently sparsely or non-forested: alpine, parkland,
steppe, and grasslands.We used equations for SFMHZ for alpine
and parkland types, and used equations for the WHZ for the
steppe and grassland PNVs. The forest zones that we deemed too
different for using our DDE and biomass equations were
generally restricted to the extreme southern portion of our study
area and were rare. The sampled PNVs, unsampled but
crosswalked PNVs, and unsampled PNVs that we deemed too
different for using our DDE and biomass equations composed
75%, 23%, and <2% of our study area, respectively (Table 5).
Our Westside map of nutritional resources depicted vast

landscapes of poor and below-requirement levels of DDE

Figure 6. Relations of overstory canopy cover and biomass of accepted (A),
neutral (B), and selected (C) plant species in Pacific silver fir and mountain
hemlock potential natural vegetation zones at Nooksack, Willapa Hills, and
Springfield study areas in western Oregon and Washington, USA, 2000–2002.
Equations were significant at P< 0.001.
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(�2.58 kcal/g) throughout most of the region in 2006 (Fig. 10).
In general, high DDE levels that met or exceeded requirement
occurred only in high elevation, montane areas, most prominently
in the Olympic Mountains and Cascades of Washington.

Nutrition Model Evaluation
Our analyses indicated strong correlations among modeled DDE
levels, resource use, and performance. Elk with GPS collars
exhibited strong selection for areas of relatively high DDE based
on our selection ratio analysis. From 1 June to 30 August,
selection ratios increased with increasing values of DDE
(Fig. 11). Elk avoided areas with DDE <2.55 kcal/g and
selected for areas with >2.60 kcal/g of DDE (Fig. 11).
Within the 9 populations used to evaluate relations between

animal performance andDDE(Table 3),most of the variousDDE
levels exhibited high, although insignificant, correlations with
pregnancy rate. Pregnancy rates of lactating elk were unrelated to
percent area withDDE from>2.58 to 2.75 kcal/g but significantly
increased with increasing percent area with DDE >2.58 kcal/g
(Fig. 12C). Correlations were not significant between pregnancy
rates and percent area with DDE >2.75 kcal/g nor >2.90 kcal/g
(Fig. 12). The significant equation (i.e., with percent area with
DDE >2.58 kcal/g) seemed to simultaneously account for
variation inpregnancy forpopulationswith a significant percentage
of area (>10%) with DDE >2.75 kcal/g and for variation in
populations generally lacking this higherDDE level.Our data also
suggest that pregnancy rates>0.9 occurred only on ranges with at
least 10% of area with DDE >2.75 kcal/g.
Autumn body fat of lactating elk exhibited a generally similar

pattern (Fig. 13) but was increasingly correlated with percent area
offering higher levels of DDE, in contrast to pregnancy rate. We
concluded that the best regression for body fat was percent area
providing DDE >2.90 (although the regression for percent area
with DDE > 2.75 was virtually identical; Fig. 13D and E).

Figure 7. Observed and predicted values of accepted, neutral, and selected biomass of elk forage by stand age (left column). Cook et al. (2016) made predictions across the
entire data set (n¼ 349) for vegetation sampling conducted at Nooksack,WillapaHills, and Springfield study areas in westernOregon andWashington, USA, 2000–2002.
We also present coefficients of determination (r2) and slope coefficients (b) for predicted versus observed values of 3 classes of forage biomass (right column).

Figure 8. Means of predicted and observed dietary digestible energy (DDE) for
elk by categories of potential natural vegetation, successional stage, and thinning
for the Nooksack (Nk), Willapa Hills (WH), and Springfield (Spr) study areas in
western Oregon andWashington, USA, 2000–2002. Codes are Hi¼Pacific silver
fir and mountain hemlock zones at high elevations across all study areas;
Lw¼western hemlock zone (WHZ) at lower elevations; CCF¼ closed canopy
forests; ESS¼ early-seral stages; Thinned¼ thinned stands; and Unthinned¼
unthinned stands. Comparisons of thinned and unthinned were limited to stands
in WHZ ranging in age from 20 to 60 years. Predicted-1 means were derived from
DDE equations using actual field measures for accepted, neutral, and selected
biomass of elk forage; predicted-2 means were derived from the same DDE
equations but using predicted values of the 3 forage classes from the biomass
prediction equations.
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Figure 9. Estimates of dietary digestible energy (DDE) for elk in relation to stand age calculated from equations by study area and potential natural vegetation (PNV)
zone at 3 study areas in western Oregon and Washington, USA, 2000–2002 (adapted from Cook et al. [2016]). Values of accepted, neutral, and selected biomass that
predict DDEwere measured at each field macroplot. The horizontal requirement line indicates the range of DDE levels (>2.58–2.75 kcal/g) needed by lactating female
elk to hold constant body fat levels in summer (Cook et al. 2004).

Figure 10. Ecoregions within the Westside region in western Oregon and Washington, USA (left panel). We also present predicted dietary digestible energy (DDE)
for elk for 6 classes of DDE (<2.40 [1, poor], �2.40–2.58 [2], >2.58–2.75 [3], >2.75–2.83 [4], >2.83–2.90 [5], and >2.90 [6, excellent]). White areas denote
agricultural lands and land cover types excluded as non-habitat (e.g., urban, suburban, and ice fields). Existing vegetation data used to predict DDE represent conditions
in 2006.
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Regional Nutrition Patterns
Approximately 75%, 20%, and 5% of our entire region offered
DDE levels below, around (>2.58–2.75 kcal/g), and in excess of
basic requirement for lactating elk, respectively (Fig. 14). Among
ecoregions, the greatest percentage of area providing DDE in
excess of requirement was in the Cascades, with general declines
from north to south from the Northern Cascades (15%),
Southern Washington Cascades (11%), and Puget Trough (9%)
in Washington to the Western Cascades in Oregon (5%). Areas
with predicted DDE above requirement (>2.75 kcal/g) were
virtually absent from the Coast Ranges and Willamette Valley
ecoregions, and were largely absent except at higher elevations in
the Olympic Mountains (Fig. 14).

SummariesofDDElevels among landownerswerepartitionedby
PNV zones because land ownership tended to vary among zones
(Fig. 15). Of the 5 major landowners in the WHZ, private, state,
NPS, USFS, and BLM had 32.1%, 15.5%, 9.3%, 7.7%, and 6.5%,
respectively, of area withDDEat basic requirement levels or better
(>2.58 kcal/g). Private, NPS, BLM, USFS, and state had 39.4%,
34.2%, 30.9%, 29.4%, and25.4%, respectively, of areawithDDEat
or above requirement in the SFMHZ. Across the entire study
region, private lands provided 1.56 million ha of this DDE level,
compared to 0.56 million ha on National Forest System lands, the
second highest among other landowners (Fig. 16).
Temperature and precipitation patterns during the years DDE

and forage datawere collectedwere very similar to 30-year averages
for May–July and August–October at Springfield and Willapa
Hills, although the August–October period was drier than normal
at Nooksack. During May–October, precipitation was 92% of the
30-year average (480mm) at Springfield and was 96% of the 30-
year average (505mm) at Willapa Hills. At Nooksack, precipita-
tion was 80% of the 30-year average (275mm) during May–July
and29%of the30-year average (450mm)duringAugust–October.
Average daily temperature was virtually identical at Springfield
compared to 30-year averages and about 18C cooler over both
summer periods at Willapa Hills and Nooksack.

DISCUSSION

Our results indicate that nutritional resources, as indexed by DE
levels that elk acquire while foraging, were generally inadequate
to satisfy nutritional requirements of lactating elk and their calves
over vast areas of our Westside study region. Under these
conditions, elk strove to compensate for inadequate nutritional
resources by selecting areas that provided nutrition levels that
satisfied or exceeded their basic requirements. We also found
strong correlations between DDE levels available to elk and
autumn body fat and pregnancy rates, supporting our prediction
that significant links exist between nutritional resources and
performance of elk populations across the vast landscape of our

Figure 11. Selection ratios of wild elk equipped with global positioning system
(GPS) satellite collars across 5 habitat-use modeling areas in central and western
Washington, USA (2004–2009), and proportion of landscape by dietary digestible
energy (DDE) classes. Selection ratios>1.0 suggest use greater than available; ratios
<1.0 suggest use less than available. Vertical lines indicate 90% confidence intervals.

Figure 12. Relations between percent area in selected classes of predicted dietary digestible energy (DDE in kcal/g) and pregnancy rates of lactating wild elk in 9
populations in western Oregon and Washington, USA, 1998–2007. Note that r2 values presented are pseudo-r2.
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study region. On ranges where nutritionally superior areas
existed, autumn body fat levels and pregnancy rates were high,
and where these areas were generally absent, performance
suffered significantly. As such, our data strongly support 2
concepts pertaining to summer nutritional ecology and landscape
planning. First, including summer nutrition as a key component
of landscape models is required in the Westside region if these
models are intended to adequately account for environmental
influences on habitat use (Rowland et al. 2018), nutritional
condition, and reproductive performance of elk. Second, data on
elk nutrition dynamics collected at relatively fine scales can be
effectively used to account for elk performance metrics at
landscape scales in the Westside region. Evidence of the
importance of nutrition in summer and early autumn for
ungulates in western North America continues to increase (Dale
et al. 2008, Cook et al. 2013, Hurley et al. 2014, Monteith et al.

2015, Proffitt et al. 2016), but our results are among the first to
confirm that nutrition and foraging dynamics in summermeasured
at fine scales can be used to predict variation in higher-order
population responses across broad, regional landscapes.
Largely because of the pioneering work of Trainer (1971), many

studies evaluating nutritional condition and pregnancy rates of elk
populations conducted in our study region have suggested that low
nutritional condition in autumn and depressed pregnancy rates are
widespread (Trainer 1971, Smith 1980, Harper 1987, Stussy 1993,
Cook et al. 2013). We found that levels of DDE below basic
requirement (�2.58kcal/g) composed 70–80% of our study region
and 75% to>90% of the land base in theWHZ, which dominated
across low tomid-elevations.DietaryDElevels that exceed thebasic
requirement (>2.75kcal/g)were virtually non-existent in this zone,
particularly on public lands. This bleak nutritional environment for
elk in summer not only contributes to reduced elk performance but
also may contribute to long-term shifts in elk distribution to areas
providing better nutrition. Areas that provided substantial area of
DDE >2.75kcal/g (i.e., in excess of basic requirement) existed at
relatively high elevations in the SFZ and MHZ, mainly in the
mountains of the Olympic Peninsula and the Cascades (Fig. 14) in
early seral stages with low overstory canopy cover. Here,
opportunities for elk to acquireDDE in excess of basic requirement
were substantially greater than in the WHZ at lower elevations.
Elk selected for areas providing at least basic requirement and

showed strong selection for areas providing DDE in excess of
basic requirement, supporting the prediction that elk recognize
and actively seek these areas. Such strong selection undoubtedly
is a strategy to avoid the negative fitness consequences of foraging
at random (Moen et al. 1997)—the highest levels of pregnancy
and body fat occurred on ranges with just 10–15% of area with
DDE levels above basic requirement (Figs. 12 and 13), indicating
the considerable ability of elk to exploit areas of superior
nutritional resources within their seasonal ranges. Nevertheless,
on ranges that provided �2% of areas with DDE above basic
requirement, performance was compromised, indicating elk were

Figure 13. Relations between percent area in selected classes of predicted dietary digestible energy (DDE in kcal/g) and body fat in autumn of lactating wild elk in 9
populations in western Oregon and Washington, USA, 1998–2007.

Figure 14. Percent area by ecoregion in each of 6 classes of predicted dietary
digestible energy (DDE) for elk, with agricultural lands excluded, in western
Oregon and Washington, USA. We excluded 2 peripheral ecoregions (Klamath
Mountains andHigh Cascades) from summaries. Existing vegetation data used to
predict DDE represent conditions in 2006.
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unable to fully compensate for poor nutritional resources on these
depauperate ranges.
Our results supported our prediction that ranges that provided

better nutritional resources during summer also supported greater
autumn body fat levels and pregnancy rates of lactating elk. Similar
resultshavebeenreportedbefore, althoughacross smaller landareas
(Albon and Langvatn 1992,Hebblewhite et al. 2008, Proffitt et al.
2016).Perhapswhat ismost surprising inourstudywas thestrength
of the relationships between our 2 measures of performance (Figs.
12 and 13) and DDE levels despite the vast area of our evaluations
and the relatively simple approach we used to quantify nutritional
resources across elk ranges (i.e., percent of area offering different
levels of DDE). In light of the strength of the relationships we
found and the causal linkages between summer and early-autumn
nutrition and animal performance that are becoming increasingly
recognized (HjeljordandHistol1999,Dale et al.2008,McArtet al.
2009,Hurley et al. 2014, Proffitt et al. 2016), we find little support
for alternative explanationsdespite the fact that our analysesdidnot
directly consider their possible influences. One alternative pertains
to influences of weather and nutrition during winter. Detailed
analyses by Cook et al. (2013) for our 9 populations indicted no
significant influences of overwinter changes in nutritional
condition, winter weather, or spring body fat on subsequent
pregnancy rates and autumn body fat. This finding held for

Figure 15. Total area and percent area by landowner in each of 6 classes of predicted dietary digestible energy (DDE) for elk inwesternOregon andWashington,USA.We
partitioned summariesbypotential natural vegetationzones to reduce the influences ofecological conditionson results.Landowner codes areBIA¼Bureauof IndianAffairs;
BLM¼Bureau of Land Management; USFS¼United States Forest Service; NPS¼National Park Service; Other government¼ state parks and local municipalities;
State¼Washington Department of Natural Resources or Oregon Department of Lands; and Private¼ non-governmental holdings (primarily private forest management
companies). Predictions excluded suburban, urban, and agricultural lands. Existing vegetation data used to predict DDE represent conditions in 2006.

Figure 16. Total area with predicted dietary digestible energy (DDE) for elk
>2.58 kcal/g by primary landowners in western Oregon and Washington, USA.
Data are partitioned by the western hemlock (WHZ) and the Pacific silver fir and
mountain hemlock (SFMHZ) potential natural vegetation zones. Landowner
codes are BLM¼Bureau of Land Management; USFS¼United States Forest
Service; NPS¼National Park Service; State¼Washington Department of
Natural Resources or Oregon Department of Lands; and Private¼ non-
governmental holdings (primarily private forest management companies).
Predictions excluded suburban, urban, and agricultural lands. Existing vegetation
data used to predict DDE represent conditions in 2006.
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additional elk populations in areas of substantially harsher winter
weather conditions. Based on analyses of all these ranges, they
concluded that summernutrition levels largelydictateboth theapex
and annual cycle of body fat levels (i.e., the summer-nutrition
convergence hypothesis; Cook et al. 2013:29–30). Likewise, in
controlled experiments, Cook et al. (2004) demonstrated that both
pregnancy rate and autumn body fat in elk were driven by summer,
not winter, nutrition, even for elk that exited winter with virtually
nobody fat.However, inecological settingswherewinterweather is
colder and snow accumulation is substantially deeper than the
Westside region, and especially where inadequate summer
nutrition limits body fat accretion and juvenile growth rates in
summer, winter conditions certainlymay influence performance of
elk, especially over-winter survival.
Low levels of body fat and pregnancy might also be attributed to

harassment by hunters (e.g., Davidson et al. 2012) and predators
(e.g., Creel et al. 2007, but seeWhite et al. 2011b, Boonstra 2013,
Middleton et al. 2013b) that might either increase energy
expenditure or force elk to forage in suboptimal vegetation
communities. Wolves were absent but black bear and cougar were
common in many areas of the region (Wisdom et al. 2018a).
Studies on 2 populations in our sample (Green River and White
River) demonstrated high levels of predation by cougars on elk
calves ranging from 20% to 70% annually during the time that our
nutritional condition and pregnancy data were collected
(Washington Department of Fish and Wildlife 2002b). Yet
these 2 populations had the second and third highest body fat
levels and highest and third highest pregnancy rates of lactating
elk in our study (Table 3). Displacement of elk during hunting
seasons is increasingly documented, at least in relatively open
areas that may offer less security cover than Westside landscapes
(Conner et al. 2001; Johnson et al. 2005; Proffitt et al. 2009,
2010; Cleveland et al. 2012), but the strength of the DDE-body
fat and pregnancy relationships (Figs. 12 and 13) suggests that
such displacement accounts for little variation in performance of
elk at broad scales in our region.
The relationships between animal performance and percent

area in several DDE classes accorded well with our prediction
based on the relationships between DDE and performance
reported for elk by Cook et al. (2004). Only our regressions of
percent of area providing DDE levels �2.75 kcal/g exhibited
significant correlations with autumn body fat, agreeing with
findings of Cook et al. (2004) that high levels of autumn body fat
required over-summer DDE levels of approximately>2.9 kcal/g.
The causal mechanism undoubtedly pertains to a declining rate of
digestion and passage rates as DE content of forage declines. The
overall effect results in a disproportionally large reduction in daily
food intake and animal performance despite only modest declines
in DE content of forage, a multiplier effect that is increasingly
recognized (White 1983, Owen-Smith 2002, Cook et al. 2004,
Hebblewhite et al. 2008).
Pregnancy rates were well-correlated to percent of area offering

relatively high, but not necessarily the highest, levels of DDE,
supporting our prediction and suggesting that nutrition levels
required for successful breeding are lower than those needed to
accrue relatively high levels of body fat. This relationship supports
findings that calf and yearling growth rates, body fat accretion rates
and subsequent autumn body fat, age-at-first breeding, and timing

of breedingwere reduced atDDE levels that nevertheless supported
highpregnancy rates (Cooket al. 2004; seeGaillardet al. 2000:384).
The pregnancy-DDE relationships, however, may be more
nuanced. Populations for which we had pregnancy data largely
fell into 2 groups, those lacking areas (�2%of area) providingDDE
levels >2.75kcal/g and those that provided at least a modest level
(10–15%) above this DDE threshold. On those ranges with higher
DDE, pregnancy rates exceeded 0.9 (Figs. 12D and E). On those
lacking higher DDE, percent area providing DDE >2.58kcal/g
seemed well correlated with pregnancy rates, but rates in these
populations were<0.8 (Fig. 12C). Because pregnancy rates peaked
at0.8 for thosepopulations that containedvirtuallynoareasofDDE
>2.75 kcal/g (Fig. 12D), our data suggest an asymptotic upper limit
to pregnancy rates as a function of the percent of area providing
DDE>2.58–2.75 kcal/g. Larger sample sizes would be required to
provide conclusive evaluation of this possibility.
We note several cautions for widespread use of these

regressions, particularly for the relation between DDE levels
and pregnancy rates. First, probability of breeding is a
complicated physiological function reflecting body fat accumu-
lated over the several months before breeding and, perhaps more
importantly, nutrition at the time of breeding (Bronson and
Manning 1991, Gerhart et al. 1997, Cook et al. 2013). Thus, in
ecological settings where precipitation and temperature are
considerably more variable during late summer and early autumn
than in our region (e.g., DeYoung et al. 2018), the relationships
between pregnancy and percent area by DDE class may be
substantially more variable. Second, a more robust analysis would
have been to quantify nutritional resources using metrics that
included elk density on ranges for various DDE levels, rather
than simply percent of area by DDE levels (Figs. 12, 13).
Estimates of elk density were unavailable for most of our
population ranges, and the markedly different sizes of elk ranges
in our sample precluded evaluations based on absolute area, rather
than percent of area. If elk populations were considerably larger,
then a substantially greater percent of area with DDE >
2.75 kcal/g may be required to support high levels of pregnancy
and body fat.
In the following sections, we highlight a number of concerns,

caveats, and justifications for the nutritionmodel and the approach
we used to evaluate its reliability. First, the nutritionmodel is not a
carrying-capacity model. For example, a vegetation community
with 1,000 kg/ha of accepted forage may provide nutritional levels
(DDE and intake rate of digestible energy) identical to those in a
similar community but with 500 kg/ha of accepted forage. Clearly,
the former would support more elk. Our model thus predicts the
levels of nutrition that elk are likely to acquire under the conditions
of the study, not the number of elk that potentially might be
supported (see Cook et al. [2016] for additional comments
regarding carrying capacity and density-dependent versus density-
independent food limitations in our study region).
Second, instead of comparing predicted versus observed DDE

using independentdata as isnormally the case formodel evaluation,
we compared higher-order responses of free-ranging elk (i.e.,
habitat use, body fat, and pregnancy rates at broad scales) with
predicted DDE. We consider the latter approach to be a more
useful evaluation strategy than the former (Babin et al. 2011)
because it directly evaluates the ability of the model to address
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higher-order, broad-scale processes despite the fine-scaled data
used to develop themodel.After all, it is thehigher-order processes
that reallymatter. If the nutritionmodel was invalid (i.e., unable to
predictDDEwith reasonable accuracy in areas beyond thosewhere
it was developed) or inaccurate (e.g., derived fromGIS layers with
insufficient accuracy or resolution for the predictor variables used),
it is likely that 1)DDEpredictions from thenutritionmodelwould
have been poorly related to nutritional resource selection (Fig. 11);
2) the DDE covariate in the habitat-use model (see Rowland et al.
2018) would have played a minor role compared to the other
covariates in the model (other habitat and topographic features,
anthropogenic disturbance); and 3) performance of free-ranging
elk would have been poorly correlated to DDE (Figs. 12 and 13).
Such was not the case for any of these criteria.
Third, many other measures of animal performance could have

been used for evaluating the model, including those that largely
reflect the direct influences of nutrition on performance (e.g.,
growth rates of juveniles and subadults, age at first breeding,
timing of ovulation and breeding, neonatal calf size; Cook et al.
2004) and those that may or may not be directly influenced by
nutrition (e.g., survival and recruitment rates, population trends).
Adequately detailed data for these variables were not available for
our analysis (see Cook et al. 2013). Further, the value of survival
and recruitment rates as evaluation criteria for a nutrition model
is potentially greatly confounded by many factors unrelated to
nutrition (e.g., predation and hunting). We used body fat and
pregnancy rates only for lactating females because their
nutritional requirements are greater and thus their performance
is markedly more sensitive to nutrition than are non-lactating
adult females (Gerhart et al. 1997; Cook et al. 2004, 2013).
Fourth, captive ungulates have never before been used to develop

large-scale nutrition models. Important disadvantages of using
captive animals exist (e.g., high expense, concerns about disease,
challenging field logistics, increasing regulatory limits on holding
and transporting). However, their advantages are considerable,
mainly by helping to reduce uncertainty about the relationships
between vegetation attributes and nutrient content of diets and
intake rate of nutrients over various time scales. This advantage is
particularly true in structurally and floristically diverse plant
communities,wherebitemass, nutrient content, andplantdefensive
compounds may be highly heterogeneous among species and may
have influences on elk foraging and nutrition that are difficult to
predict (Cook et al. 2016). The detailed analysis of relationships
betweennutrition and vegetation characteristics using captive elk by
Cook et al. (2016) explicitly identified those nutritional currencies
that were most limiting, what vegetation characteristics accounted
for these limitations, and those attributes ofvegetationcommunities
that nutrition modeling and habitat management programs should
emphasize. That analysis greatly reduced the likelihood of a
nutrition model constructed using nutritional currencies and
vegetation characteristics that were not particularly relevant to
elk in our ecological setting. Questions about the reliability of
captive animals as proxies of wild animals have been answered
with multiple ungulate species in a variety of studies (Yarrow
1979, Austin et al. 1983, Olsen-Rutz and Urness 1987, Spalinger
et al. 1997). The considerable value of using captive animals for
foraging studieswas discussedbyHester et al. (2000) andCooket al.
(2016).

Fifth, there may be several vegetation community types in which
our model is relatively inaccurate. The data collected in hardwood
stands typically dominated by red alder (Alnus rubra)weremostly at
Nooksack on very wet soils (Cook et al. 2016), but alder and other
hardwood species also may dominate on substantially drier sites,
particularly in the southern area of our study region (Franklin and
Dyrness 1988). Thus thehardwood covariatemay be less reliable in
these drier settings. In addition, high elevation forest vegetation
types that are substantially drier, less productive, and support
markedly different plant composition than those sampled byCook
et al. (2016) exist in the southern Cascades (Franklin and Dyrness
1988).We expect that our nutritionmodelmay overestimateDDE
in these communities. Moreover, our assumption that overstory
canopy coverwasa suitable surrogate for trackingsuccession applies
to early-seral stages soon after stand-replacing disturbance as
conifers regenerate, but may not hold for mid-successional areas
after partial harvests (e.g., commercial thinning). Our model may
overestimate DDE in these stands. Our DDE equations probably
are unreliable for treatments that alter chemical composition of
plants (e.g., fertilization) or replace native vegetation with exotic
species (e.g., seedings of legumes on food plots).
Sixth, accuracy of our forage prediction equations depends on

the accuracy of existing spatial data that we used as inputs (e.g.,
overstory canopy cover, PNV zone). Our analyses suggested
errors due to inaccurate input data smooth out at broad scales, but
errors may be of greater concern at relatively fine scales. The
DDE prediction equations in the Westside nutrition model can
be used at fine scales, for example to evaluate stand-level effects
on DDE of different forest management prescriptions (Wisdom
et al. 2018b). There are 2 methods of application that may differ
in reliability. The first uses field measurements of overstory
canopy cover and proportion of hardwoods from individual
stands (�1 ha in size) with the biomass and DDE equations to
predict DDE for a variety of fine-scale applications. In contrast,
using field-sampled estimates of forage biomass (e.g., by SB, AB,
NB classes) to predict DDE should be more accurate than the
former and may be most useful for evaluating effects of a variety
of harvesting or silvicultural strategies that are not well-
represented in the original data of Cook et al. (2016). For
such stand-level evaluations, we recommend that Cook et al.
(2016) and Rowland et al. (2013) be consulted.
Seventh, an important step for habitat evaluation and landscape

planning models normally extrapolates either inferred or measured
nutritional values (DDE in our case) at fine scales across large
landscapes. Many approaches may inadequately account for
underlying influences of ecological context and vegetation succes-
sion and thus may fail to provide a suitable basis to predict future
conditions (Haufler1994,Cushmanet al. 2008).For example, land-
cover classifications are often based on overstory species composi-
tion, but understory vegetation from which herbivores acquire
nutrition may be poorly related to overstory species composition.
Potential natural vegetation classification systems account for
understory vegetation composition, and classification for a site does
not changeas overstory composition changes (Franklin andDyrness
1988, Henderson et al. 1992). Further, PNV systems integrate the
influences of soils, climate, and landform that can strongly influence
vegetation composition, growth, and phenology, and all of these in
turn influence forage biomass and quality. For these reasons, we
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chose to use PNV systems on which to base our nutrition model
(Haufler 1994). Large differences in plant composition, phenology,
and elk nutrition that existed among PNV zones (Cook et al. 2016)
attested to the value of such a classification system for our purposes.
Nevertheless, the process of extrapolating fine-scale forage and
nutrition data across broad landscapes in ways that are relevant to
foraging herbivores needs further evaluation, particularly for areas
where high quality, ecological-based vegetation mapping systems
are lacking.
Finally, temperature and precipitation patterns during the

original data collection (Cook et al. 2016) also could be a source
of uncertainty about the veracity of the nutrition model. Weather
patterns when the data were collected were very similar to long-
term averages, except for precipitation in late summer at
Nooksack, thereby suggesting that the nutrition model should
represent most years within the region. Nevertheless, the
reliability of the model in the face of climate change eventually
may become an issue. By 2050, temperatures at least in western
Oregon are expected to increase 1.7–3.98C, annual precipitation
is expected to increase slightly, whereas summer precipitation
may decline, and the frequency of drier, hotter summers may
increase (Dalton et al. 2017). For ungulates, we would predict
milder winters, earlier initiation of forage growth in spring, and
earlier cessation of growth in summer, thereby reducing forage
quality and increasing nutritional limitations in summer
(Hebblewhite et al. 2008, Post and Forchhammer 2008). Forage
quality levels of the recent past are implicitly included in the
nutrition model, providing considerable advantages for nutri-
tional resource evaluations under current climate (i.e., detailed
forage quality and quantity surveys are not needed to use the
model). However, this advantage renders the model invariant to
changing climate, and changes in summer climate may reduce the
reliability of the model for theWestside region. Nevertheless, we
posit that the model should predict at least relative nutritional
differences among PNV zones and successional stages with
reasonable accuracy despite at least some changes in climate
because many of the differences in nutritional responses among
these were due to strong differences in plant composition and
differences in precipitation and temperature along elevation
gradients.We base this conclusion on the assumption that species
composition and elevational influences on temperature and
precipitation will largely remain unchanged over the medium
term (�2050).
The science associated with incorporating nutritional ecology of

ungulates into habitat evaluation and landscape planning models
has been relatively slow to develop. Past use of various untested
surrogates of nutrition is increasingly criticized (Searle et al. 2007).
Assessing only forage quantity excludes the influences of forage
quality and would certainly be inadequate for modeling elk
nutrition in the Westside region. Even the assumption that
estimates of forage quality andquantity combinedprovide a reliable
means to predict dietary quality and nutrient intake rates of
herbivores is generally untested. The strength and consistency of
explicit relationships between forage and nutritional outcomes
largely remain unevaluated for chemically and structurally complex
plant communities (Spalinger andHobbs 1992, Cook et al. 2016).
Finally, measures of nutrition variables most suitable for indexing
nutritional value also are uncertain. That DE is more important in

ungulate nutritional ecology than protein is supported by others
(Skogland 1991, Illius and Gordon 1999, Searle et al. 2007), but
debate about protein versus DE nevertheless is ongoing (McArt
et al. 2009), and their relative importance may vary among
ecological settings. Also, instantaneous and daily intake rates of
food or nutrients are classically considered for relating forage
conditions to higher-order processes of animal performance and
distribution (Fryxell 1991, Spalinger andHobbs 1992, Searle et al.
2007, Babin et al. 2011).
Forourecological setting,whereoverall foragequality tended tobe

relatively lowand total foragebiomassquitehigh, forage intake rates
were largely invariant across a wide variety of ecological and
successional states (Cook et al. 2016). Thus, the most suitable
nutritional currency formodelingnutritional resourcesmay strongly
depend on characteristics of soils, climate, and vegetation among
ecological settings. By using captive elk to identify appropriate
covariates and nutritional currencies for modeling, it should be
well-tailored to theWestside region. However, the model may not
be robust in different ecological settings. If a similar nutritionmodel
is desired for other areas, choices will have to be made between the
reliability thatusingcaptiveanimalsoffersandother approaches that
may not as effectively index nutritional resources.

MANAGEMENT IMPLICATIONS

Our results identified a key role of active habitat management for
improving nutritional resources across Westside landscapes.
Ecological conditions within PNV zones largely set the lower and
particularly the upper limits of DDE, but disturbance and
succession strongly influenced DDE levels within these limits.
Levels of DDE that satisfied or exceeded basic requirement were
restricted almost entirely to early-seral stages following stand-
replacing disturbance (Fig. 9), confirming the importance of
these communities for elk nutrition (Hett et al. 1978; Merrill
1987, 1994; Jenkins and Starkey 1996; Hutchins 2006). Extent
of benefits accrued from vegetation management will vary by
elevation. Duration of early-seral areas supporting high levels of
DDE was much shorter in the WHZ (15 yr) than in the higher
elevationPNVzones (�30yr in theSFMHZ;Fig. 9).Thus, over the
long term, a more aggressive habitat improvement program would
be required in the WHZ than in the higher elevation zones to
maintain nutritionally adequate landscape mosaics for elk and
to support productive elk populations for substantial hunting
opportunities.
The primary type of disturbance reflected in our data was clearcut

regeneration harvest, although thinning also was evaluated in the
WHZ by Cook et al. (2016). Dietary DE levels were modestly
elevated but remained below basic requirement in thinned stands,
and others reported that vegetation responses to thinning are variable
(Alaback and Herman 1988, Thomas et al. 1999) and provide
little improvement in forage for elk (Jenkins andStarkey1996). In the
SFMHZ and particularly in theMHZ, the slower rate of succession
and the greater dominance of palatable plants even under forest
canopies suggest that thinningprobablywill result in greater increases
in DDE that persist longer than in the WHZ (Cook et al. 2016).
The management examples provided byWisdom et al. (2018b) also
demonstrate the superior nutrition produced from clearcut regenera-
tion harvest versus responses to light commercial thinning.
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Prescribed burns and wildfire were not evaluated by Cook et al.
(2016), but we predict that nutritional responses after stand-
replacing wildfires would be similar to those after clearcut logging,
based on early-seral vegetation responses afterwildfire describedby
Franklin and Dyrness (1988; see Proffitt et al. 2016). We also
speculate that under-burns in thinned stands may significantly
improve forage for elk compared to thinned stands that
have not been burned, by reducing unpalatable evergreen shrubs
and ferns, and increasing growing space for palatable plant species.
As a result of the Northwest Forest Plan (USDA Forest Service

and USDI Bureau of LandManagement 1994a, b), constraints to
forest management on public lands may represent significant
opportunity costs for production of elk. Our summaries indicate
private landowners (primarily forest products companies)
provided substantially more land area with levels of nutrition
that at least satisfy basic requirement (i.e., >2.58 kcal/g): 32%
in the WHZ on private lands mainly due to clearcut logging
versus 7% of area of federal public lands due to cessation of
timber harvest beginning by the mid-1990s (Wisdom et al.

2018a). Within PNV zones at higher elevations (SFMHZ), the
percent area providing DDE >2.58 kcal/g of nutrition was
less divergent among the landowners (39% on private lands
and 29–34% on federal lands). These differences were primarily
due to overall higher DDE, slower forest succession, and
presence of non-forested alpine vegetation in some areas (for
which our model predicted very high levels of DDE). Our data
suggest that stand-replacing disturbance provides important
opportunities to improve nutritional resources significantly even
in the driest communities in the WHZ, although the greatest
opportunities for providing high nutrition are in the wetter,
cooler communities in theWHZ and particularly in the SFMHZ
at higher elevations. The USFS is the predominant land manager
of these high-elevation lands (Fig. 16) with greatest potential
to support productive elk populations. Where opportunities
exist for forest management on high-elevation ranges, these
should be carefully planned to effectively bolster their nutritional
value for elk, if providing good habitat for elk is a management
priority.
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INTRODUCTION

Studies that reveal habitat selection and use by wildlife—
especially large mammals—are foundational for understanding
their ecology and management, especially if predictors of use can
be linked to demography or fitness. Many ungulate species not
only serve societal needs as game animals or tribal foods (McCabe
2002, Vales et al. 2017) but also affect native vegetation and
agricultural crops because of their large body size, diet choices,
and extensive distributions (Hobbs 1996, Schoenecker et al.
2004, Wisdom et al. 2006). Improved understanding of habitat
relationships of large mammals, such as elk, can inform current
wildlife conservation and management (Fortin et al. 2008)
and provide a framework for evaluating future hypothesized
environmental conditions (e.g., under climate change; Hebble-
white 2005, Durner et al. 2009). Habitat studies are often fraught
with challenges, from inconsistent terminology to choosing
research designs and metrics that properly evaluate use or
selection (Garshelis 2000, Gaillard et al. 2010, Morrison 2012).
We adopt a niche-based definition of habitat (i.e., functional

habitat) that includes the resources and environmental conditions
that lead to a given level of performance (Hutchinson 1957, Hall
et al. 1997, Gaillard et al. 2010). We chose to model intensity of
habitat use, rather than habitat selection, in part because it
captures not only the probability of selection but also how often a
specific resource is encountered (Lele et al. 2013; see section
Methods).
A key challenge in managing broadly distributed species like elk

is to correctly identify the ecologically relevant variables that most
influence habitat use. These variables can be integrated to
generate landscape-level predictions of how animal distributions
respond to different patterns of land management and habitat
attributes over time and space. Habitat characteristics that drive
spatial and temporal patterns of elk distributions have been
studied since the 1970s, initially in response to widespread timber
harvest, livestock grazing, and road construction across land-
scapes supporting important elk habitat in the western United
States (Leege 1984, Lyon et al. 1985). Biologists used these
findings to develop a diverse suite of elk habitat models (e.g.,
Lyon 1979; Thomas et al. 1979, 1988; Wisdom et al. 1986;
Roloff 1998; Unsworth et al. 1998).
Contemporary analytical approaches to modeling habitat use

and resource selection (Manly et al. 2002, Johnson et al. 2006,
Long et al. 2008, Nielson and Sawyer 2013), coupled with the
increasing availability of broad-scale spatial data and large
telemetry data sets (Frair et al. 2010), have facilitated
development of more advanced, spatially explicit models of elk
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distributions and habitats (e.g., Johnson et al. 2000, Coe et al.
2001, Boyce et al. 2003, Sawyer et al. 2007, Proffitt et al. 2010).
Moreover, previously unavailable predictors such as phenology-
based metrics of greenness (Hebblewhite et al. 2008, Bischof
et al. 2012) or LiDAR-based measures of forest structure (Ewald
et al. 2014, Lone et al. 2014) have augmented more traditional
model covariates. Research elucidating combined effects of gray
wolves and human disturbance (Proffitt et al. 2009) or wolves and
climate change (Hebblewhite 2005) on elk further demonstrate
the expanding complexity of elk habitat studies. Despite
widespread application of elk habitat models in land-use
planning (Edge et al. 1990, USDA Forest Service 1990,
Christensen et al. 1993), few have been validated with
independent data (but see Rowland et al. 2000, Roloff et al.
2001, Benkobi et al. 2004, Sawyer et al. 2007, Coe et al. 2011).
Rigorous evaluation of model performance is essential (Johnson
2001, Shifley et al. 2009, Morrison et al. 2012), especially for
models guiding public land management decisions that may be
challenged in court or applied across thousands of hectares.
A limitation of many prior habitat models for elk and other

wildlife species is the appropriate inference space for model
application (Morrison 2012). Studies of habitat use or resource
selection by animals commonly rely on a single sample of animal
locations obtained via GPS or VHF technology. Although some
studies span years, most are designed to focus on a specific
management question within a limited area, and thus are viewed
in isolation. For example, Sawyer et al. (2009) monitored changes
in mule deer (Odocoileus hemionus) distributions in response to
development of a gas field, McDonald et al. (2006) identified
how northern spotted owls (Strix occidentalis caurina) selected
nest locations on a large tract of privately owned land, and
Goldstein et al. (2010) tracked brown bears (Ursus arctos) on the
Kenai Peninsula, Alaska to evaluate the potential for human
recreation to disturb denning females. Inferences from these
single studies are constrained in both space and time; very few
studies focus on estimating habitat use across larger populations
at spatial extents that cross multiple jurisdictional boundaries.
Similarities among studies in how animals were sampled, data

collection protocols, and data quality, however, may allow for
synthesis of information on a larger scale. For example, Durner
et al. (2009) combined over 19,000 polar bear (U. maritimus)
locations recorded over 22 years from 8 of 19 polar bear
subpopulations to investigate the potential for global climate
change to influence the loss of optimal polar bear habitats. In
another unique study, Guldemond and Van Aarde (2008)
conducted a meta-analysis on 21 studies published from 1961 to
2005 to evaluate effects of elephants (Loxodonta africana) on
woody vegetation in savanna landscapes.
We can develop more precise estimates of the size of an effect by

examining multiple investigations, rather than a single study
(Borenstein et al. 2009). Analysis of data from multiple studies
with similar data collection techniques, albeit different primary
goals, also may reduce dependence on individual studies and
identify general animal-habitat relationships that are robust
across the sampled populations (Johnson 2002, Borenstein et al.
2009) or that vary along geographical gradients (Fortin et al.
2008). Similar to Durner et al. (2009), we sought to use data from
several disparate telemetry studies in a meta-analysis approach to

develop a model that identified commonalities in habitat-use
patterns across a large geographic range for a single species.
However, unlike Durner et al. (2009), we also sought to
recognize the hierarchical nature of the animal location data
(thousands of locations from dozens of animals within several
model development areas) in the variable selection and model
estimation process by adopting a 2-stage approach that modeled
patterns of use within modeling areas and then summarizing use
at a regional level (Fieberg et al. 2010). Further, we recognized
that most regional habitat-use models cannot be simultaneously
general, realistic, and precise.We chose to focus on generality and
realism in our approach, rather than precision (Levins 1966).
Such an approach emphasizes qualitative, versus quantitative,
results, and is thus more widely applicable within the intended
inference space.
The biological hypothesis and predictions guiding our habitat

modeling objectives were as follows. We hypothesized that elk
habitat use during summer is driven by a suite of interacting
covariates related to energy balance: acquisition (e.g., nutritional
resources, juxtaposition of cover, and foraging areas), and
expenditure (e.g., proximity to open roads, topography). Among
covariates, we predicted that nutrition and human disturbance
would function as key drivers of elk distribution because of the
preponderance of support from the literature on their role in
influencing habitat use by elk. Specifically, we predicted that elk
would seek areas offering the best nutritional resources but avoid
roads because of associated human disturbance and avoid areas far
from cover-forage edges because of their preference for foraging
sites with secure patches of cover nearby. We also predicted that
sites of similar nutritional value might differ in their realized use
by elk because of environmental constraints such as human
disturbance or rugged terrain. We describe a structured, multi-
step process to develop and validate new habitat-use models for
elk in in western Oregon and Washington (hereafter Westside),
using multiple telemetry data sets. We then report results of
applying this process, interpret modeling results, and describe
potential implications for managing elk.
Given our overarching hypothesis about elk habitat use and its

relation to energy balance, our primary objective was to construct
and validate a summer, landscape-scale model of habitat use for
elk across Westside land ownerships that integrated ecologically
relevant covariates characterizing nutrition, human disturbance,
vegetation, and physical conditions. The covariates considered
were directly related to elk habitat use (e.g., elk dietary digestible
energy), rather than surrogates that could be more difficult to
manage or interpret (Sawyer et al. 2007, Wisdom et al. 2018a),
such as normalized difference vegetation index (NDVI;
Hebblewhite et al. 2008, Pettorelli et al. 2011). Our emphasis
on summer habitat use was driven by the inadequacy of many
Westside vegetation communities to provide sufficient nutri-
tional resources to meet maintenance requirements of lactating
elk during summer (Cook et al. 2013, 2016) and the potential to
evaluate and address this limitation by developing nutrition and
habitat-use models (Cook et al. 2018, Wisdom et al. 2018a).
A second objective was to explicitly incorporate mechanistic

covariates reflecting concepts of energy balance (Wisdom et al.
2018a). Several studies of elk have demonstrated avoidance of
humans and predators, which can affect foraging dynamics and
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resource acquisition (Frair et al. 2005, 2008; Muhly et al. 2010,
2013; Ciuti et al. 2012a, b; White et al. 2012), as well as
movement rates (Hurley and Sargeant 1991, Wisdom et al.
2005a, Naylor et al. 2009). A third objective was to develop a
robust regional habitat-use model, an outcome possible only if
patterns of elk habitat use were consistent across the range of
conditions found in the Westside model development areas.
Fourth, we wanted to develop a desktop GIS tool for managers to
1) identify locales where nutritional resources and elk use are
relatively high or low and 2) evaluate relative improvements in
nutritional resources and elk use as a result of management
actions at multiple scales and land ownerships (see Rowland et al.
2013, Wisdom et al. 2018b).

METHODS

For theWestside elkproject,wemodeled intensity of habitat useby
evaluating elk locations in relation to habitat features (covariates;
Gaillard et al. 2010,NielsonandSawyer2013),which is considered
an analysis of habitat use. This analysis differs somewhat from an
analysis of habitat selection (Manly et al. 2002), which Lele et al.
(2013:1185) defined to be strictly a “binary [behavioral] decision,
with outcomes of use or non-use of a resource unit.” Such
behavioral decisions result in patterns of intensity of use of a habitat
or resource unit. The intensity of use depends not only on the
probability of selection but also on the frequency with which a
specific resource unit will be encountered (Lele et al. 2013).
Modeling habitat use along a continuum can provide more
information about the relationships betweenhabitat characteristics
and probability of use by the animal. This modeling approach
reveals where animals are on the landscape and the relative amount
of time spent by themineach samplingunit, rather thanpresenceor
absence of animals as typically reported in use-availability studies
(Manly et al. 2002, Nielson and Sawyer 2013). The habitat-use
approachmetourprimaryobjectiveofmodelingdistributionsof elk
across land ownerships of theWestside region.We considered our
modeling to represent a population-scale analysis; at this scale,
spatial variation inhabitat features should account fordifferences in
elk use (Gaillard et al. 2010).

Defining Areas for Habitat-Use Modeling and Validation
We obtained elk locations from several studies, most spanning
multiple years, conducted during 14 years in the Westside region
(Fig. 17; Tables 1 and 7). We identified 13 independent capture
efforts and associated telemetry data sets from these studies for
use in model development and validation (Tables 1 and 7). All
wild elk used in our analyses (n¼ 173) were adult females
captured and fitted with GPS or VHF collars, and locations were
obtained systematically at intervals ranging from 20min (GPS)
to 1 week (VHF). Locations for GPS collars were recorded
automatically at shorter intervals, whereas those for VHF collars
were obtained via ground or aerial triangulation at least weekly.
For GPS collars, location accuracy was high and precision was
typical of such collars (<100m; Hebblewhite and Haydon 2010,
Tomkeiwicz et al. 2010); fix success (range: 93–98%; Table 7) and
relocation frequency (15–20min in all but the Pysht data set,
which was every 4 hr) were also high. We limited our analyses to
elk subjected to autumn hunting pressure, which represents most
Westside elk populations, thus excluding telemetry studies for

non-hunted elk that resided entirely within national park
boundaries or suburban areas. Prior studies have documented that
responses of these elk to human disturbance would likely be
different and affect predictions of habitat use (Thompson and
Henderson 1998, Haggerty and Travis 2006, Stankowich 2008,
Starr 2013).
From each data set, we selected elk locations recorded between

1 June and 31 August to define the summer modeling period
(Wisdom et al. 2018a). We excluded telemetry data that
overlapped hunting and rutting periods because elk movements
and habitat use may change substantially during those times
(Conner et al. 2001; Johnson et al. 2005; Storlie 2006; Proffitt
et al. 2010, 2013). Thus, predictions of the habitat-use model do
not extend beyond August, when several hunting seasons begin in
western Oregon andWashington, including archery hunts for elk
and rifle hunts for black-tailed deer. All animal handling was
conducted following regulations set forth for implementing the
AnimalWelfare Act of 1966 and its subsequent amendments and
adhered to standards adopted and published by the American
Society of Mammalogists (Sikes et al. 2011).
We chose 5 of the GPS data sets for model development

because of their superior quality, as noted previously. We used
these telemetry data sets to delineate 5 areas for habitat-use
modeling (modeling areas; Table 1). Although some GPS collars
were programmed to collect locations frequently (e.g., every 15 or
20min; White River 2004, 2005, 2007), we followed the advice
of Kernohan et al. (2001) and assumed independence between
locations to avoid constraining estimates of the local (population-
level) seasonal ranges.
We defined perimeters of the 5 areas used for habitat model

development based on 99% contours for fixed kernel density
estimates (KDEs;Wand and Jones 1994) using Hawth’s Analysis
Tools (v3.27 ArcGIS extension, http://www.spatialecology.com/
htools, accessed 5 Apr 2009) with smoothing parameter
h¼ 1,000 (default). Model development areas were located in
3 regions of Washington (Pysht, Green River, and White River;
Table 1) and ranged in size from 7,135 ha (Pysht 2009) to
35,019 ha (White River 2007; Table 7; Appendix A). Some
modeling areas overlapped modestly (Fig. 17), but each was
defined by a unique year and capture effort. For example, the
Muckleshoot Indian Tribe collared 13 elk in the White River
drainage of western Washington in early 2004, and those collars
were retrieved via animal capture in late 2004 (White River 2004;
Table 7). An additional 6 collars were deployed on a new sample
of elk in early 2005 (White River 2005). Then in 2007, another
sample of 13 elk was captured and fitted with GPS collars within
the same region (White River 2007).
We used the remaining 8 independent elk data sets for model

validation and calculated MCPs to delineate model validation
areas (Fig. 17; Table 1). These averaged 23,226 ha and ranged
from just over 2,700 ha (Quileute 2006–2008) to 53,630 ha
(Green-Cedar 2006–2009). We used MCPs rather than KDEs
to define validation areas because data collection in these sites was
most often with VHF collars, which provided fewer and less-
precise locations. The MCPs were more robust to the smaller
sample sizes of many of our validation data sets and included
more available area compared to KDEs. Further, we anticipated
that when biologists or managers used our models, they would
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seldom create kernels based on a representative sample of elk in
the area but instead would identify project areas or larger regions.
Collectively, these validation areas represented a diverse cross-
section of environmental conditions in the Westside region
(Appendix A).

Development of Habitat-Use Models
We adopted a hierarchical modeling approach by considering
individual model development areas as replicates in generating a
regional habitat-use model. This approach is analogous to that of
treating individual animals as the primarily sampling units when
creating a population-level model for a single study site (e.g.,
Sawyer et al. 2006, Fieberg et al. 2010). We used a 4-step process
to develop a regional elk habitat-use model by 1) measuring
covariates at systematically selected circular sampling units within
each habitat-use modeling area, 2) estimating the relative

frequency of use in the sampling units for all collared elk within
each modeling area during summer, 3) modeling the relative
frequency of use as the response variable in a generalized linear
model (GLM) using a negative binomial (NegBin) habitat-use
model, and 4) averaging coefficients across modeling areas to
generalize habitat relationships and develop a regional model.
Following identification of population-level seasonal ranges for

each data set, we took a systematic sample, based on a random
starting location, of non-overlapping circular sampling units with
350-m radii from eachmodeling area (Sawyer et al. 2006, Nielson
and Sawyer 2013). We then calculated the number of elk
locations within each sampling unit (Fig. 18) along with values of
covariates of interest (Appendix B). Center points of all sampling
units were within a KDE, but portions of some circles may have
fallen outside the 99% contours. These sampling units provided
the response (number of elk locations) and covariates for

Figure 17. Western Oregon andWashington, USA (Westside region) and areas associated with telemetry data sets used for elk habitat-use model development (left)
and validation (right).
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estimating the habitat-use model. The number of sampling units
for each modeling area ranged from 166 (Pysht 2009) to 805
(White River 2007). Nielson and Sawyer (2013) recommended
choosing a sampling unit that is small enough to detect changes
in animal movements while providing counts of locations that
approximate a negative binomial distribution. During pre-
analysis investigations, we considered sampling units of various
sizes and determined that a 350-m radius circle was appropriate,
largely based on the distribution of the number of GPS locations
within the units, landscape heterogeneity, and mobility of
sampled animals during summer. In addition, we ensured that the
size of the sampling units exceeded the inherent error in GPS
locations and in covariate layers considered during modeling
(Nielson and Sawyer 2013).
We used a GLM to estimate the intensity of use for each

modeling area as a function of covariates using the NegBin
habitat-use model. This method is described by Nielson and
Sawyer (2013) and is also found in Millspaugh et al. (2006) and

Sawyer et al. (2006, 2007, 2009). We considered a Bayesian
hierarchical model estimated via Markov chain Monte Carlo
methods, but the combined size of our data sets and the
complexity of our model development process precluded use of
this modeling approach because of its computational demand.
We also attempted to fit a generalized linear mixed model with
random effects for model development areas, but we experienced
convergence issues even with the simplest models; thus we
adopted a 2-stage approach to estimating a regional elk habitat-
use model (Fieberg et al. 2010).
Potential for habitat-induced data loss (Frair et al. 2004, 2010;

Nielson et al. 2009) was not a concern in modeling because of the
highGPSfix success during the summer period (Table 7).AllGPS
fix schedules covered the 24-hour period during summer.Wewere
not interested in creating a foraging-periodmodel because our goal
was to develop a more general habitat-use model that integrated
multiple covariates, not just nutrition, to predict elk distributions.
Moreover,we could not restrict our analysis to periods presumed to

Figure 18. Example of a systematic sample of circular sampling units and elk telemetry locations.
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capture foraging (e.g., crepuscular hours) because we would have
been forced to discard all VHF data, which was largely diurnal
(Table 7). Large numbers of locations recorded at regular intervals
(e.g., 15–20min), as was true for all but one of our GPS telemetry
data sets, can result in counts of use within the circular sampling
units that are quite large (hundreds or thousands). Although the
NegBin is not influenced by temporal autocorrelation in animal
locations, too many locations within some of the circular sampling
units can result in counts of use that are not NegBin distributed
(Nielson andSawyer 2013).Thus,we elected touse atmost thefirst
location obtained every hour.
The NegBin involves regressing the number of animal locations

within each circular sampling unit onto the covariates measured
on those units. We applied the model in each individual
modeling area; it was based on the commonly used NB2
formulation of this function (see below; Cameron and Trivedi
1998), which can be represented by

ln E tið Þ½ � 	 ln Tð Þ þ b0 þ b1x1i þ b2x2i . . .þ bpxpi ð1Þ

where ti is the number of GPS locations within sampling unit i,E
represents the expected value, T represents the total number of
GPS locations within the modeling area, b0 is an intercept term,
b1, b2, . . ., bp are coefficients to be estimated, and x1i, . . ., xpi are
the values of p covariates measured on sampling unit i. Inclusion
of the offset term, ln(T), in Equation (1) simply scales the
response to ensure modeling of relative frequency, or intensity of
use (e.g., 0, 0.003, 0.0034, . . .) instead of integer counts (e.g., 0, 1,
2, . . .; Nielson and Sawyer 2013). We used the natural log of the
number of locations obtained from a particular modeling area in
summer as the offset term in Equation (1). The errors follow a
negative binomial distribution.
Various NegBin model parameterizations exist, and distinc-

tions are made based on the link function used and the assumed
distribution of var(Y). The NB2 (log link) is the most common
parameterization (Cameron and Trivedi 1998), which specifies

that var[Y]¼ uþ u2/u (Hilbe 2008). The term var[Y] is the
variance of the observed count of use (Y), u is the expected count
of use, and theta (u) is the dispersion parameter. The likelihood
for the NB2 formulation can be found in Cameron and Trivedi
(1998:71).
Covariate derivation and selection.—We developed an a priori

list of potential landscape variables (covariates) by reviewing
previously published elk habitat models (e.g., Wisdom et al.
1986, Edge et al. 1987, Roloff 1998, Sawyer et al. 2007). We
initially considered >30 covariates (Appendix B, Table B1), but
consultation with biologists and land managers helped us refine
our list (Tables B2 and B4) by identifying factors believed to
affect local elk populations and those most likely to be
manageable (e.g., plant community attributes such as acceptable
biomass or canopy cover) or easier to derive accurately and
efficiently (e.g., roads open to the public vs. estimates of vehicle
traffic).
We grouped covariates into 4 categories to predict elk habitat

use: 1) nutrition, 2) human disturbance, 3) vegetation, and 4)
physical (Fig. 19). Our initial process of covariate selection and
reduction resulted in 6 nutrition covariates, 10 human disturbance
covariates, 11 vegetation covariates, and 13 physical covariates for
evaluation (Appendix B, TableB1). Nutrition covariates reflected
potential energy accrual, whereas human disturbance covariates
generally reflected energy costs, such as flight responses to
motorized traffic. Vegetation covariates may correspond to either
energy gain or loss (for example, higher quality and abundance of
forage in open-canopy forests versus energy costs incurred in
traveling to distant cover patches). Likewise, physical covariates
may relate to energy balance, such as increased energetic costs
when traveling on steep slopes (Kie et al. 2005) versus thermal
benefits of north aspects in summer (Ager et al. 2003).
Although physical covariates like aspect cannot be managed
directly, we retained this group because these features have
been consistent predictors of habitat use by elk in prior studies
(Johnson et al. 2000, Ager et al. 2003, Sawyer et al. 2007,

Figure 19. Description of the process used to develop the habitat-use model for elk in western Oregon and western Washington, USA.
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Barbknecht et al. 2011, Coe et al. 2011, Harju et al. 2011) and
provide context for model predictions. We also modified some
covariates, such as canopy cover, when required to match the
vintage of associated elk telemetry data.When telemetry locations
spanned multiple years for a single data set, we selected covariate
values from the year in which most elk locations were obtained
(Appendix B).
Wecalculated covariate valueswithin each cell on a 30-m� 30-m

grid encompassing our modeling areas, using either the average
(e.g., mean slope), percent coverage (e.g., percent canopy cover), or
distance from the center point of each 350-m radius sampling unit
(e.g., distance to nearest forage patch). Distance to nearest road
open to public motorized use (distance to open road) was based on
grids extending 4 km beyond the modeling area boundaries. Our
intent was to account for elk reacting to roads close to, but outside,
the defined modeling area. The 4-km buffer for distance to open
roadwas based on earlier studies (e.g., Rowland et al. 2000, Sawyer
et al. 2007) and preliminary analyses suggesting elkdid not respond
to roads beyond 4 km. Thus, if distance to nearest open road was
>4 km, distance was truncated at 4 km for analysis. Similarly, the
distance to nearest cover-forage edge covariate (distance to edge;
Appendix B) accounted for edges outside the modeling area but
within 4 km of the boundary. Before analysis, we removed circular
sampling units centered on or encompassing>38.5 ha (50% of the
circle) of a land cover type considered non-habitat, such as rock,
water, ice, or development-urban (Appendix B, TableB3).
We derived some covariate layers in a GIS with>1 data source,

which allowed us to compare sources (e.g., Xa and Xb) and
qualitatively evaluate their accuracy. If we thought a data source
had potential for large errors, or errors appeared small but
inconsistent on a regional scale, we dropped the covariate derived
from that source. To further screen covariates, we used
histograms to identify substantial differences in distributions
of covariates between data sets or across the larger regional
landscape. These differences could indicate potential problems in
either identifying a common relationship between elk habitat use
and that covariate, or applying our final elk habitat-use model(s)
to the region. With large differences in distributions, we would
err by predicting elk habitat use outside the range of the data used
for model estimation (Neter et al. 1996). Thus, if we identified a
marked difference in distributions across data sets, we dropped
the covariate.
We used a pairwise correlation analysis to further reduce the

number of covariates in each category prior to modeling, which
diminished the potential for deleterious effects of collinearity on
model estimates. If �2 covariates had a Pearson’s correlation
coefficient of |R| >0.6, we took 1 of the following approaches to
reduce chances of collinearity destabilizing the NegBin model: 1)
we dropped 1 of the 2 correlated covariates; 2) we did not allow
both covariates to enter the same model together; or 3) we
carefully monitored model estimates to ensure that model
stability was not compromised. If 2 or more covariates were
highly correlated, and 1 was clearly easier to derive and interpret
and had more relevance to management, we retained only that
covariate and dropped the other(s) prior to modeling. However, if
this choice was unclear and the correlated covariates were in the
same category (e.g., nutrition, physical), we allowed only 1 of the
covariates to enter the model based on support in the data

according to Akaike’s Information Criterion (AIC; Burnham and
Anderson 2002). Although a pairwise correlation analysis prior to
modeling is useful for identifying potential multicollinearity
issues, smaller pairwise correlations can affect model estimates,
and the method cannot identify scenarios where the linear
combination of 2 or more model covariates is correlated to
another covariate. Major changes in estimates of coefficients
(e.g., negative to positive) and likelihood-based estimates of
standard errors (small to large) provide direct evidence of
multicollinearity issues. Thus, we carefully monitored estimates
of coefficients and standard errors during the model building
procedure to ensure that multicollinearity was not influencing
model estimates.
Model selection.—With our refined set of covariates, we fit a

univariate model for each covariate within a covariate category,
such as physical, to data from each habitat modeling area. We
discarded covariates if AIC results revealed inconsistent
coefficients across study areas or confidence intervals spanned
0. We then ranked the remaining models by AIC values. A rank
of 1 indicated the model had the lowest AIC score in the
category. Finally, we summed ranks of models within each
category across modeling areas to identify the consistently best
model for that category (lowest AIC rank). For example, consider
a covariate category with 3 univariate models, for which AIC
ranks indicate that model 1 has a rank of 1 in 3 of the 5 habitat-
use modeling areas and ranks of 2 and 3 in the 2 remaining areas.
Thus, model 1 has a sum of ranks¼ 8 (3� 1þ 2þ 3). If models 2
and 3 have summed ranks of 10 and 12, respectively, thenmodel 1
has the most support from the data. Using this approach, rather
than the sum of likelihoods or AIC values, gives equal weight to
each data set in identifying the best models. The ranks also
highlight differences and similarities across modeling areas.
We used a 2-stage information-theoretic approach (Burnham

and Anderson 2002, DeVore et al. 2016) in model development.
This approach allowed us to avoid evaluating all possible
combinations of covariates as competing models without regard
to their ecological meaning or intended uses, and ensured that we
primarily considered mechanistic covariates relevant to manage-
ment. First, we identified sets of candidate models that combined
covariates from different categories (Fig. 19). Then, we fit each
model within a model set to telemetry data from each habitat
modeling area (Table 7) and ranked the models by AIC values, as
described previously for covariate selection. The lowest of the
summed ranks of individual models within each model set across
modeling areas identified the consistently best model.
Following identification of the top model within each set, we

created a final model set by combining the competitive models
from each set representing the best nutrition, human disturbance,
vegetation, and physical models. This process resembled that of
Beck et al. (2006) in developing habitat models for elk based on
alternative explanations of factors influencing selection such as
forage and distance to roads versus forage and topography. We
required that each model in the final list contain either the best
nutrition or best human disturbance model. This decision was
based on our confidence that nutrition and human disturbance
had stronger mechanistic support than other covariate groups
(vegetation and physical). These covariates have clearly
demonstrated relationships to ecological processes of energy
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acquisition (nutrition) or energy loss (human disturbance) and
can be manipulated by managers to change habitat use by elk.
There is less empirical evidence of underlying mechanisms for
patterns of elk use in relation to vegetation covariates. Moreover,
some vegetation covariates were predictors in the nutrition model
(e.g., overstory canopy cover), and thus would have been
redundant in habitat-use modeling. Our model development
process used the AIC ranking procedure described above. In
summary, we first identified the best model in each of the 4
covariate categories, and then identified the best models using
combinations of these 4 models, culminating in a final list of
models from steps 1–4 (Fig. 19).
From the final list of 6 models (Fig. 19), we identified the top-

rankedmodel for eachmodeldevelopmentareausingAIC.Wethen
summedAICranks across areas to identify afinal habitat-usemodel
for the region.We estimated this regionalmodel (hereafter referred
to as theWestsidehabitat-usemodel)byaveraging coefficients from
the final model across the 5 modeling areas. This 2-stage approach
(Millspaughetal. 2006,Fieberg et al.2010) allowedus to investigate
differences in elk habitat use among studies during model
development yet synthesize results through meta-analysis of
disparate data sets into 1 final regional model for distribution to
managers. Although each study-areamodel represents ameasure of
probability of use, the regional model based on the average of
coefficients from individual modeling areas represents the relative
probability of use because predictions from the regional-levelmodel
reflect geometric means of study-area probabilities rather than true
probabilities (Nielson and Sawyer 2013).
To estimate 90%CIs for coefficients in theWestside habitat-use

model, we bootstrapped (Manly 2006) the primary sampling units
—individual elk habitat modeling areas—1,000 times and re-
estimated regionalmodel coefficients for each sample.Weused the
central 90% of the 1,000 estimates for each coefficient as the CI
(percentile method). We used a similar approach to calculate 90%
CIs for coefficients of the 5 individual modeling areas, except the
primary sampling units at that level were the collared elk. We
followed the premise of Adams et al. (1997), who concluded that
bootstrapping methods are more conservative than standard
confidence limits for meta-analysis of ecological data.
We evaluated the final model for goodness of fit using the

sum of the deviance residuals in a chi-square test (Hilbe 2008).
A P-value<0.1 from the chi-square test would indicate lack of fit

and the potential that the data were not distributed as a NegBin.
We also investigated whether spatial correlation existed in model
residuals among the circular sampling units within each model
development area using Moran’s I (Moran 1950). A high
Moran’s I value would indicate a violation of independence in the
residuals and model assumptions.

Model Interpretation
To aid in model interpretation, we calculated use ratios and
marginal plots for coefficients in theWestside habitat-use model.
We computed use ratios, similar to selection ratios (McDonald
et al. 2006), from the estimated coefficient for each covariate

using exp b̂j

� �
� 1

h i
� 100%, which identifies the change in

percentage increase or decrease in the predicted probability of use
with a 1-unit increase in the covariate Xj, holding all other
variables constant. Although it is unrealistic to expect the value of
1 covariate to change while others remain constant, use ratios are
useful for evaluating the marginal contribution of individual
covariates. Similarly, we used marginal plots to visualize how
predictions of elk use changed across the range of observed values
for a single covariate while values of other covariates remained
constant.
In addition to producing marginal plots, we calculated

standardized partial regression coefficients (Zar 2010) for all
variables in the Westside habitat-use model. The absolute values
of standardized coefficients can indicate the relative importance
of covariates in predicting use by elk (Millspaugh et al. 2006,
Zar 2010). However, strict interpretation requires the covariates
to be independent, which is usually not true. Thus, we used a
combination of use ratios, marginal plots, standardized coef-
ficients, and CIs for the final model to help identify and
understand the relative importance of each covariate in the
habitat-use model.
Wemapped predictions of theWestside habitat-use model on a

30-m� 30-m grid that covered each modeling area, excluding
cells identified as non-habitat (Appendix B). We then assigned
the model prediction for each grid cell a value of 1 to 4 based on
the quartiles of the distribution of predictions for each modeling
area and classified areas as low use (first quartile), medium-low
use (second quartile), medium-high use (third quartile), or high
use (fourth quartile); each quartile represented 25% of the specific
modeling area. We also mapped covariates of the Westside

Table 7. Telemetry data used to develop and validate elk habitat-use models in western Oregon and Washington, USA.

Model use Data set (study area and year) Technologya Number of animals Number of locations Fix successb Data source

Development Green-Cedar 2008 GPS 17 26,480 94 Muckleshoot Indian Tribe
Pysht 2009 GPS 6 3,228 97 Lower Elwha Klallam Tribe

White River 2004 GPS 13 28,355 93 Muckleshoot Indian Tribe
White River 2005 GPS 6 11,923 97 Muckleshoot Indian Tribe
White River 2007 GPS 13 28,692 98 Muckleshoot Indian Tribe

Validation Coquille North 1991–1992 VHF 16 316 Oregon State University
Coquille North 1993–1994 VHF 20 180 Oregon State University
Coquille South 1991–1992 VHF 13 225 Oregon State University
Coquille South 1993–1994 VHF 15 113 Oregon State University

Green-Cedar 2006, 2007, 2009 GPS 23 69,150 96 Muckleshoot Indian Tribe
Makah 2000–2003 VHF 21 820 Makah Indian Tribe

Nooksack 2008–2009 GPS 7 3,618 88 Nooksack Indian Tribe
Quileute 2006–2008 GPS 3 14,686 94 Quileute Tribe

a Global positioning system (GPS) or very high frequency radio telemetry (VHF).
b Mean fix success of GPS collars, reported as percentage of attempted locations for which a successful location was obtained. Not applicable for VHF collars.
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habitat-use model within each modeling area to display the range
of values in each area and aid in interpretation of observed spatial
patterns of predicted elk use.

Model Validation
We evaluated performance of the regional model with 8
independent data sets using locations of female elk not used
during covariate selection and model estimation (Table 1). Many
of these locations were recorded with VHF radiotelemetry
(Table 7) and thus were limited in number and to daylight or
crepuscular hours only. For validation data collected via GPS
(Table 7), fix success averaged >84% for data collected at
Nooksack, >93% for Quileute, and >90% for Green-Cedar. For
each validation data set, we mapped predictions of the regional
model on a 30-m� 30-m grid that covered an MCP developed
using all elk locations collected in that area between 1 June and 31
August. We categorized elk locations from Coquille as separate
north and south data sets for 1991–1992 and for 1993–1994
because of the original sampling scheme of this study (Cole et al.
1997), and used all recorded locations from the 4 data sets to
create MCPs (Table 1; Appendix A).
We assigned each cell of the grid to 1 of 20 equal area-sized

prediction bins using percentiles of the distribution of predictions
for that grid. Thus, prediction bin 1 had the lowest 5% of
predicted values on the grid, and bin 20 had the highest 5%. We
calculated a Spearman rank correlation (rs) between bin rank and
the number of elk locations that occurred in each of the 20 bins
(Boyce et al. 2002, Sawyer et al. 2009). We performed all
statistical analysis in the R language and environment for
statistical computing (R version 2.11.1, www.r-project.org,
accessed 6 May 2010). We estimated the NegBin using the
glm.nb function and the NB2 formulation available in theMASS
contributed package (Venables and Ripley 2002).

RESULTS

Covariate Selection and Model Development
Following model selection in AIC and removal of candidate
models with inconsistent or nonsignificant coefficients across
study areas, we ultimately retained 4 covariates from the nutrition
category for model development: mean DDE, mean accepted
biomass (AB), mean of pixels with DDE �2.4 (marginal, good,
or excellent [MGE]; Cook et al. 2004, 2018), and percentage of
the circular sampling unit with DDE values �2.4 (% MGE;
Appendix B, Tables B1 and B2). For human disturbance, we
brought forward only 1 covariate, distance to open road. For
the vegetation and physical covariate categories, only 1 covariate
remained in each after pre-analysis screening and model
selection: distance to edge (vegetation category) and mean slope
(slope; physical category; Appendix B, Table B2).
We developed 3 models from the 4 covariates in the nutrition

model set; 2 were univariate (DDE, AB), and the third combined
2 covariates (MGE and % MGE) with an interaction term
(Table 8). Three of the nutrition covariates (DDE, AB, and
MGE) were highly correlated and thus could not be included in
the same model. We created the third model in this set to
combine aspects of diet quality (MGE) and forage quantity (%
MGE), predicting that elk seek patches that offer high levels of
DDE. The best nutrition model, DDE, had a summed rank of 8
and was the top performer in 3 of 5 modeling areas (Table 8). The
AIC weights (i.e., model strength of evidence) for the DDE
model ranged from 0.005 to 0.534 among modeling areas
(Appendix D, available online in Supporting Information).
We created 2 human disturbance models with the distance to

open road covariate: a univariate model and one with both linear
andquadratic terms.Exploratoryanalysisof elk locations in relation
to roads revealed that elk use did not consistently increase linearly

Table 8. Ranks of models to predict habitat use by elk in summer in western Oregon and Washington, USA, within each of 5 model development areas. Models are
organized by model set and listed in order within each set from best to worst as indicated by the sum of ranks (lower sum is better) for each model across areas.

Model development areaa

Model set Model GC08 PY09 WR04 WR05 WR07
Summed
rank

Nutrition DDEb 1 1 2 1 3 8
ABc 2 2 3 2 1 10
MGEd, %MGE, MGE�%MGE 3 3 1 3 2 12

Human disturbance Distance to open road 1 1 2 2 1 7
(Distance to open road)2 2 2 1 1 2 8

Nutritionþ (vegetation and/or physical) DDE, distance to cover-forage edge, slope 1 2 1 2 1 7
DDE, slope 2 1 2 1 2 8
DDE, distance to cover-forage edge 3 3 3 3 3 15

Human disturbanceþ (vegetation and/or physical) Distance to open road, distance to cover-forage edge,
slope

1 2 1 1 1 6

Distance to open road, slope 2 1 3 2 2 10
Distance to open road, distance to cover-forage edge 3 3 2 3 3 14

Nutritionþ human disturbanceþ (vegetation and/
or physical)

DDE, distance to open road, distance to cover-forage
edge, slope

1 2 1 2 1 7

DDE, distance to open road, slope 2 1 2 1 2 8
DDE, distance to open road, distance to cover-forage
edge

3 3 3 3 3 15

a Codes indicate model development area and year: GC08¼Green-Cedar 2008; PY09¼Pysht 2009; WR04¼White River 2004; WR05¼White River 2005;
WR07¼White River 2007.

b Dietary digestible energy (kcal/g) within a circular sampling unit.
c Accepted biomass (kg/ha; biomass of plants that elk neither significantly avoided nor selected and those that elk significantly selected).
d Marginal, good, or excellent categories of DDE; values �2.4 kcal/g.
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Figure 21. Marginal plots of the 4 covariates in the best elk habitat-use model estimated for each of 5 model development areas and averaged across areas, western
Oregon and Washington, USA.

Figure 20. Coefficients (b̂) and 90% confidence intervals for the 4 covariates in the best elk habitat-use model estimated for each of 5 model development areas and
averaged across areas, western Oregon and Washington, USA.
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among modeling areas as distance to open road increased.
However, the best model, distance to open road, ranked first in
3 of the 5 modeling areas (summed rank¼ 7; Table 8). In these
3 sites AIC weights were relatively high (>0.63), indicating
strong support for this model in contrast to the quadratic form
(Appendix D).
We next combined distance to edge and slope with the best

nutrition and human disturbance models to create newmodel sets
(Fig. 19). For the nutritionþ (vegetation and/or physical) model
set, we evaluated 3 models that contained DDE and either slope
or distance to edge or both; the best model contained all 3
covariates (Table 8). This model ranked first in 3 of 5 modeling
areas (summed rank¼ 7), and AIC weights ranging from 0.271
to 0.972 indicated uniformly strong support, especially in the
Green-Cedar 2008 and White River 2004 data sets (Appendix
D). We then compared 3 models in the human disturbanceþ (
vegetation and/or physical) model set. Similar to results for the
previous model set, the best model in this group contained all 3
covariates: distance to open road, distance to edge, and slope
(Table 8). The summed rank of 6 for this model indicated that it
was the best performer for all but 1 data set (Pysht 2009), where it
ranked second behind distance to open road and slope.
We then combined the best nutrition, human disturbance,

vegetation, and physical models in another model set, with the
constraint that each model contained nutrition and human

disturbance covariates. The best model included all possible
covariates (i.e., DDE, distance to open road, distance to edge,
and slope; Table 8). This model ranked first in 3 areas and second
in the remaining 2; AIC weights ranged from 0.277 to 0.990
(Appendix D).
We evaluated one additional candidate model, combining the

best nutrition and human disturbance models (i.e., DDE and
distance to open road) with the best performers from the 5 model
sets described above (Fig. 19). The best model in the final set
ranked first in every habitat-use modeling area (summed
rank¼ 5) and included 4 covariates: DDE, distance to open
road, distance to edge, and slope (Table 9). The AIC weights
for this model ranged from 0.553 (PY09) and 0.750 (GC08)
to >0.890 in the 3 remaining modeling areas, indicating
consistent, and strong regional support (Appendix D). The
second-best model had a summed rank of 12 and was similar to
the best model but lacked the distance to open road covariate
(Table 9). Two covariates, distance to edge and slope, occurred in
each of the 3 best models (Table 9). Distance to open road was
the model least supported by the data in our final list; the summed
rank was 35 and all AIC weights approached zero (Appendix D).
We created the Westside habitat-use model by averaging

estimated coefficients for each covariate in the final model across
the 5 model development areas (Table 1). Predicted use (ŵ) from
the Westside habitat-use model was:

Figure 22. Predicted habitat use by elk, classified into 4 equal-area bins (i.e., each representing 25% of the modeling area) for the Green-Cedar 2008 model
development area in western Washington, USA, based on the regional Westside model. Values for model covariates are also displayed, including dietary digestible
energy (DDE), mean slope (%), and distance to nearest cover-forage edge (dist. to edge; km). Roads open to public motorized use are displayed on the DDE map.
Masked areas represent non-habitat (e.g., rock, water) and are displayed in gray in the predicted use map and white in the DDE map.
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bw ¼ exp �24:2389þ 7:4772�DDE½ � þ 0:2041½ð
� distance to open road� � 0:8423� distance to edge½ �
� 0:0545� slope½ �Þ

Goodness-of-fit tests for each study area resulted in P values
between 0.20 (White River 2005) and 0.84 (Pysht). There was no
evidence of lack of fit (i.e., that the data did not fit a negative
binomial distribution), and spatial correlation in the residuals for
the circular sampling units was extremely low in each study area.
All Moran’s I values for distances equal to 700m (nearest
neighbors) ranged from 0.07 to 0.21. Spatial correlation declined
to near 0 within 2,100m.

Model Interpretation
Coefficients for the final habitat-use model indicated that elk
were most likely to occupy sites with greater DDE, far from
roads open to the public, close to cover-forage edges, and with
relatively gentle slopes (Table 10). Coefficients were generally
consistent among modeling areas, with some exceptions

(Fig. 20). For example the estimated coefficient for distance
to edge in White River 2005 was positive, but the 90% CI
included 0; thus the relationship was not statistically significant
at an alpha level of a ¼ 0:10. The estimate for DDE in Green-
Cedar 2008 was also not statistically significant (Fig. 20).
Moreover, there was a negative and statistically significant
(a ¼ 0:10) relationship between elk habitat use and distance to
open road in Pysht (2009). None of the CIs for the averaged
coefficients for the 4 predictor covariates included 0, however,
indicating that we identified elk habitat-use relationships that
were consistent and robust among data sources (Fig. 20). Based
on standardized coefficients, changes in slope (�0.949) were
relatively most important in predicting habitat use, followed by
DDE (0.656), distance to edge (�0.305), and distance to open
road (0.300). Use ratios for the Westside habitat-use model
indicated an increase in relative probability of use by elk
with increases in DDE and distance from open roads, but
decreases in relative probability of use with increasing distance
to edge and slope (Table 10).
Predicted probability of use by elk, as demonstrated by marginal

plots, increased steadily with increasing DDE across all 5

Figure 23. Predicted habitat use by elk, classified into 4 equal-area bins (i.e., each representing 25% of the modeling area) for the Pysht 2009model development area in
western Washington, USA, based on the regional Westside model. Values for model covariates are also displayed, including dietary digestible energy (DDE), mean
slope (%), and distance to nearest cover-forage edge (dist. to edge; km). Roads open to public motorized use are displayed on the DDE map.
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modeling areas, with the curvilinear response rising markedly at
DDE levels exceeding 2.7 (Fig. 21). Predicted use also increased
with increasing distance from roads in all areas, with the
exception of Pysht 2009. Elk use was predicted to decline with
increasing distance to edge, with the exception of White River
(2007). Last, predicted use decreased sharply in all areas as slope
increased between 0 and 40%.
Patterns of predicted use mapped in each model development

area revealed high variability and patchiness of use as a result of
the distribution and interaction of model covariates in each site
(Figs. 22–26). For example, in Pysht (2009), where only 2

highways transected the site and nutrition was the most
depauperate among modeling areas, predicted use was strongly
aligned with nutrition but not roads (Fig. 23). Areas of steep
slopes that were far from edges also showed low predicted use
(Fig. 23). By contrast, in White River 2007, bands of low levels
of predicted use closely aligned with open roads, especially in the
southeastern edges of the area (Fig. 26). In Green-Cedar 2008
(Fig. 22), nutrition was uniformly low (predominantly low-
marginal; Table 2) and not closely aligned with patterns of
habitat use other than in the southeastern lobe of the kernel,
where pockets of higher DDE values co-occurred with the

Figure 24. Predicted habitat use by elk, classified into 4 equal-area bins (i.e., each representing 25% of the modeling area) for the White River 2004 model
development area in western Washington, USA, based on the regional Westside model. Values for model covariates are also displayed, including dietary digestible
energy (DDE), mean slope (%), and distance to nearest cover-forage edge (dist. to edge; km). Roads open to public motorized use are displayed on the DDE map.
Masked areas represent non-habitat (e.g., rock, water) and are displayed in gray in the predicted use map and white in the DDE map.
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absence of open roads. By contrast, the western lobe had
similarly good patches of DDE and several open roads that
likely had low traffic rates, but these roads led to several small
subdivisions that were masked from our analysis but may have
influenced use by elk.

Model Validation
Spearman rank correlation coefficients between predicted and
observed use for the finalWestside habitat-usemodel ranged from
0.32 in Coquille North 1993–1994 to 0.99 inGreen-Cedar (2006,
2007, 2009; Table 11). The mean correlation coefficient across

Figure 25. Predicted habitat use by elk, classified into 4 equal-area bins (i.e., each representing 25% of the modeling area) for the White River 2005 model
development area in western Washington, USA, based on the regional Westside model. Values for model covariates are also displayed, including
dietary digestible energy (DDE), mean slope (%), and distance to nearest cover-forage edge (dist. to edge; km). Roads open to public motorized
use are displayed on the DDE map. Masked areas represent non-habitat (e.g., rock, water) and are displayed in gray in the predicted use map and white in the
DDE map.
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validation areaswas 0.77 (90%CI¼ 0.63–0.90).Correlationswere
higher in the4validationsites inWashington(rs� 0.96) than in the
4 in Oregon (rs¼ 0.32–0.87). Elk telemetry locations were
generally clustered within higher prediction classes, with few
observations of elk in the lowest-ranked classes (Appendix E,
available online in Supporting Information).

DISCUSSION

Our hypothesis that habitat use by elk in western Oregon and
Washington would be driven by a suite of covariates related to
energy balance was well supported; our final model included 1) a
direct measure of energy acquisition (DDE); 2) a metric of

Figure 26. Predicted habitat use by elk, classified into 4 equal-area bins (i.e., each representing 25% of the modeling area) for theWhite River 2007model development
area in western Washington, USA, based on the regional Westside model. Values for model covariates are also displayed, including dietary digestible energy (DDE),
mean slope (%), and distance to nearest cover-forage edge (dist. to edge; km). Roads open to public motorized use are displayed on the DDE map. Masked areas
represent non-habitat (e.g., rock, water) and are displayed in gray in the predicted use map and white in the DDE map.
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human disturbance and thus potential energy loss (distance to
open roads); 3) topography, which can affect both locomotion
energy and foraging conditions (slope); and 4) an index of either
foraging efficiency or security (distance to cover-forage edge).
Three of the 4 covariates—DDE, distance to open road, and
distance to edge—have analogs in the Wisdom et al. (1986)
model, whose improvement was the impetus for our modeling
effort (Wisdom et al. 2018a): forage quality, density of open
roads, and size and spacing of cover and forage areas. Signs of
coefficients and marginal plots of the 3 covariates in ourWestside
model agreed with relationships hypothesized in the 1986 model,
suggesting that these covariates are robust predictors of elk use
across time and space in the Westside region (Wisdom et al.
2018a). Elk consistently chose habitat features that maximized
energy acquisition and minimized the potential for energy loss
and mortality via hunters or poachers, supporting the hypothesis
that animals choose habitats that benefit performance (Gaillard
et al. 2010). Study designs that link habitat choices to
demographic consequences are requisite for improving habitat
models for wildlife (Morrison et al. 2012).
Our prediction that nutrition and human disturbance would

function as key drivers of elk distributions was corroborated by
their strong relation to predicted use (Fig. 21). The model
containing only these 2 covariates, though, had a relatively high
summed rank (i.e., little support from the data), and Akaike
weights for the model approached 0 in all but one modeling area
(Appendix D, final set of candidate models). Results from an
example application of the regional model in western Wash-
ington (example 1 in Wisdom et al. 2018b) supported our
prediction that elk use of areas of similar nutrition may be
compromised by other, interacting covariates such as human
disturbance and topography. In this example, the greatly
improved levels of DDE in a local landscape did not translate
into increased predicted use because roads remained open
following timber harvest (option 3).

Our regional model was successful in predicting habitat use by
elk. Multiple lines of evidence suggested that the model was
robust, including its top rank in all 5 model development areas
(Table 9), high correlation of predicted and observed use in
validation with independent telemetry data (Table 11; Appendix
E), and consistent trends in covariate values relative to predicted
use. This generality, and the successful melding of study-area
models into a regional model using a hierarchical, meta-analysis
approach, resulted in a large inference space (>11 million ha)
compared with that of most ungulate habitat models. In a formal
statistical sense, the inference space of the models applies only to
the model development and validation areas (Fig. 17; Table 7),
which were not selected randomly but opportunistically. These
13 areas, however, were large and encompassed a wide range of
environmental conditions, management regimes, and land
ownerships across the Westside region.
The meta-analysis approach we adopted allowed for study area

(unit-level) summaries that can help clarify the amount of
information in the data (Murtaugh 2007); the approach was
clearly sufficient in meeting our objectives. Our analysis was
generally amore accessible and transparent approach compared to a
Bayesianor frequentist hierarchicalmodel.Wealso attempted tofit
ageneralized linearmixedmodel,whichwouldprovide estimates of
the regional and study area coefficients simultaneously, but that
process is not only complicated but also requires additional
assumptions about the distribution of the random effects.
Moreover, correlation patterns need to be correctly specified
within individual modeling areas (Fieberg et al. 2010).
Although modeling results were generally consistent among

areas, we found some exceptions, such as elk response to open
roads in Pysht (2009) (Figs. 20 and 21). Two Washington State
highways were the only roads open to public access in this
landscape (Fig. 23), and mean distance to open roads was lowest
among all modeling areas (Appendix B, Table B4). Traffic
patterns and motorist behavior likely differ between highways

Table 9. Ranks of the final set of candidate models used to predict habitat use by elk in summer within 5 model development areas in western Oregon andWashington,
USA.Models are listed in order from best to worst as indicated by summed ranks; a summed rank of 5 would indicate that a model was the best performer in all 5 areas.

Model development areaa

Model number Model GC08 PY09 WR04 WR05 WR07 Summed rank

6 DDEb, distance to open road, distance to cover-forage edge, slope 1 1 1 1 1 5
4 DDE, distance to cover-forage edge, slope 3 2 2 2 3 12
5 Distance to open road, slope, distance to cover-forage edge 2 6 3 3 2 16
1 DDE 5 5 5 4 5 24
3 DDE, distance to open road 6 3 4 5 6 24
2 Distance to open road 7 7 7 7 7 35

a Codes indicate model development area and year: GC08¼Green-Cedar 2008; PY09¼Pysht 2009; WR04¼White River 2004; WR05¼White River 2005;
WR07¼White River 2007.

b Dietary digestible energy (kcal/g) within a circular sampling unit.

Table 10. Coefficients, confidence intervals (CI), and use ratios for the final Westside habitat-use model for elk in western Oregon and Washington, USA.

Covariate b̂ 90% CI lower limit 90% CI upper limit Use ratio

Intercept �24.2389
DDEa (kcal/g) 7.4772 4.8053 10.1349 111.2% increase for each 0.1-unit increase in DDE
Distance to open road (km) 0.2041 0.0242 0.3252 22.7% increase for each 1-km increase from road
Distance to cover-forage edge (km) �0.8423 �1.2554 �0.3855 8.1% decrease for each 100-m increase in distance to edge
Mean slope (%) �0.0545 �0.0630 �0.0441 5.3% decrease for each 1 %-increase in slope

a DDE¼ dietary digestible energy.
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such as these and less-traveled roads, where drivers may slow
down or even stop and leave a vehicle to hike or photograph
wildlife. We suspect that elk did not avoid traffic on these
highways but responded instead to the high-quality forage on
small farms adjacent to them (K. Sager-Fradkin, Lower Elwha
Klallam Tribe Natural Resources, personal communication).
For distance to edge, White River 2005 was the only data set

with a positive coefficient, indicating higher predicted use farther
from edges (Fig. 20). The small sample size in this data set (n¼ 6
elk) may have contributed to the relatively large variability and
lack of significance for this covariate. Although the coefficient for
distance to edge was negative in Pysht (2009), it was not
significant; this site contained extensive private timberland
(Appendix A) with many harvest units, and had the shortest
average distance to edge among modeling areas (Appendix B,
Table B4). Last, the coefficient for DDE was lowest in Green-
Cedar 2008, and the lower CI included 0 (Fig. 20). This finding
may stem from the overlap of relatively good nutrition with the
only open roads in this site (western portion of the area; Fig. 22).
Each covariate in the Westside habitat-use model is strongly

supported in published literature. Slope had the largest
standardized coefficient among the 4, and its coefficient was
the only one for which no CIs spanned 0 in any study area
(Fig. 20). Thus, slope remains an important consideration in
planning and siting habitat improvements for elk, such as road
closures or silvicultural prescriptions, which are best positioned
on gentle slopes. Predicted use by elk declined sharply as slope
increased from 0 to 40%, with very low probability of use (<0.10)
predicted for slopes >60% (Fig. 21). Preference by elk for gentle
to moderate slopes has been documented previously in western
Oregon (Witmer 1981, Witmer et al. 1985, Wisdom et al. 1986)
and elsewhere (Hershey and Leege 1982, Edge et al. 1987,
Johnson et al. 2000, Sawyer et al. 2007). Energetic costs for elk
moving on a horizontal plane are nearly 3 times lower than those
of moving upslope (Parker et al. 1984), and elk in eastern Oregon
preferred to move along ridgelines rather than on steeper slopes
perpendicular to drainages (Kie et al. 2005).
Many elk habitat models have included some form of forage

variable (e.g., Wisdom et al. 1986, Thomas et al. 1988, Roloff
1998, Johnson et al. 2000, Benkobi et al. 2004), although it has
not always been used in model predictions because of the lack of
site-specific information needed for its derivation (Cook et al.
1996, Roloff 1998). Earlier studies hypothesized about effects of
summer nutrition on population performance of elk in the Pacific
Northwest (Trainer 1971, Harper 1987, Merrill et al. 1995), but

only recently have these effects been more widely recognized
(Cook et al. 2013, 2018). Moreover, few studies have related
distributions of wild elk and performance metrics, such as
nutritional condition, to nutritional resources in summer.
However, Hebblewhite (2006) demonstrated a positive relation
between body mass and pregnancy rates with exposure of elk to
high-quality forage, and Middleton et al. (2013a) documented
declines in pregnancy rates in migratory elk that they
hypothesized were in part a function of declining spring-summer
forage conditions. In Montana, Proffitt et al. (2016) found elk
exposed to lower summer nutritional conditions entered the
winter with lower body fat and pregnancy rates. Summer
nutrition for elk, defined in our study by DDE rather than by
more commonly obtained forage quality or quantity variables,
was a strong and consistent predictor of elk distributions in our
Westside habitat-use model. The utility of the nutrition model in
strategic land-use planning, not only to predict use but also
animal performance, is embodied in the examples described by
Wisdom et al. (2018b), which can serve as a template for holistic
elk management in the Westside.
Several elk habitat models reflect elk selection for sites close to

cover-forage edges, presumably for security (e.g., Wisdom et al.
1986, Thomas et al. 1988, Brunt et al. 1989, Benkobi et al.
2004), although mechanisms for this selection have not been
well-described in the literature (Hanley 1983). In western
Oregon, 95% of Roosevelt elk locations were within 130m of
cover (Witmer 1981). In Vancouver, British Columbia, more
than 50% of Roosevelt elk locations in forage areas were within
40m of the edge; by contrast, only 20% of locations in cover
were within this distance (Brunt et al. 1989). Elk likely select
foraging sites close to cover during summer to reduce predation
risk or ameliorate effects of micro-climates or insects, and select
sites within cover but close to edges to minimize travel to
nutritious forage in more open areas and along cover-forage
edges (Skovlin et al. 2002). Elk in southwest Oregon shifted to
more open vegetation types during a period of controlled road
access (Cole et al. 2004), and elk in Yellowstone National Park
were closer to forest edges during daytime but did not alter
habitat selection in relation to close (within 1 km) encounters
with wolves (Middleton et al. 2013b).
Research in Europe on red deer (Cervus elaphus; Meisingset

et al. 2013) and throughout the range of elk in western North
America has demonstrated elk avoidance of roads (Lyon 1979;
Cole et al. 1997, 2004; Rowland et al. 2000, 2005; Frair et al.
2008; Ciuti et al. 2012b; Montgomery et al. 2012). Roosevelt elk
in the coastal range of Oregon generally avoided all roads in
summer, with elk use less than expected within 500m of paved
roads (Witmer 1981, Witmer and deCalesta 1985). Cole et al.
(1997) found that elk survival in southwestern Oregon increased,
and daily movements and core area size decreased, following road
closures, presumably from a decline in poaching and disturbance
from traffic. Worldwide, roads represent a dominant anthropo-
genic feature that can lead to foregone foraging opportunities,
increased poaching, and higher energetic costs resulting from
flight responses to traffic (Coffin 2007). The strong relation
between elk distribution and roads exemplified in our regional
model demonstrates its utility in managing elk populations and
habitats in relation to road networks throughout the Westside.

Table 11. Spearman rank correlation coefficients (rs) for tests of predicted versus
observed use by elk in summer for the regional version of the best habitat-use
model (Westside habitat-use model) using 8 model validation data sets from
western Oregon and Washington, USA.

Data set (study area and years) Westside habitat-use model

Coquille North 1991–1992 0.50
Coquille North 1993–1994 0.32
Coquille South 1991–1992 0.87
Coquille South 1993–1994 0.55
Green-Cedar 2006, 2007, 2009 0.99
Makah 2000–2003 0.97
Nooksack 2008–2009 0.96
Quileute 2006–2008 0.97
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Model Validation
The Westside habitat-use model performed extremely well
(r� 0.96) in all but the Coquille study area in southwestern
Oregon, where performance was much more variable (r¼ 0.32–
0.87). Telemetry data from this area were the oldest in our
project (early 1990s), and analysis required extensive manipula-
tion of vegetation layers to match the vintage of elk telemetry
data (Appendix B).Moreover, elk locations from this study were
only diurnal and obtained from VHF collars (mean error ellipse
of 1.2 ha), and the sample size was orders of magnitude less than
that in other validation data sets (Table 7; Appendix E).
Although environmental conditions in Coquille typify those of
the southern Oregon Coast Range (Cole et al. 1997), the study
area lies at the southern boundary of our modeling region.
Landscapes to the south differ substantially, with complex
topography, serpentine soils, and flora atypical of much of the
Westside (Franklin and Dyrness 1988). Last, road closures
established in 1992 for this research only partially limited access
(Cole et al. 1997, 2004); thus, we likely under-estimated the
extent of open roads in the Coquille data set for 1993–1994.
Nonetheless, correlation between predicted and observed elk use
in this area was much greater than expected by random chance,
indicating the model still performed reasonably well given the
limitations of the data. Including this study area was useful
because it represented the only data from Oregon, and its
location at the boundary of theWestside region offered insights
about how robust our validation results might be to higher
location error, lower relocation frequency, and unknownfix rate.
A possible contribution to the strong performance of some of

our validation data sets may be the spatial overlap of certain areas
used for model development versus validation (e.g., Green-Cedar
and White River; Fig. 17). Although some of these areas
overlapped and thus were not completely spatially independent,
model development versus validation data sets always differed by
the year in which telemetry data were collected and across years
by collared animals from which telemetry data were obtained.
Thus, we did not use any individuals for both model development
and validation. Moreover, using independent data for model
validation is preferred over other methods such as cross-
validation or other methods of sub-setting the original data,
which may lead to inflated measures of model performance
(Johnson 2001).

Sources of Uncertainty in Model Application
We developed competing models based on a combination of
ecological rationale, biological hypotheses, and predictions, a
structured process for model development, and mechanistic
covariates related to energy balance to evaluate habitat use. Such
an approach provides a useful modeling framework for advancing
knowledge about a species’ habitat use and requirements (Morrison
2001, 2012). We included a covariate, DDE, in our habitat-use
model that was the response variable of the best nutrition model.
Thus we modeled a model, which can compound estimation and
prediction errors (Mowrer and Congalton 2000).We used coarse-
scale GIS layers as source data (Appendix B), often criticized as
having insufficient or unknown accuracy for modeling (Shao and
Wu 2008). The spatial resolution, extent, and classification of
coarse-scale data to estimate, map, and validate habitat-use and

resource-selection models can affect modeling results or their
interpretation (Morris et al. 2016). These approaches could lead to
an inability to detect causal relationships and represent them in
habitat-use modeling. However, our modeling produced ecolog-
ically meaningful results (i.e., not detecting anticipated results that
could be Type II errors) and no unexpected results (i.e., spurious
results that could be Type I errors).
Our regional model predictions reflect relations between elk

and current environmental conditions. How climate change or
other processes might affect these predictions, specifically those
derived from vegetation-based covariates (distance to edge and
DDE), has not been tested. Predicted regional increases in
annual temperatures (projected to be highest in summer) of
1.88C to 5.48C by 2070–2099 in the Pacific Northwest, coupled
with projected 30% decreases in summer precipitation (Mote
et al. 2014), will undoubtedly affect forage phenology and
associated biomass and quality of forage for elk. However,
relative, if not absolute, values of nutrition for elk as predicted by
the nutrition model should remain robust, as noted by Cook et al.
(2018). Most research to date evaluating impacts of climate
change on ungulates does not specifically address habitat use or
distributions but rather population dynamics, especially in
relation to winter severity (e.g., Patterson and Power 2002,
Hebblewhite 2005). Thus these studies are not directly relevant
to our summer habitat-use model. Wang et al. (2002), however,
evaluated potential impacts of climate change on elk populations
in Rocky Mountain National Park in Colorado, USA, and
projected that higher summer temperatures would slow popula-
tion growth in elk. Given the uncertainty of future climate, land
management regimes, and other processes such as abundance of
invasive plant species, insects, and wildfire, an adaptive
management approach will be required to understand best and
appropriate applications of our habitat-use model and to guide
future research as needed (Wisdom et al. 2018b).
We did not incorporate the presence or density of predators as

predictors in our habitat-use model, primarily because such data
were unavailable across our study areas. Despite this omission,
the model performed well in predicting current elk distributions.
However, we recognize such data can play an important role in
modeling the full suite of functional habitat components that may
affect elk distributions (Gaillard et al. 2010). Two common
Westside carnivores are known predators of elk. Black bears prey
primarily on neonate elk (Zager and Beecham 2006, Griffin et al.
2011), whereas cougars prey primarily on elk calves during
summer but also will kill adult elk (White et al. 2011a, Clark et al.
2014). If Westside elk do respond to the presence of cougars and
black bears, that response is likely reflected in their current
distributions because they have shared ranges with these 2
common predators for decades. Moreover, predation by black
bears occurs during such a brief temporal window and on calves,
which we did not monitor, that adult elk are unlikely to respond
to bears at the scale of our models. Similarly, cougars are cryptic
predators whose presence may not affect summer elk habitat use
at the temporal and spatial scales of our models. For example,
birth-site selection of Rocky Mountain elk at larger spatial scales
did not appear to be influenced by predation risk but rather by
access to nutritional resources (Rearden et al. 2011), which we
accounted for in our models. We know of no published literature
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documenting changes in habitat use by elk in response to either of
these 2 predators.
Gray wolves were functionally absent in the Westside region

during the years in which our data were collected. Wolves are
actively colonizing Washington and Oregon through dispersal
from populations in British Columbia, Idaho, and Montana
(Oregon Department of Fish and Wildlife 2010, Washington
Department of Fish and Wildlife, Confederated Colville Tribes,
Spokane Tribe of Indians, USDA-APHIS Wildlife Services,
and U.S. Fish andWildlife Service 2017). Currently, there is one
pack located just east of our modeling region in Washington
(Teanaway; Washington Department of Fish and Wildlife,
Confederated Colville Tribes, Spokane Tribe of Indians, USDA-
APHIS Wildlife Services, and U.S. Fish and Wildlife Service
2017). No packs have been established within the Westside
region in Oregon; however, a pair of wolves was documented in
early 2018 in southern Wasco County, Oregon, in the Cascade
Mountains (Oregon Department of Fish and Wildlife 2018). In
contrast to evidence for cougars and bears, wolves can effect
changes in elk distributions and habitat use, often with negative
consequences for fitness (Frair et al. 2005, Hebblewhite et al.
2005, Mao et al. 2005, Muhly et al. 2010, White et al. 2012).
These results, however, are inconsistent (Middleton et al. 2013b).
If wolves become sufficiently abundant in the Westside,
recalibration of the habitat-use model could be required through
additional research, although habitat shifts in response to wolves
have been most often reported for winter, not summer, and
included use of steeper slopes, higher elevations, and denser cover
(Mao et al. 2005). Moreover, in some situations, human
disturbance (e.g., hunting, other recreation, high-volume traffic
on roads) may exert stronger effects on elk habitat use than do
wolves (Proffitt et al. 2009, Ciuti et al. 2012b). Thus, the
inclusion of a roads covariate in our habitat-use model may
provide some resilience of the model even with the projected
re-establishment of wolves in western Oregon and Washington.

MANAGEMENT IMPLICATIONS

The habitat-use model predicts relative probability of use by elk,
and can guide management treatments to improve elk habitat
quality and distributions, such as increasing use on national forest
lands relative to adjacent land ownerships. It is not a carrying-
capacity model, nor is it a model to predict population numerical
response. Such models require intensive data about amount and
quality of forage and many assumptions about animal density and
other factors that may limit the ability of a landscape to support a
defined number of animals (Hobbs and Swift 1985, Beck et al.
2006, Cook et al. 2016). However, Vales et al. (2017) successfully
applied equations in our Westside nutrition model to create an
elk forage index on lands managed by the Muckleshoot Indian
Tribe in central Washington. The scale-independent index is
intended to guide timber harvest management and reflects the
density of female elk that a given landscape can support.
Similarly, Roloff (1998:158) developed a habitat potential model
for elk that reflects the “inherent ability of the landscape to
produce and sustain elk in the absence of human disturbance.”
Our model integrates nutrition with human disturbance and
other factors to predict relative—but not absolute—use by elk
within the analysis area.
For successful application of the model, users should

understand its multivariable framework. For example, silvicul-
tural treatments to improve nutritional conditions for elk may
yield negligible benefits in term of increased elk use in sites with
high open road densities or steep slopes (see Wisdom et al.
[2018b] for specific examples). Similarly, closing roads in locales
with relatively low DDE and limited opportunity to improve
nutrition through thinning may be futile if managers seek to
improve elk habitat, distribution, or elk performance. Wisdom
et al. (2018b) describe specific applications of the nutrition and
regional habitat-use model, and offer caveats and suggestions for
management application in the Westside region.
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INTRODUCTION

Landscapemodeling of habitat use bywide-ranging animal species
such as elk is a topic of increasing focus in the wildlife profession
(Ciuti et al. 2012a, b; Nielson and Sawyer 2013).Models of habitat
use, or related models of resource selection, predict the probability
of animal use of a given area and time based on a wide range of
environmental covariates (Rowland et al. 2018). These models can
provide valuable knowledge about a species’ habitat choices in time
and space that presumably index the species’ habitatneeds (Gaillard
et al. 2010, Hebblewhite and Haydon 2010). Models are
particularly useful when they are based on covariates that are
ecologically meaningful to the species’ habitat requirements and
that can be directly manipulated by managers to achieve desired
changes in a species’ habitat use, distribution, and performance
(mechanistic covariates; Wisdom et al. 2018a).
We describe and demonstrate the management utility of elk

nutrition and habitat-use models developed and validated for
applications in western Oregon and Washington (Westside;
Cook et al. 2018, Rowland et al. 2018). We first summarize
intended management applications and considerations, with
focus on interpretation of predictions and spatial and temporal
scales of use. We then provide management examples that
highlight types of applications and benefits. Finally, we discuss
challenges and implications of elk modeling in the Westside
region, given current management direction on different land
ownerships, stakeholder involvement, and future sources of
management and environmental uncertainty.

Management Applications and Predictions
The nutrition and habitat-use models evaluate summer range
during June–August, a period of nutritional stress for lactating
female elk in the Westside region (Cook et al. 2018). Explicit
rationale and empirical support for evaluating summer range was

detailed by Cook et al. (2004, 2013, 2016, 2018). Evaluation of
the nutrition model, which showed the strong positive
relationship between landscape composition of summer pre-
dictions of DDE (kcal/g) and pregnancy rates and body fat of
associated elk populations, supported the focus on summer as a
period of nutritional limitation in the Westside region (Cook
et al. 2018). These relationships further justified the focus on
modeling habitat use during summer on Westside landscapes
(Rowland et al. 2018).
The nutrition model predicted DDE during summer in the

Westside region using a combination of covariates, including
PNV zone, overstory canopy cover, and hardwood composition
(Cook et al. 2018). Model predictions were evaluated with
independent data on selection ratios, elk performance, and
habitat use. Results supported the predictions that fine-scale
nutrition data (i.e., DDE) collected with captive elk represent
the actual nutrition levels of wild elk, and that these levels can be
re-scaled to produce reasonably accurate, broad-scale predictions
of nutrition across the Westside region (Cook et al. 2018).
The habitat-use model predicted the relative probability of elk

use on Westside landscapes during summer (Rowland et al.
2018). Predictions were based on 4 covariates: DDE outputs
from the nutrition model and 3 non-nutrition covariates
(distance to open roads, slope, and distance to cover-forage
edge; Rowland et al. 2018). The 4 covariates best predicted use by
elk across the Westside region at landscape scales based on data
from multiple study areas used for model development. Model
predictions were validated with independent data on habitat use
from additional study areas not included in model development
(Rowland et al. 2018). Results supported the hypotheses that elk
use of landscapes is consistent across the Westside region, as
captured in 1 regional model; and that the regional model would
include “a suite of interacting covariates related to elk energy
balance” often found to account for elk use in prior research
(Rowland et al. 2018:32).
The nutrition and habitat-use models, when used together,

predict elk nutrition, habitat use, elk distribution, and

1Current affiliation: Eagle Environmental, Inc., 30 Fonda Rd., Sante Fe,

NM 87508, USA
2Retired.
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performance at landscape scales of direct relevance to elk
management (Fig. 2; Wisdom et al. 2018a). The nutrition model
predicts the spatial distribution of nutritional resources (Cook
et al. 2018); the habitat-use model can predict the extent to which
those resources will be used (Rowland et al. 2018). Landscapes
managed fornutrition therefore require simultaneousmanagement
of non-nutrition covariates to facilitate desired nutritional use.
Effective management thus relies on both models (see Manage-
ment Examples).
The nutrition and habitat-use models further predict landscape

distribution (Rowland et al. 2018) and performance (Cook et al.
2018) of elk populations. Landscape distribution is estimated by
summing the predictions of relative probabilities of habitat use
across different management boundaries of interest, such as land
ownerships (seeManagement Examples). Animal performance is
predicted by regression equations showing that pregnancy rates
and body fat of lactating female elk increase in response to
increasing landscape area of higher levels of DDE inWestside elk
populations (Cook et al. 2018). Increasing animal performance
based on increasing area of higher nutrition, however, implicitly
assumes that such areas will be used by elk, as predicted by the
habitat-use model (Rowland et al. 2018). Our management
examples demonstrate these model uses.

METHODS

Scales of Application
Nutrition model.— The nutrition model can applied in 2 ways:

spatially explicit or tabular. Equations in the model to predict
forage biomass and DDE are the same for both applications
(Cook et al. 2018). Spatially explicit model application can occur
at any spatial scale of interest, ranging from an individual stand to
the entire Westside region. Applying the model at a stand level
requires accurate field data that reflect site-specific conditions
(Cook et al. 2018). By contrast, coarse-scale GIS data are often
sufficient (Appendix B) for applying the nutrition model over
large landscapes like those in which the nutrition and habitat-use
models were developed and validated (Appendix A).
The tabular application is not scale-dependent but instead can be

used in gaming scenarios to understand potential effects on DDE
values of changes in overstory canopy cover and hardwood
composition in a given PNV zone (Vales et al. 2017, Cook et al.
2018). For example, amanagermaywant to evaluate hownutrition
differs under 4 timber harvest prescriptions in conifer stands that
reducecanopy cover to0%,20%,40%,and60%witheither constant
or varying levels of hardwood composition (Table 12). For the

tabular application, estimates of canopy cover and hardwood
composition can be used to drive the model, first to predict forage
biomass and thenDDE, although estimates of forage biomass (i.e.,
selected, neutral, accepted) derived directly from field sampling in
the stands would provide more accurate predictions of DDE.
For landscape assessments, the spatially explicit form of the

nutrition model can be used to predict DDE as a stand-alone
evaluation or in tandem with predictions from the habitat-use
model. Applying the habitat-use model by definition requires
first applying the nutrition model because DDE predictions are a
required covariate in the habitat-use model (Rowland et al. 2013,
2018). When using the nutrition model as a stand-alone tool for
landscape assessment, the size of area should be large enough to
affect conditions for a local population. Minimum size should be
approximately 800–1,000 ha (Rowland et al. 2013), which
equates roughly to the area of summer home ranges of elk in
the Westside region (Cole et al. 1997, McCorquodale 2003,
Witmer et al. 1985, Wisdom et al. 1986).
Predictions of the nutrition model are made to each pixel (grid

cell) within an analysis area. Results are directly comparable across
all pixels in the analysis area, and across different analysis areas for a
given time period (Cook et al. 2018). Results from the spatially
explicit nutritionmodel can then be used to predict pregnancy rates
and body fat of lactating female elk in a given summer range, based
on the percentage of the analysis area occurring in the higher
nutritional classes of DDE (Figs. 12 and 13; Cook et al. 2018), as
demonstrated in our management examples.
Habitat-use model.— Assessing habitat use involves 2 general

steps. The first is applying the habitat-use model in an area of
�10,000 ha, referred to as a regional landscape. This scale is
compatible with the range of study area sizes used to develop and
validate our models (Appendix A; Cook et al. 2018, Rowland
et al. 2018). Areas �10,000 ha also encompass multiple
populations of summering elk, thus providing an appropriate
area in which to evaluate summer range conditions at a regional
scale.
The specific size and boundaries of a regional landscape depend

on objectives (Rowland et al. 2013). Smaller regional landscapes
might be appropriate for focusing on habitat conditions in a given
land ownership or drainage (see Example 1). Larger regional
landscapes might be appropriate for evaluating conditions across
multiple land ownerships that encompass cumulative manage-
ment activities at large spatial extents (see Example 2).
After the boundary of the regional landscape is established, a

4-km buffer must be placed around the boundary before applying
the habitat-use model (see Management Examples). All roads
open to public motorized use are to be mapped within this buffer,
as are all cover-forage edges (Rowland et al. 2013, 2018). Open
roads and cover-forage edges outside the analysis areas but within
the 4-km buffer may affect elk use within the analysis areas and
thus should be considered (Rowland et al. 2013, 2018).
A second, optional step beyond assessment of a regional

landscape is a summary of results for smaller areas, referred to as
local landscapes, which are embedded within the regional
landscape. In this case, results from applying the habitat-use
model for the regional landscape are subsetted to evaluate local
conditions or projects, as defined by boundaries of the local
landscape. The minimum area for designating a local landscape is

Table 12. Dietary digestible energy (kcal/g) of forage for elk in relation to
example levels of overstory canopy cover and hardwood composition of coniferous
forests in the Pacific silver fir-mountain hemlock potential natural vegetation zone
of the Westside region, western Oregon and Washington, USA, based on the elk
nutrition model (Cook et al. 2018).

Overstory canopy cover

Hardwood composition 0% 20% 40% 60%

0% 2.93 2.84 2.74 2.63
5% 2.94 2.86 2.76 2.66
10% 2.95 2.88 2.78 2.68
20% 2.96 2.92 2.82 2.72
50% 3.00 3.03 2.95 2.86
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800–1,000 ha; this size is compatible with summer home ranges
for elk in the Westside region as described earlier, and reflects a
scale of management that would be ecologically meaningful to a
local population of elk. This is the same minimum area for
applying the nutrition model as a stand-alone landscape
assessment. Changes in pregnancy rates and body fat of lactating
elk associated with management actions to improve nutrition are
thus assessed over an area large enough to affect a population and
ensure that associated changes in use in response to changes in
nutrition are evaluated at a meaningful scale. Similarly, changes
in elk distribution in response to habitat management are
summarized at this same scale in which the distribution of a
population may be affected (see Management Examples).
Habitat-use modeling does not require the designation or

analysis of local landscapes, and their inclusion depends on
objectives. Once local management projects are identified (e.g.,
specific timber harvest units or new road network) as the basis for
establishing boundaries of a local landscape, a buffer distance of
approximately 1.6 km should be placed around those project areas
for summarizing habitat use (see Example Management Uses).
The buffer accounts for the effects of the distance to cover-forage
edge covariate on elk use, based on the new edges created from
timber harvest units or other changes to forest structure
(Rowland et al. 2013).
Habitat-use model predictions (Rowland et al. 2013, 2018) are

made for each pixel within a regional landscape. Predictions are
not standardized on a 0 to 1 scale but are relative to all other
values in the area in which the habitat-use model was applied. It
is possible to standardize these predictions but they remain
relative to other values within the area, and are not directly
comparable to predictions made during separate model runs for
other areas (although patterns of predicted use may be compared

qualitatively between different regional landscapes). Thus, the
key to making predictions of elk use comparable across a
landscape of interest is to apply the model over the entire area.
This point illustrates the benefits of applying the model over a
larger regional landscape versus a smaller one: results are
comparable across the entire area in which the model is applied,
and can be subsetted to any local landscapes of interest. Similarly,
model results are comparable across time periods but only when
the regional landscape boundary is constant across time periods
(Rowland et al. 2013).

Management Examples
We provide 2 examples to demonstrate nutrition and habitat-use
modeling applications for landscape management. Example 1
considers 3 management options within 1 land ownership to
evaluate effects of proposed silvicultural prescriptions and
management of open roads. This example highlights the
complementary use of results at scales of regional and local
landscapes. Example 2 is an evaluation of multiple land
ownerships to quantify and understand elk distribution across
ownerships. Results can be used to establish and implement
broad-scale objectives for elk distribution and performance
(pregnancy rates and body fat of females).
For both examples, we highlight key results and management

interpretations but do not address details of how to apply the
models in a GIS framework. Rowland et al. (2013) describe and
illustrate these details, give additional examples for data summary
and display, and provide information about using spatial data sets
needed to derive model covariates. The Westside elk modeling
website provides downloadable GIS programs to apply themodels
and example data layers (https://www.fs.fed.us/pnw/research/elk/
toolbox/index.shtml). Doerr (2016) andVales et al. (2017) provide

Figure 27. Example 1 study area (27,980 ha) in theWhite River drainage of westernWashington, USA (see upper right inset) showing land ownership and allocations
present in 2010 that were used to estimate current conditions for example 1.
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additional examples of applying the Westside models, which
complement those provided here. Our examples use land own-
erships and environmental conditions for 2010 as the reference or
base condition (Appendix B).
Example 1.—The first example encompasses 27,980 ha in the

White River drainage of western Washington within the
Mt. Baker-Snoqualmie National Forest and adjacent areas of
the Wenatchee National Forest (Fig. 27). The area overlaps
portions of the White River study areas where telemetry data on
elk were obtained for habitat-use modeling (Appendix A). The
example is based on discussions and management decisions
made between Forest Service managers and the Muckleshoot
Indian Tribe on ways to improve elk nutrition and habitat use in
the area (USDA Forest Service 2001a, b). These management
options were formally evaluated by Forest Service managers as a
result of these discussions (USDA Forest Service 2001a, b), and
implementation of option 1 began in 2012 (USDA Forest
Service 2012a, b).
Different combinations of forest silvicultural prescriptions and

management of open roads were considered under 3 management
options (Fig. 28). This illustrates the effects of proposed

management within 1 land ownership, and how results for
regional and local landscapes can be used in complementary ways.
We identified 61 forested units encompassing 256 ha (mean

unit size¼ 4.2 ha, range¼ 0.3–12.3 ha) for timber harvest under
option 1, based on clearcutting as the harvest regeneration
method (local landscape 1; Fig. 28). We identified 46 additional
units encompassing 269 ha (mean unit size¼ 5.8 ha, range¼
0.3–23.1 ha) for commercial thinning under this option (local
landscape 2; Fig. 28). Overstory canopy cover would be reduced
from>70% before timber harvest to 0% after clearcutting and to
60% after commercial thinning.
Option 2 included commercial timber harvest on the same units

as option 1, except that all units in local landscape 2 would use
clearcut regeneration harvest (i.e., no commercial thinning).
Option 3 included the same units and silvicultural treatments as
option 2 but differed in road management. Under option 3,
71 km of roads used for log hauling would remain open to public
motorized use after timber harvest but would be closed under
options 1 and 2 (Fig. 29).
For example 1, we selected the boundaries of the regional

landscape to evaluate the 3 management options at a regional
extent encompassing all national forest management activities
and lands that could be managed with active silviculture (non-
wilderness areas of national forest). Boundaries of the regional
landscape thus followed national forest boundaries with private
and state lands to the north, wilderness or roadless areas to the
east and west, and NPS lands to the south (Fig. 27). We included
a 4-km buffer beyond the boundaries to accurately evaluate
distance to open roads and cover-forage edges within the regional
landscape, as described earlier.
We selected the boundaries of the 2 local landscapes to evaluate

smaller areas adjacent to proposed harvest units (Fig. 27). We
established boundaries using a 1.6-km buffer around the harvest
units to evaluate spatial effects on elk use in relation to distance to
cover-forage edges created during timber harvest. This buffering
distance for summarizing habitat use in a local landscape was
supported by results from the distance to cover-forage edge
covariate in the habitat-use model; most elk use occurred within
1.6 km from an edge.
Example 2.—The second example encompasses 94,403 ha in

the White River drainage of western Washington (Fig. 30).
This area includes portions of the White River study areas

Figure 28. Example 1 had 3 management options. Option 1 included 256 ha of
clearcut regeneration harvest in 61 units within local landscape 1 plus 269 ha of
commercial thinning in 46 units within local landscape 2. Option 2 included
commercial timber harvest on the same units as option 1, except that all units will
be clearcut (no commercial thinning). Option 3 was the same as option 2 except
71 km of roads closed as part of timber harvest remained open.

Figure 29. Roads open versus closed to public motorized use under options 1 and 2 (A) versus under option 3 (B) for example 1. Approximately 71 km of roads in the
western part of the regional landscape would remain open after timber harvest under option 3. However, the majority of roads (524 km) remain open to public motorized
use under all 3 options.
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where elk telemetry data were analyzed as part of habitat-use
modeling (Appendix A). It encompasses the entire portion of
national forest included in example 1, as well as private
industrial forest and state lands to the north andMount Rainier
National Park to the south (Fig. 30). The Mt. Baker-
Snoqualmie and Wenatchee National Forests compose 45% of
the area, followed by Mount Rainier National Park (26%) and
private industrial forest (24%). State lands compose the
remaining 5%, which is sparsely distributed among private
industrial forest and thus is combined with surrounding private
industrial forest for our analysis. Estimation of model
covariates in our examples used the same environmental data
that we used to derive covariates for model development in the
White River study areas (Appendices A and B).

RESULTS

Nutrition Predictions, Example 1
Over 85% of the regional and local landscapes under the existing
condition in Example 1 are composed of the 2 lowest nutrition
classes, poor and low-marginal (DDE<2.58 kcal/g; Tables 2 and
13; Fig. 31). These classes represent conditions below basic
requirement of lactating female elk during summer and are

associated with lowest levels of female body fat and pregnancy
rates (Cook et al. 2018).
The 4 highest nutrition classes (classes 3–6) composed 14.2%

of the regional landscape and 12.4% and 13.6% of the 2 local
landscapes under the base (existing) condition (Table 13;
Fig. 31). These classes represent levels of nutrition that meet or
exceed the basic requirement of lactating female elk during
summer (Cook et al. 2018). The 3 highest nutrition classes
(classes 4–6; Table 2) exceed basic requirement and composed
5.9% of the regional landscape and approximately 6% of each of
the 2 local landscapes under the base (existing) condition
(Fig. 31; Table 13).
For the regional landscape, the proposed silvicultural treat-

ments would increase the area of DDE in classes 3–6 from 14.2%
currently to 15.7% and 16.5% under options 1 and 2, respectively
(Table 13). The proposed treatments also would increase the
regional landscape area of DDE in classes 4–6 from 5.9%
currently to 6.9% and 8.3% under options 1 and 2 (Table 13).
Nutrition classes 3–6 (high-marginal to excellent; Table 2)

capture levels of DDE in which pregnancy rates are responsive to
nutritional change (Table 13). Similarly, nutrition classes 4–6
(low-good to excellent; Table 2) capture levels of DDE that affect
percent body fat of lactating female elk (Table 13). For the

Figure 30. Year 2010 land ownership in the 94,403-ha area of example 2, composed of 3 major ownerships: private industrial forest (ownership 1), Mt. Baker-
Snoqualmie and Wenatchee National Forests (ownership 2), and Mount Rainier National Park (ownership 3), Washington, USA. Ownership 1 included a small
percentage of state lands because small tracts of state lands were interspersed among large areas of private industrial forest. Example 1 lies entirely within example 2, as
outlined in dotted lines. Roads open versus closed to public motorized varied widely by land ownership.
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regional landscape, the increased area of nutrition classes 3–6 is
predicted to increase pregnancy rates for lactating female elk from
0.63 currently to 0.68 under option 1 and 0.71 under option 2,
using the equation for percent area in DDE >2.58 kcal/g (Fig.
12C; Table 13). Similarly, the increased area of nutrition classes
4–6 is predicted to increase percent body fat in lactating female
elk on the regional landscape from 9% currently to 10% under
both options, using the equation for percent area in DDE
>2.75 kcal/g (Fig. 13; Table 13). Silvicultural treatments and
nutritional results for option 3 are the same as option 2 for the
regional landscape.

Although the predicted improvements in pregnancy rates and
body fat under options 1 and 2 may appear biologically
insignificant, these improvements are substantial in relation
to the small land area treated: only 1.9% of the regional
landscape is being treated silviculturally under these options to
achieve the improvements. These results suggest that even a
slightly higher percentage of land area treated silviculturally to
improve nutrition (e.g., 3–4% of the regional landscape) for
option 2 would result in a substantial increase in pregnancy rates
and body fat. For example, a 4% increase in area of nutrition
classes 3–6 above that for option 2 in the regional landscape

Figure 31. Six classes of elk nutrition in the White River drainage of western Washington, USA for the base condition (A), option 1 (B), and options 2 and 3 (C) for
example 1. Land ownerships and environmental conditions for 2010 were used as the base condition (Appendix B).

Table 13. Percent area by dietary digestible energy (DDE) class for the regional landscape and 2 local landscapes for the current time period (base) and under 3
management options presented for example 1, and the predicted pregnancy rate and body fat for lactating female elk based on the percent area of DDE in nutrition
classes 3–6a and 4–6b, respectively (Cook et al. 2018). We used year 2010 conditions for base.

DDE classc

1 2 3 4 5 6 Pregnancy rate (%) Body fat (%)

Regional landscape
Base 9.1 76.6 8.3 2.4 1.9 1.6 0.63 9
Option 1 8.6 75.7 8.8 2.4 1.9 2.6 0.68 9
Option 2 and 3 8.6 74.9 8.2 2.4 1.9 4.0 0.71 10

Local landscape 1
Base 15.8 71.9 6.8 2.6 1.5 1.5 0.56 9
Option 1 14.6 69.9 6.7 2.5 1.5 4.8 0.67 10
Option 2 and 3 14.6 69.9 6.7 2.5 1.5 4.8 0.67 10

Local landscape 2
Base 10.2 76.2 7.6 2.8 1.6 1.6 0.60 9
Option 1 9.5 74.6 9.7 2.8 1.6 1.8 0.69 9
Option 2 and 3 9.5 71.4 7.5 2.8 1.6 7.2 0.78 11

a Equation for predicting pregnancy rates of lactating female elk (Y), where x¼% area with DDE >2.58 kcal/g and y¼ e(�1.709 þ 0.157x)/1þ e(�1.709 þ 0.157x).
b Equation for predicting percent body fat of lactating female elk (Y), where x¼% area with DDE>2.75 kcal/g and y¼ 6.1þ 0.43x. For landscapes with 0% area of
DDE>2.75 kcal/g, percent body fat¼ 6.1%, which is the Y intercept of above equation. Predictions of body fat are capped at 15%when using this equation because
of limitations in inference in making body fat predictions at higher levels.

c The DDE values (kcal/g) for classes were 1¼<2.40; 2¼ 2.40–2.58; 3¼>2.58–2.75; 4¼>2.75–2.83; 5¼>2.83–2.90; 6¼>2.90.
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would increase pregnancy rates from the baseline of 0.63
currently to 0.81; this level of increase is biologically significant
(Proffitt et al. 2016).
The shifts to higher nutrition classes are primarily from class 2

to class 3 under option 1, and from class 2 to class 6 under option
2 (Table 13). Thus, the nutritional change under option 2 shifts
more area to the highest nutritional class than option 1. Superior
nutrition under option 2 is due to clearcutting used as the
silvicultural approach for timber harvest, which provides the
lowest canopy cover and highest nutritional response (Table 12;
Cook et al. 2018). Nutritional results for option 3 are the same as
option 2.
Nutritional improvements and effects on pregnancy rates and

body fat within the 2 local landscapes illustrate the additional,
positive effects of silviculture (Table 13). On local landscape 1,
the percent area of DDE in classes 3–6 would increase from
12.4% currently to 15.5% under options 1 and 2 (Table 13); the
percent area of DDE in classes 4–6 would increase from 5.6%
currently to 8.8% under options 1 and 2 (Table 13). The increased
area of better nutrition classes in local landscape 1 is predicted to
increase pregnancy rates for lactating female elk from 0.56
currently to 0.67, and increase percent body fat from 9% to 10%
under both options (Figs. 12 and 13; Table 13). Changes in
pregnancy rates and percent body fat of female elk on local
landscape 2 resulting from option 2 are superior to those of local
landscape 1 (Table 13). The higher pregnancy rates and body fat
predicted on local landscape 2 under option 2 reflect the larger
area of clearcutting resulting in a greater spatial shift to the
highest nutrition class (class 6; Table 13). Nutritional results for
option 3 are the same as option 2.
As with results for the regional landscape, nutritional increases

for local landscape 2 are superior for option 2 versus 1 because

clearcutting was used as the regeneration method compared to
commercial thinning under option 1. Clearcutting produces an
overhead canopy cover of 0%, which yields the highest increase
in DDE (Cook et al. 2018). Clearcutting under option 2 thus
results in substantially higher levels of DDE, with the
most increase in the highest nutrition class (class 6; Fig. 31;
Table 13).
Commercial thinning under option 1 does not reduce overhead

canopy cover sufficiently to detect a measureable increase in
higher nutrition classes and associated animal performance
compared to the base condition (Table 13). Canopy cover levels
of 40% or 60%, often associated with commercial thinning under
the Northwest Forest Plan (USDA Forest Service and USDI
Bureau of Land Management 1994a, b), yield substantially lower
levels of DDE compared to an overhead canopy cover of 0% that
is associated with clearcutting (Table 12).
Interpreting the nutritional improvements and their predicted

benefits to pregnancy rates and body fat of females in local
landscapes 1 and 2 are similar to those for the regional landscape.
Specifically, only small percentages of the landscapes are being
treated silviculturally to improve nutrition. Resulting improve-
ments in pregnancy rates and body fat are apparent, but their
biological significance could be increased substantially with even
a slight increase in areas treated silviculturally beyond the levels
treated in local landscapes 1 and 2.

Habitat-Use Predictions, Example 1
Elk use (relative probability of use) is predicted to increase under
options 1 and 2, with increased use concentrated in the 2 local
landscapes that encompass the proposed silvicultural treatments
(Figs. 32 and 33). For options 1 and 2, the proposed silvicultural
activities requiredmotorized road access, and109 kmof these roads

Figure 32. Areas shown as increasing, decreasing, or remaining the same for predicted elk use in theWhite River drainage of westernWashington, USA under option 1
(A), option 2 (B), and option 3 (C) in example 1.
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would be closed to public motorized use after timber harvest. For
option3, 71 kmof the roads closedunderoptions1and2,providing
access to areas of timber harvest, would remain open to public
motorizeduse after harvest.As a result, thepredicted increase in elk
use is diminished under option 3 compared to options 1 and 2 for

the regional landscape, despite the increased nutrition provided by
timber harvest (Figs. 32 and 33).
Many of the predicted increases in elk use are substantial:>30%

increase in elk use in local landscape 1 under all options, a 28%
and 23% increase in local landscape 2 under options 2 and 3, and a
16% increase in use in the regional landscape under option 2 (Fig.
33). The increase in predicted elk use relative to the existing
condition was higher for option 2 than for 1 for both the regional
landscape and local landscape 2 because clearcutting was the form
of timber harvest under option 2 versus commercial thinning
under option 1 (Fig. 33). Predicted elk use under option 2 also is
higher than option 3 for the regional landscape and local
landscape 2, owing to the road closures implemented under
option 2 compared to 3 (Fig. 33).

Nutrition Predictions, Example 2
The 3major land ownerships in theWhite River under example 2
provide a strong contrast in nutritional conditions (Fig. 34).
Private industrial forest supported highest levels of nutrition,
followed by Mount Rainier National Park. These 2 land
ownerships had 39.4% and 28.4% of their respective areas in
nutrition classes 3–6, which are associated with predicted

Figure 33. Percent change in relative probability of elk use in the White River
drainage of westernWashington, USA under each management option relative to
the base condition under example 1, as summarized for the regional landscape
(region) and local landscapes 1 and 2 (local 1, local 2).

Figure 34. Six elk nutrition classes of dietary digestible energy (DDE) for example 2 mapped by 2010 land ownership, composed of private industrial forest (private,
ownership 1), Mt. Baker-Snoqualmie and Wenatchee National Forests (USFS, ownership 2), and Mount Rainier National Park (NPS, ownership 3), Washington,
USA. A small percentage of state lands was included in the private category because small tracts of state-owned lands were interspersed among large areas of private
industrial forest. Boundaries of the example 1 area lie entirely within the national forest portion of the example 2 area, as outlined in dotted lines. Nutrition classes are
estimated for conditions in 2010. Masked areas represent non-habitat (e.g., rock, water) and are displayed in white.
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pregnancy rates approaching 1.0 (Table 14). National forest
lands, by contrast, had 14.2% of area in nutrition classes 3–6 and a
predicted pregnancy rate of 0.63 (Table 14). Private industrial
forest and Mount Rainier National Park also had large areas in
nutrition classes 4–6; associated predictions of body fat of
lactating females on these ownerships were 15% and 14%,
respectively (Table 14). National forests had 5.8% of area in
classes 4–6 and predicted body fat of 9% for lactating female elk
(Table 14).
Areas of higher nutrition were associated with recent clearcut

harvest on private industrial forest or high-elevation meadows
within Mount Rainier National Park (Fig. 34). By contrast,
national forest lands were dominated by canopy cover levels
>70% and associated low nutrition. This high canopy cover
reflects the lack of active silviculture during the past 25 years on
USFS lands, and lack of wildfire in wilderness and roadless areas
over the same period (USDA Forest Service 2012a, b). However,
if option 2 from example 1 is implemented on the national forest
portion of example 2 (Fig. 30), the percent area in higher
nutrition classes will increase substantially on USFS lands, as
shown earlier (Fig. 31; Table 13). Moreover, a slightly larger
increase in clearcutting area under option 2 would result in
substantially higher elk performance, as discussed earlier.

Habitat-Use Predictions, Example 2
Elk use was predicted to be highest on private industrial forest,
followed by Mount Rainier National Park (Fig. 35), as would be
expected by the higher levels of nutrition on these land
ownerships and limited open roads (Figs. 30 and 34). Only
14% of elk use was predicted to occur on national forest, in
contrast to 49% and 37% of use predicted on private lands and
Mount Rainier National Park (Fig. 35).
Although these patterns of elk use across ownerships were

associated with like patterns in nutrition, the differences in
habitat use across ownerships were magnified and diverged
further by additional differences in road management (Fig. 30).
Mount Rainer National Park had limited open roads. Private
lands included a large network of 1,660 km of roads, but only
254 km of these roads were open to unrestricted motorized use by
the public. By contrast, national forest lands had 843 km of roads
with 666 km of roads open to public motorized use. The
combination of higher nutrition and lack of open roads on private
land, in contrast to the lower nutrition and a large network of
open roads on national forests (Figs. 30 and 34), explains

predicted elk use being 3 times higher on private lands than on
the adjacent national forests (Fig. 35). Similar differences in
nutrition and open roads between Mount Rainier National Park
and national forest lands explain the substantially higher
predicted elk use in the Park.
Implementation of option 2 of example 1 on national forest

lands would reduce differences in elk use across ownerships in
example 2. Elk use increases from 13% beforehand (Fig. 35) to
15% afterward on national forest lands. This increase in elk use
may seem biologically insignificant, but only a small percentage
(1–2%) of the national forest land under example 1 is being
treated to achieve this increase. Although predicted elk use would
remain higher on private industrial forest and NPS lands, the
implementation of option 2 under example 1 illustrates how
changes in elk use, and associated distributions of elk, are possible
to achieve through coordinated management across ownerships.
Obviously, implementing nutritional improvements and road
closures over a substantially larger percentage of the national
forest lands would increase elk use far more than occurred in
example 1, and could be implemented to a degree that shifts in elk
distribution to public lands may start to occur.

DISCUSSION

Modeling Applications
The 2 examples illustrate keymanagement uses and benefits of the
models, which can be applied to regional and local landscapes to
evaluate regional and local conditions. The models also can be
applied within and across land ownerships to evaluate current
conditions and management options that consider the dominant
landuses inWestside landscapes.Results canbeusedas thebasis for
settingelkmanagementobjectives onpublic orprivate lands and for
designing management prescriptions to meet the objectives.
Use of the nutrition model in example 1 demonstrated how

different types and areas of silvicultural treatments can be evaluated
for nutritional improvements, and in turn,howpregnancy rates and
body fat of lactating female elk are affected. Regeneration harvest
such as clearcutting, for example, resulted in a much stronger
nutritional response compared to commercial thinning. That is, a
reduction in canopy cover to 0%, via clearcutting, or to <10% via
shelterwood or seed-tree regeneration harvest, results in a
substantially higher increase in DDE per unit area treated than
does commercial thinning.Regenerationharvest shiftsDDEto the
highest nutrition class (class 6; Table 13), which has the greatest

Table 14. Percent area by dietary digestible energy (DDE) class for the regional landscape for the current time period by the 3 major land ownerships discussed in
example 2, and the predicted pregnancy rates and percent body fat of lactating female elk based on percent area in nutrition classes 3–6a and 4–6b, respectively. A small
percentage of state lands was included in the private category because small tracts of state lands were interspersed among large areas of private industrial forest. We used
year 2010 conditions to estimate DDE.

DDE classc

1 2 3 4 5 6 Pregnancy rate (%) Body fat (%)

Private 6.0 54.7 17.7 5.9 2.9 12.9 0.99 15
National forest 6.6 79.2 8.4 2.4 1.7 1.7 0.63 9
National park 0.9 70.7 10.1 2.5 5.6 10.2 0.94 14

a Equation for predicting pregnancy rates of lactating female elk (Y), where x¼% area with DDE >2.58 kcal/g and y¼ e(�1.709 þ 0.157x)/1þ e(�1.709 þ 0.157x).
b Equation for predicting percent body fat of lactating female elk (Y), where x¼% area with DDE>2.75 kcal/g and y¼ 6.1þ 0.43x. For landscapes with 0% area of
DDE>2.75 kcal/g, percent body fat¼ 6.1%, which is the Y intercept of above equation. Predictions of body fat are capped at 15%when using this equation because
of limitations in inference in making body fat predictions at higher levels.

c The DDE values (kcal/g) for classes were 1¼<2.40; 2¼ 2.40–2.58; 3¼>2.58–2.75; 4¼>2.75–2.83; 5¼>2.83–2.90; 6¼>2.90.
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benefit to pregnancy rates and body fat. Commercial thinning or
other limited-entry silvicultural practices associated with a
moderate reduction in canopy cover (e.g., to 40%) do not shift
DDE to the highest nutrition class, and thus have more limited
benefits to nutrition and animal performance (e.g., Table 12).
However, the nutritional and animal performance benefits of any
silvicultural practices that reduce canopy cover are clear, thus
demonstrating the benefits of limited-entry silviculture such as
commercial or pre-commercial thinning.
Habitat-use modeling in example 1 further demonstrated the

need to consider all covariates that affect elk use. An increase in
open roads under option 3 offset some of the benefits of increased
nutrition, with a reduction in elk use under this option compared
to options 1 and 2, despite a substantial increase in nutrition. The
patch size of forage enhancements was small, which decreased the
distance to cover-forage edges and increased elk use, as reflected
by the distance to cover-forage edge covariate. In addition, forage
enhancements occurred on gentle slopes, further increasing
habitat use based on the slope covariate. Thus, all non-nutrition
covariates in the habitat-use model contributed to increased use
of the areas of improved nutrition. These results demonstrated
how each covariate in the habitat-use model can be managed
strategically, in combination, to achieve objectives for elk
nutrition, habitat use, performance, and distribution. Results

further demonstrate the need to integrate management of all
covariates in the habitat-use model if the benefits of increased
nutrition are to be realized.
Example 2 demonstrated how a range of management options

could be proposed to evaluate the degree to which elk
distributions could be shifted to public lands through improved
management of nutrition, roads, and arrangement of cover and
forage areas, and in context of elk use of slope. If, for example, the
objective was to triple elk use on national forest lands in the
example 2 landscape, different combinations of silvicultural
prescriptions and access management could be identified,
mapped, and the models applied to identify which management
approaches would meet objectives. Patch size of silvicultural
treatments could be designed to further increase use based on
distance to cover-forage edges. Silvicultural treatments placed on
gentle slopes would further increase elk use of the areas of
improved nutrition based on the slope covariate.
Differences in predicted elk use across land ownerships thus

provide a foundation to design management strategies and
activities to achieve objectives for elk nutrition, habitat use,
distribution, and performance. Results can be used for
coordinated landscape planning for elk across ownerships, and
for consideration of conditions in adjacent ownerships as context
for a given land owner’s strategy for elk management.

Figure 35. Relative probability of elk use for example 2 mapped by 2010 land ownership, composed of private industrial forest (ownership 1), Mt. Baker-Snoqualmie
andWenatchee National Forests (ownership 2), andMount Rainier National Park (ownership 3), Washington, USA. A small percentage of state lands was included in
the private category because small tracts of state-owned lands were interspersed among large areas of private industrial forest. Example 1 area lies within the national
forest portion of the example 2 area, as outlined by dotted lines. Masked areas represent non-habitat (e.g., rock, water) and are displayed in gray.
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These results have implications for managing elk distributions
not only within these landscapes, but in relation to adjacent land
ownerships (see Example 2). The substantial increase in habitat
use is likely to maintain distribution of elk in the local landscapes,
and has potential to shift some of the elk distribution to these
areas of national forest from adjacent land ownerships (see
Example 2).
The examples also illustrate how the models might be used to

address the growing problem of elk shifting their summer
distributions from higher-elevation forests to lower-elevation
agricultural and urban areas (Thompson and Henderson 1998,
Starr 2013). These shifts have been associated with elk finding
refuge areas in agricultural and urban areas where they are not
hunted, often resulting in long-term, year-round residence
(Walter et al. 2011, Starr 2013). Simultaneous with these
distributional changes has been the long-term decline in
abundance of early-seral forest habitat on public lands in the
Westside region (see summary by Wisdom et al. 2018a), which
may motivate or accelerate landscape shifts by elk to lower-
elevation agricultural and urban areas (Starr 2013).

Habitat Modeling for Elk
The Westside nutrition and habitat-use models performed well
in predicting elk nutrition, habitat use, distribution, and
performance under current conditions. Future sources of
uncertainty, however, have the potential to reduce accuracy
and utility of the models for management. Rowland et al. (2018)
mention future sources of uncertainty that might affect model
predictions, which include climate change; associated changes in
forest insect dynamics; increased frequency, area, and intensity of
wildfires; and changing density and composition of predators and
their management. Additional sources of uncertainty include the
future role of private forest owners in sustaining areas of high
nutrition; the continued trend to further limit or eliminate
hunting on private lands, leading to more refuge areas; and
increased human activities on public lands, including poaching,
that are facilitated by a large network of roads open to motorized
access. Future research can address these uncertainties as
environmental change continues in the Westside region, and
models are modified and adapted to maintain their utility for
management.
Despite these future sources of uncertainty, use of the models

under current conditions is strongly supported by results from the
modeling analyses. Our approach to modeling nutrition and
habitat use for elk may provide a useful framework for research
and management of wildlife species with coarse-scale habitat
requirements. Voluminous but highly disparate data sets on
animal use at landscape scales are now commonly available with
the advent of GPS and satellite-based telemetry and remotely
sensed vegetation parameters. These data can now be assimilated
and analyzed for habitat modeling across large areas of a species’
range with the use of ubiquitous, coarse-scale GIS data to
estimate covariates, and the use of GPS-based telemetry data to
estimate animal use. Unfortunately, extensive data sets on animal
performance are typically limited for most areas and are more
difficult and expensive to acquire.
Taking advantage of these large and disparate data sources for

habitat modeling demands more investment in the design of

modeling approaches, especially for management uses. New
methods of meta-analysis and meta-replication can now be used
to develop and validate habitat models across a vast inference
space, such as an ecoregion or biome. Our work was based on
integration of a wide range of large and disparate data sets to gain
knowledge of a species’ habitat needs and the evaluation of those
needs, at scales meaningful to the species and to management.
Use of such methods, and their further improvement with future
modeling work, will continue to advance the ecology and
management of wildlife species like elk.

MANAGEMENT IMPLICATIONS

Diverse Land Ownerships and Objectives
Elk are typically not the primary focus of management on public
or private lands in theWestside region. Public forests throughout
the region are under the direction of the Northwest Forest Plan
(USDA Forest Service and USDI Bureau of Land Management
1994a, b), which focuses on sustaining and increasing the
abundance of late-seral forest stages for recovery of late-seral
wildlife species such as the northern spotted owl and marbled
murrelet (Brachyramphus marmoratus). During the past 25 years
since the Northwest Forest Plan was enacted, the abundance of
early-seral vegetation has declined substantially, and now
composes a small and declining percentage of public forests in
the Westside region (Weisburg and Swanson 2003, Cook et al.
2018). This change contrasts with the historical abundance of
early-seral vegetation that occupied up to 35% of forest area in the
region (Weisburg and Swanson 2003). The current paucity of
early-seral vegetation on public forests has prompted litigation by
Native American tribes to prompt restoration of these vegetation
types for hunted species such as elk, which are a key subsistence
food on public lands ceded for tribal harvest in the region (USDA
Forest Service 2001a, b).
Industrial forest owners, by contrast, typically manageWestside

lands for intensive timber harvest, even-aged management, and
short rotation lengths. This combination produces large areas of
early-seral vegetation with high elk nutrition (Cook et al. 2016,
2018; Geary et al. 2017). However, the degree to which intensive
timber management can sustain high elk nutrition also depends
on the reforestation methods used to establish commercial
conifers after timber harvest (Witmer et al. 1985). Efforts to
truncate early-seral forest development and duration to meet
goals for industrial forest production may further diminish future
maintenance of early-seral conditions (Swanson et al. 2011,
2014). Despite this trend, the large amount of area subjected to
clearcutting under short timber harvest rotations (e.g., 30–40
years) on private industrial forest (Geary et al. 2017), and similar
rotations on many tribal lands (Vales et al. 2017), are likely to
continue to produce substantial areas of high nutrition. Elk use of
areas of higher nutrition is further affected by the shape of
openings (distance to cover-forage edge), management of roads
(distance to roads open to public motorized use), and slope
(percent slope), per our habitat-use model.
The challenge of how to address poor and marginal nutritional

conditions that dominate public lands throughout the region
represents a major dilemma for elk management. Public and
private forests occupy an equally large percentage of theWestside
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region (�44% each; Wisdom et al. 2018a); both ownerships thus
have a major effect on elk nutrition and habitat use. Under
current conditions and those likely to be maintained on public
forests under the Northwest Forest Plan, only small areas of
public land will meet the summer nutritional requirements of
lactating female elk (Cook et al. 2018). This habitat void is likely
to result in a population distribution of elk that is largely
concentrated on private forests, agricultural lands, and areas
closed to hunting near or within smaller towns or areas of rural-
urban interface. An elk distribution largely concentrated on
private lands will severely limit opportunities for hunting and
viewing of elk on public lands, as well as eliminate or substantially
curtail traditional tribal hunting on ceded public lands.
To achieve desired objectives for elk nutrition, habitat use,

distribution, and performance, within and across land ownerships,
explicit management prescriptions for elk must be integrated with
other prescriptions for multiple-use management. Research is
needed that evaluates the trade-offs and spatial and temporal
optimization of different landscape management objectives for
different sets of species and habitats, including elk and other early-
seral versus late-seral species. The Northwest Forest Plan is
currently under review for renewal, following the time require-
ments for revision established when it was implemented (USDA
Forest Service and USDI Bureau of LandManagement 1994a, b).
The historically low abundance of early-seral vegetation on public
forests in the Westside region will likely be part of the public’s
discussion of possible refinements to the Northwest Forest Plan;
this discussion is further justified by the large number of early-seral
wildlife species in the Westside region (Hagar 2007) and strong
tribal interest in the topic (USDA Forest Service 2001a, b).
Poor nutrition and extensive areas of open roads are obviously 2

key factors that pose challenges to achieving desired elk habitat
use, population distributions, and associated animal performance
across ownerships at landscape scales in the Westside region
(Cook et al. 2018, Rowland et al. 2018). These challenges often
warrant evaluation and management of elk conditions across
multiple land ownerships to identify and maximize opportunities
for maintaining elk distributions in desired areas for recreation
objectives. New agreements between public and private forest
managers could be considered to more fully coordinate the
management of nutrition and roads in a manner that provides
support for increased elk distribution within and near public
lands; or to provide additional public recreational opportunities
for elk viewing and hunting on private lands as a mitigation for
lack of early-seral vegetation being sustained on public lands.
Such coordination is now possible in using the spatially explicit
nutrition and habitat-use models. Roads open to public
motorized use are common on public lands and have the
potential to substantially reduce elk use of areas of higher
nutrition and shift or maintain distributions away from public
lands (per example 2).

Stakeholder Engagement in the Modeling Process and
Applications
Effective development and management applications of the
nutrition and habitat-use models were facilitated by long-term
engagement of key stakeholders in theWestside region. Ideas for
the modeling came from hunting conservation organizations,

who organized meetings with public land managers and scientists
in the region to discuss elk management issues and associated
modeling needs. These discussions led to a federal advisory
group’s formal recommendations to the Secretaries of Interior
and Agriculture to begin a new round of elk habitat modeling in
the Westside region (Wisdom et al. 2018a). These recommen-
dations prompted federal agency leaders to recruit scientists to
lead the modeling process.
Stakeholder engagement continued and grew as part of the

formal modeling process. The group of scientists recruited to
conduct the modeling was affiliated with a diverse set of tribal,
state, federal, university, and private partners who had a direct
stake in elk research and management. No interested partners
were excluded. Data used for modeling were provided by 5 Native
American tribes, a state wildlife agency (Washington Depart-
ment of Fish and Wildlife), the timber industry (National
Council for Air and Stream Improvement and associated timber
companies), and a university (Oregon State University; Table 7).
Funding and staffing support for the work also was diverse and
substantial, including over 20 different tribal, state, federal,
private, and university sources.
The diversity of science and management engagement in the

modeling process was further enhanced by a series of meetings
and 2 formal workshops conducted by the scientists during model
development (https://www.fs.fed.us/pnw/research/elk/westside/
index.shtml). Meetings and workshops were used to share
modeling ideas and preliminary results, and obtain feedback from
stakeholders about how the models could be improved for
management applications. The process was transparent and
continuous throughout, allowing the models to be improved
iteratively through stakeholder input. In addition, the draft
models were beta-tested by a large group of tribal, state, and
federal biologists to further evaluate and improve management
utility. Results from these tests helped refine and finalize the
models for application in practical ways at spatial and temporal
scales of interest to managers. Finally, the draft models
underwent early and rigorous peer review before manuscript
submission for publication to address the scientific merits and
rigor of the work and facilitate timely management uses before
formal publication.
In response to these activities, the USFS and USDI Bureau of

Land Management formally endorsed the models as official
corporate tools to evaluate and manage elk nutrition and habitat
use on federal lands in the Westside region. The endorsement
was outlined in a joint letter from both agencies dated 21
February 2013 directed to their land managers and biologists.
This process and support led to early adoption and effective use of
the models on federal (e.g., Doerr 2016) and tribal lands (Vales
et al. 2017). The effectiveness of continuous and transparent
stakeholder engagement in elk modeling illustrates the benefits
of such a process in facilitating management uses of wildlife
habitat models as a partnership between scientists and stake-
holders.

Adaptive Management Partnerships
Given the significant ecological and economic benefits of elk,
their cultural connection with Native American Tribes, and the
socio-political status of the species, we anticipate increased focus
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on restoration of early-seral vegetation to benefit elk and other
early-seral species in the Westside region (Swanson et al. 2014).
Adaptive management, as originally defined byWalters (1986), is
a key part of the Northwest Forest Plan (USDA Forest Service
and USDI Bureau of Land Management 1994a, b); its renewal
may provide additional opportunities to design, implement, and
test concepts of early-seral management for associated wildlife
(Hagar 2007).
Use of adaptive management to enhance elk habitat would be

particularly effective if integrated with state wildlife agency goals
for elk within and across state wildlife management units. The
Washington Department of Fish and Wildlife and the Oregon
Department of Fish and Wildlife have established elk population
goals for their wildlife management units (Washington Depart-
ment of Fish and Wildlife 2002a, b, c, 2004, 2008, 2013; Oregon
Department of Fish and Wildlife 2003, 2005), but detailed
objectives have not been established formanaging elk distributions
and performance within and across land ownerships within the
units. These additional objectives would provide essential context
for effective management of nutrition and habitat use with model
applications. Adaptive management approaches for elk are further
complicatedbymanagementof roadsopen topublicmotorizeduse,
which often is a polarizing issue amongmany public groups (Stern
et al. 2009). Resolving the road management issue to meet elk
objectiveswill require close coordination and planning between elk
managers and diverse public interests.
Despite these challenges, our validated models provide a strong

scientific basis for management of elk habitats and populations.
All landowners now have opportunities to use the models to
coordinate management within and across ownerships to achieve
goals for elk distribution and performance. Development and use
of habitat models like those described here could provide similar
opportunities for management in other areas of elk range in
North America, where elk constitute a major economic and social
resource, and where debate and conflict regarding management
of population distributions and performance are currently
unresolved (Wisdom and Cook 2000).

SUMMARY

Distributions of elk in western North America are shifting from
public to private lands, leading to foregone recreational
opportunities for the public and conflicts with private land-
owners. Tools that predict nutritional resources and distributions
of elk across large landscapes can benefit management of elk
across land ownerships. We developed and validated regional
models of elk nutrition and habitat use for application in western
Oregon and Washington, USA (Westside).
We used data collected during foraging experiments with

captive female elk and field measurements of site characteristics
from 349 macroplots in 3 Westside study areas to develop the
nutrition model. The habitat-use model incorporated 13 unique
telemetry data sets of female elk from multiple sources and 7
study areas.

� Predictions of dietary digestible energy (DDE) varied widely
among predominant potential natural vegetation (PNV) zones,
with the preponderance of Westside landscapes failing to meet
basic requirements of DDE for lactating female elk. Generally,

highest DDE levels occurred in zones occupying higher
elevations and in early-seral communities. Lowest DDE levels
occurred at lower elevations and in closed-canopy forests.

� We found strong regional gradients in DDE north to south
(higher to lower) in the Cascades and east to west from the
Cascades to the Coast Range. Autumn body fat and pregnancy
rates of wild lactating elk varied similarly across the region.

� We evaluated the nutrition model by comparing predicted
DDE levels to higher order responses of elk, including resource
selection, autumn body fat, and pregnancy rates. Elk strongly
selected for areas providing relatively high DDE. Mean
autumn body fat and pregnancy rates of lactating elk in 9
Westside elk populations were positively correlated to percent
area providing DDE levels that met or exceeded basic
requirement (>2.58 kcal/g DDE).

� Disturbance regime and forest succession alsowere closely linked
toDDE, suggesting that habitatmanagement, such as thinning,
on Westside summer ranges can significantly influence elk
distributions and productivity (e.g., pregnancy rates).

� The nutrition model demonstrated that data on foraging
dynamics and ungulate nutrition collected at fine scales can
reliably index performance of elk populations at broad scales in
the Westside region.

� We used a hierarchical approach to develop the habitat-use
model by considering individual study areas as replicates to
predict relative probability of use by elk across the Westside.

� The regional habitat-use model best supported by the empirical
data had 4 covariates: DDE, distance to nearest road open to
motorized use by the public, distance to cover-forage edge, and
slope. Predicted elk use was greater in areas with higher DDE,
farther from open roads, closer to cover-forage edges, and
gentler slopes.

� Our regional habitat-use model performed well using
independent telemetry data, with high correlation between
predicted and observed use by elk in most validation sites.

� We demonstrated the management utility of the nutrition and
habitat-usemodels through 2 examples in westernWashington,
comparing nutritional conditions and predicted use by elk across
land ownerships and scales in response to several management
scenarios. Results indicated that relatively small-scale improve-
ments in habitat (e.g., road closures, clearcuts, or thinning) can
lead to biologically meaningful increases in animal performance
and greater relative probability of use by elk.

� We conducted a meta-analysis of disparate data sets on elk
habitat use synthesized frommultiple areas and years for model
selection and validation. We found consistent patterns of
habitat use across the populations sampled. This replicable
approach can be used for other wildlife species to better
understand regional patterns of use and thus improve
management efficiency and consistency. We further demon-
strated that mechanistic processes of nutrition and human
disturbance in our study areas can be successfully modeled with
coarse spatial data to accurately estimate elk use at regional
scales.

� Our models and approaches can inform management (e.g.,
manipulating landscapes through actions such as silviculture
and road management) to improve elk nutrition, habitat use,
distributions, and performance.
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APPENDIX A. DESCRIPTION OF HABITAT-USE MODELING AREAS FOR 
WESTSIDE ELK HABITAT-USE MODELS 
 
To develop and validate habitat-use models for elk, we analyzed environmental variables and elk 
telemetry data from female elk for 13 modeling areas and associated data sets, nested within 7 
Westside study areas (Table 1). These sites ranged from Nooksack in northern Washington to 
Coquille in southwestern Oregon (Fig. 17; Tables 1, A1). We defined a study area as a distinct 
geographic area within which ≥1 data sets were collected, and a data set as a specific type of 
empirical data (e.g., nutrition, habitat use) collected within a given study area and time period 
used as a unit of replication to develop or validate nutrition or habitat-use models (Table 1). We 
analyzed telemetry data from 5 data sets for model development: 1) Green-Cedar 2008; 2) Pysht 
2009; 3) White River 2004; 4) White River 2005; and 5) White River 2007. We acquired 
telemetry data from 8 additional areas for use in model validation: 6) Coquille North 1991–1992; 
7) Coquille North 1993–1994; 8) Coquille South 1991–1992; 9) Coquille South 1993–1994; 10) 
Green-Cedar 2006–2007, 2009; 11) Makah 2000–2003; 12) Nooksack 2008–2009; and 13) 
Quileute 2006–2008. Cook et al. (2016) describe study areas used in grazing trials for captive elk 
that provided data for developing the Westside nutrition model. 

Habitat-use modeling areas were characterized by temperate, coniferous rainforests that 
received high levels of precipitation fall-spring but experienced predictable drought during 
summer (Franklin and Dyrness 1988). Dominant (>50% of existing vegetation in ≥1 modeling 
area) forest types included Pacific silver fir, red alder, Port Orford cedar (Chamaecyparis 
lawsoniana), Douglas-fir, western hemlock, western red cedar, and mountain hemlock. Douglas-
fir-western hemlock was the most abundant existing vegetation type in most modeling areas and 
the Westside region overall (Franklin and Dyrness 1988). 

 
Habitat-Use Model Development Areas and Data Sets 
 

Green-Cedar 2008.—The Green-Cedar 2008 data set was associated with the Green 
River study area in the Cascade Range of western Washington, south of North Bend and east of 
Lake Washington. The area was drained by both the Green and Cedar Rivers, with the larger 
Green River watershed located south of the Cedar River watershed. Topography was gentle to 
moderately steep, and elevations moderate to high compared to other modeling areas (Table A1). 
Forest composition was dominated by western hemlock-western red cedar. Tree canopy cover 
was the greatest among all modeling areas (𝑥̅𝑥 = 79%), and density of roads open to public 
motorized access (0.20 km/km2) was the second-lowest of any modeling area (Table A1). The 
Cedar River portion of the modeling area was largely owned by the City of Seattle and managed 
to supply water for the city. The Green River portion was owned by several landowners, but 
access was controlled and managed by Tacoma Water to supply water to the City of Tacoma. To 
protect drinking water, both watersheds were closed to public entry. To maintain water quality in 
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the Cedar River drainage, timber harvest has been minimal compared to other modeling areas, 
resulting in the relatively high canopy cover. By contrast, timber harvest in the Green River 
watershed has created a stand age-canopy cover mosaic more diverse than that in Cedar River. 

This modeling area fell within 2 Washington Department of Fish and Wildlife Game 
Management Units (GMUs): Green River and Cedar River. Green River elk numbers declined 
during the 1990s and early 2000s, but that trend reversed and numbers grew rapidly during the 
study period (Washington Department of Fish and Wildlife 2013). Elk herds had recovered to 
about 60% of their historical highs (D. Vales, Muckleshoot Indian Tribe, personal 
communication). Introductions of Rocky Mountain elk led to colonization in the Cedar River 
drainage, and the herd grew rapidly (growth rate = 0.13) from 1970 to 1980, stabilizing later in 
the 1980s (Paige 1988). However, elk numbers in this unit have declined dramatically, even in 
the absence of hunting, and were estimated at 25% of their 1989 levels (Spencer 2002). Paige 
(1988) provided additional description of the Green and Cedar River areas. 

Pysht 2009.—The Pysht study area was in the Olympic Mountains of northwest 
Washington, immediately south of the Strait of Juan de Fuca near Clallam Bay. Elevation was 
lowest among all modeling areas, ranging from sea level to 358 m. Topography was undulating, 
and slope was gentle to moderate (𝑥̅𝑥 = 16%). The dominant vegetation type was western 
hemlock-red alder. Density of roads open to public access (0.23 km/km2) was the third-lowest 
among modeling areas; only the 2 Green-Cedar data sets had lower values (Table A1). Over 90% 
of lands were privately owned and were managed for intensive timber production. Overstory 
canopy cover was low (𝑥̅𝑥 = 58%; Table A1), likely reflecting the dominant land use. The Pysht 
study area was within the Pysht GMU, where population size and productivity of Roosevelt elk 
have remained stationary over the past decade (K. Sager-Fradkin, Lower Elwha Klallam Tribe, 
personal communication). An estimated 100 elk were in this GMU in 2000, but the population 
objective was 300 during the study years (Washington Department of Fish and Wildlife 2004). 
Female-calf and male-female ratios have been higher on the privately owned Pysht Tree Farm 
than those on surrounding areas. The landowners maintained tight control over elk harvest, with 
only a few males removed annually from the tree farm (K. Sager-Fradkin, Lower Elwha Klallam 
Tribe, personal communication). 

White River.—Three habitat-use modeling areas (White River 2004, 2005, and 2007) 
were near Enumclaw in the Central Cascades of Washington, equidistant between the Canada-
United States border to the north and the Oregon-Washington border to the south. The areas were 
drained by the White River, West Fork White River, and Greenwater River. Elevations were the 
highest among all habitat-use modeling areas (Table A1), and the White River 2005 and 2007 
areas included a portion of Mount Rainer at the highest elevations. Topography was mostly 
moderate to steep, and the White River 2004 area had one of the highest mean slope values 
among modeling areas (41%). Vegetation was dominated by Douglas-fir and western hemlock. 
Highest elevations supported large areas of alpine meadows in Mount Rainer National Park. 
Overstory canopy cover was intermediate among modeling areas (𝑥̅𝑥 = 69% to 73%). Ownership 
was 70% federal (primarily Forest Service) and 30% private timberlands in White River 2004, 
but 41% federal, 57% private, and 2% state lands in White River 2005 and 2007. 

The 3 modeling areas were within Mount Rainier National Park and the White River 
GMU; the northernmost portion of White River 2007 also intersected the Green River GMU, 
described above. Most elk in the White River unit summered in the mountain hemlock zone 
within Mount Rainier National Park (Spencer 2002). Elk numbers here reached their peak in the 
early 1990s but declined sharply until early 2001 when they reached a low of about 30% of the 
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historical high (Spencer 2002). Numbers then rapidly rebounded and were at about 75% of the 
historical high during the study (D. Vales, Muckleshoot Indian Tribe, personal communication). 

 
Habitat-use Model Validation Areas and Data Sets 
 

Coquille.—Four validation data sets were from the Coquille study area: Coquille South 
1991–1992, Coquille South 1993–1994, Coquille North 1991–1992, and Coquille North 1993–
1994. All but 1 radio-collared elk used in our analyses remained on the same side of the East 
Fork of the Coquille River on which it was collared. Thus, we considered elk collared north of 
the river independent of those to the south. Moreover, the BLM implemented road closures in 
late 1992 to evaluate effects of vehicle access on elk movements, habitat use, and survival (Cole 
et al. 1997, 2004). Therefore we created separate data sets and associated modeling areas for elk 
in 1993–1994 because of their exposure to different levels of human disturbance than the 2 years 
prior.  

The Coquille model validation areas were in the Coos Bay District of the BLM in the 
Southern Oregon Coast Range, about 30 km southeast of Coos Bay. This area was drained by the 
East and Middle Forks of the Coquille River. Elevations were low, ranging from 74 m along 
streams to 918 m, and terrain was the steepest among all modeling areas (Table A1). Until the 
late 1970s vegetation was primarily late-successional Douglas-fir and western hemlock. 
Intensive forest management resulted in a mosaic of clearcuts, Douglas-fir plantations and some 
old-growth stands during the years in which telemetry data were collected. Understory 
vegetation was sparse in plantations but denser in naturally regenerated stands and older forests 
(Cole et al. 1997). Open road density exceeded that of all other modeling areas, and was 
especially high in Coquille South 1991–1992 (𝑥̅𝑥 = 2.28 km/km2) prior to road closures (Table 
A1). Total road density was also exceptionally high during the study years (6.04 km/km2; Cole et 
al. 2004). Ownership was predominately federal, ranging from 43% in Coquille South 1993–
1994 to 75% in Coquille North 1993–1994. Here, BLM lands created a checkerboard pattern 
intermixed with private lands, which ranged from 25% in Coquille North 1993–1994 to 53% in 
Coquille South 1993–1994. Private lands were managed primarily for commercial timber 
production (Cole et al. 1997). Canopy cover ranged from 61% to 70% and was lower on the 
south side of the river, where timber harvest was more common. 

All 4 Coquille modeling areas were within Oregon Department of Fish and Wildlife 
Tioga Wildlife Management Unit. Elk numbers in this unit in 2004, the latest year for which 
estimates were available, were above management objective (9,050, with an objective of 8,000; 
Oregon Department of Fish and Wildlife 2005). Productivity, measured by calves per 100 cows, 
was typical for Roosevelt elk in western Oregon (3-yr average = 32 in 2004; Oregon Department 
of Fish and Wildlife 2005). Cole et al. (1997, 2004) provided additional details about the 
Coquille area.  

Green-Cedar 2006, 2007, 2009.—Environmental conditions and elk populations in this 
validation modeling area, located in the Cascades of western Washington, closely resembled 
those for Green-Cedar 2008 described previously (Table A1). This validation modeling area was 
also located in the Green River and Cedar River GMUs, and was the largest modeling area used 
in our analyses (53,630 ha; Table A1). 

Makah 2000–2003.—The Makah study area was located in the Olympic Mountains of 
northwest Washington, adjacent to both the Pacific Ocean and the Strait of Juan de Fuca. It 
spanned the southeast corner of the Makah Indian Reservation and areas immediately south and 
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east of the Reservation. A small portion of Olympic National Park intersected the southwestern 
portion of the study area. The area was drained by the Hoko, Sekiu, Sooes, and Big Rivers, and 
topography was gentle to moderate (Table A1). Elevation was low, ranging from sea level to 650 
m, and mean canopy cover was 75% (Table A1). Dominant overstory vegetation was western 
hemlock-Sitka spruce (Picea sitchensis); understory vegetation was dominated by salal 
(Gaultheria shallon), huckleberry (Vaccinium spp.), blackberry (Rubus spp.), and red elderberry 
(Sambucus racemosa; Hutchins 2006). Road density was low (Table A1), and most (82%) of the 
area was in private lands managed for intensive timber production (Hutchins 2006), along with 
smaller areas of tribal and state lands. The Makah site encompassed nearly all of the Hoko GMU 
and the western portion of the Dickey GMU, units that are managed as part of the larger Olympic 
Elk Herd (Washington Department of Fish and Wildlife 2004). In the early to mid-1990s the elk 
population was in decline because of excessive hunting of cow elk; however, populations have 
increased significantly over the past 15 years with changes in hunting regulations and appeared 
to have stabilized (R. McCoy, Makah Forestry, personal communication). Hutchins (2006), 
Storlie (2006), and Boyd (2009) provided additional details about the study area and elk 
populations. 

Nooksack 2008–2009.—The Nooksack validation modeling area was within the western 
foothills of the North Cascades in Washington, immediately south of the United States-Canada 
border and east of Sedro-Woolley. The core area was drained by the South Fork Nooksack River. 
Elevations spanned the widest altitudinal range of any data set, from 30 m to 1,952 m, and slopes 
were moderate to steep (Table A1). Forest vegetation was dominated by Douglas-fir-western 
hemlock; western hemlock was the primary timber production type in this area (Bender et al. 
2006). Density of roads open to public motorized access was relatively low (𝑥̅𝑥 = 0.49 km/km2). 
The modeling area was comprised of primarily private (60%) and state (32%) lands managed for 
intensive timber production. 

Nearly all of the area was within the Nooksack GMU, although the southern boundary 
intersected the Sauk GMU; these units were managed as part of the larger North Cascade 
(Nooksack) Elk Herd, the smallest of the 10 elk herds managed by Washington Department of 
Fish and Wildlife (Davison 2002). Elk damage to agricultural lands along the Skagit River 
Valley was a contentious issue in this area (Davison 2002). Elk numbers declined substantially 
from about 1,700 elk in the early 1980s to 425 by the early 2000s (Davison 2002). Despite 
habitat improvements and cessation of all non-Tribal hunting, populations did not rebound 
(Bender et al. 2006). These conditions precipitated a translocation of 98 elk from Mount St. 
Helens (2003–2005; McCorquodale et al. 2013). Subsequently total population size of elk has 
increased substantially, and distribution has expanded (McCorquodale et al. 2013). See Bender et 
al. (2006) and McCorquodale et al. (2013) for additional details about the modeling area and elk 
populations. 

Quileute 2006–2008.—Quileute, located in the Dickey River watershed on the Olympic 
Peninsula near La Push, Washington, was in the Forks study area and was the smallest of our 13 
modeling areas (2,701 ha; Table A1). Elevation was low, ranging from sea level to 138 m, and 
topography mostly flat (Table A1). Dominant vegetation was western hemlock-red alder. Private 
lands were most common (66%) in this area, followed by state-managed holdings (22%); the 
remaining land was federal and fell within Olympic National Park. The modeling area was 
within the Dickey GMU, where body fat and condition scores indicated nutritional limitations to 
nutritional condition in the early 2000s (Washington Department of Fish and Wildlife 2004, 
Cook et al. 2013). The elk population in this GMU was at 80% of Washington Department of 
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Fish and Wildlife management objectives in 2000 (Washington Department of Fish and Wildlife 
2004). In the early to mid-1990s elk numbers in this area declined significantly, primarily 
because of excessive hunting, but have since recovered and remained relatively stable (F. Geyer, 
Quileute Tribe, personal communication). 
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Table A1. Characteristics of data sets used to model elk habitat use in western Oregon and Washington, USA, organized by study area 
and model use: model development and model validation.  
 

Study area Data seta Latitude/ 
longitude 

Area (ha) Potential 
natural 

vegetationb 

Slope 
(%; 

mean) 

Elevation 
(m) 

Canopy 
cover (%; 

mean)c 

Open road 
density 

(km/km2)d 
Model 
development 

        

  Green River GC08 47.368070/ 
−121.777152 

30,671 TSHE 28.92 132–1,446 75.9 0.20 (0–7.53) 

  Pysht PY09 48.193715/ 
−124.180459 

7,135 TSHE 15.99 0–358 57.9 0.23 (0–3.11) 

  White River WR04 47.021605/ 
−121.670021 

32,601 PSME 41.39 393–2,226 72.7 0.57 (0–7.90) 

 WR05 47.064265/ 
−121.680993 

15,431 PSME 34.73 478–2,185 69.3 0.31 (0–5.99) 

 WR07 47.080591/ 
−121.669365 

35,019 PSME 39.40 358–2,258 68.8 0.39 (0–7.91) 

Model validation 
   

     
  Coquille CN9192 43.198896/ 

−123.828783 
13,478 TSHE 47.15 130–841 69.6 1.89 (0–7.43) 

 CN9394 43.207840/ 
−123.871210 

11,695 TSHE 47.40 74–828 69.7 1.39 (0–7.43) 

 CS9192 43.063013/ 
−123.863063 

9,334 TSHE 35.74 198–918 62.5 2.28 (0–7.79) 

 CS9394 43.065696/ 
−123.872537 

9,148 TSHE 35.23 84–906 61.4 1.44 (0–8.55) 

  Green River GC0609 47.338351/ 
−121.738389 

53,630 TSHE 31.35 183–1,553 75.6 0.13 (0–7.53) 

  Makah MK0003 48.221235/ 
−124.518507 

47,196 PSME 24.11 0–650 75.0 0.33 (0–7.93) 
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  Nooksack NK0809 48.621289/ 
−121.994890 

38,625 PSME 30.83 30–1,952 72.9 0.49 (0–9.34) 

Forks QU0608 47.937124/ 
−124.583950 

2,701 TSME 8.16 1–138 73.6 1.23 (0–7.61) 

 

a Codes indicate study area and year: GC08 = Green-Cedar 2008; PY09 = Pysht 2009; WR04 = White River 2004; WR05 = 
White River 2005; WR07 = White River 2007; CN9192 = Coquille North 1991–1992; CN9394 = Coquille North 1993–1994; CS9192 
= Coquille South 1991–1992; CS9394 = Coquille South 1993–1994; GC0609 = Green-Cedar 2006, 2007, 2009; MK0003 = Makah 
2000–2003; NK0809 = Nooksack 2008–2009; QU0608 = Quileute 2006–2008. 

b Dominant potential natural vegetation within modeling area, where TSHE = western hemlock (Tsuga heterophylla) zone, 
PSME = Douglas-fir (Pseudotsuga menziesii) zone, and TSME = mountain hemlock (Tsuga mertensiana) zone. 

c Calculated as mean canopy cover for all 30-m × 30-m pixels within a 350-m radius sampling circle. 
d Calculated as mean density of roads open to motorized use by the public within a 350-m radius sampling circle. Numbers in 

parentheses represent the range of values for all 30-m × 30-m pixels in the modeling area. 



S8 Wildlife Monographs 199 

APPENDIX B. DESCRIPTION AND DERIVATION OF COVARIATES FOR 
MODELING ELK NUTRITION AND HABITAT USE 
 
We acquired data from diverse sources to develop a comprehensive suite of covariates to model 
elk nutritional conditions and habitat use across the Westside region (Tables B1, B2). Given the 
large area evaluated, we sought data sources that 1) were easily manipulated to derive covariates 
suitable for model development, 2) were readily available at no cost, 3) provided continuous 
(wall-to-wall) coverage across either the entire Westside region (nutrition model) or the 5 model 
development and 8 validation sites (habitat-use model), and 4) were credible based on literature 
review and consultation with species experts. Here we describe key data sources, temporal 
matching of data with modeling years, and derivation of some of the more complex covariates 
(other covariates are described in Table B2). Although we initially explored the full suite of 
covariates (Table B1), we did not fully derive all of them throughout each modeling area (e.g., if 
data were not widely available, such as traffic rates). 

Data sources described here also provided the foundation for modeling applications and 
programs used to apply the models. The Westside nutrition and habit use models are available 
for download as an ArcGIS toolbox, along with a user’s guide describing the preparation of input 
layers and methods for summarizing model outputs (Rowland et al. 2013; 
http://www.fs.fed.us/pnw/research/elk/toolbox/index.shtml). 

 
Primary Data Sources 
 
Key spatial data sources for developing modeling covariates were 1) USFS, modeled PNV zones 
(http://ecoshare.info/products/gis-data/, accessed 20 Feb 2014); 2) Landscape Ecology, 
Modeling, Mapping, and Analysis (LEMMA) project, existing vegetation characteristics and 
landcover types http://www.fsl.orst.edu/lemma/main.php?project=nwfp&id=studyAreas , 
accessed 20 Feb 2014); 3) Bureau of Land Management Ground Transportation (GTRN) project, 
existing roads (http://www.blm.gov/or/gis/data.php, accessed 20 Feb 2014); and 4) United States 
Geological Survey, elevation (http://ned.usgs.gov, accessed 20 Feb 2014). 

PNV zones.—Cook et al. (2018) developed nutrition equations for the 3 dominant PNV 
zones in the Westside region and subsequently combined these into 2 zones (western hemlock 
and Pacific silver fir-mountain hemlock) to model elk nutrition. For the remaining 12 PNV zones 
that occurred in the Westside, we either crosswalked them to 1 of these 2 zones or excluded them 
(i.e., masked them from further analysis). Excluded areas constituted a very minor portion of the 
modeling area (Table 5). The concept of potential natural vegetation has been used by ecologists 
since the 1950s, and the natural vegetation zones of Washington and Oregon described by 
Franklin and Dyrness (1988) are commonly used for research and management applications in 
the Westside region. The mapped PNV zones we used in our project were based on a suite of 
environmental predictors such as elevation, slope, aspect, precipitation, topography, and solar 
radiation. 

Existing vegetation.—We derived several key vegetation-based covariates from LEMMA 
data (Table B2), commonly referred to as GNN (gradient nearest neighbor) because of the 
imputation method used to populate grid cells with data for much of the Pacific Northwest region 
(Ohmann and Gregory 2002, Pierce et al. 2009). All covariates used in mapping elk nutrition 
relied on this data source. The distance to edge covariate in the habitat-use model also used 
GNN, as did many vegetation covariates considered during model selection (Table B1).  

http://www.fs.fed.us/pnw/research/elk/toolbox/index.shtml
http://ecoshare.info/products/gis-data/
http://www.fsl.orst.edu/lemma/main.php?project=nwfp&id=studyAreas
http://ned.usgs.gov/
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We used the GNN species-size map to develop vegetation covariates for model 
development (November 2009 release) and model validation (March 2010 release). Both releases 
reflect conditions as of 2006. For modeling the Coquille validation areas (Appendix A), we used 
the 1996 GNN data product. We used the existing vegetation field (ecological system, 
ESLF_NAME; Comer et al. 2003) from GNN to identify areas of non-habitat (e.g., cliff and 
talus, open water; Table B3) and masked these pixels from analysis. Non-habitat totaled about 
8% of the Westside region. Additional vegetation data obtained from GNN were canopy cover of 
live trees, stand height, number of vegetation layers, quadratic mean diameter, and tree density 
(all trees and hardwoods only; Table B2). 

Accuracy of vegetation types and structural features estimated by GNN was typical of 
contemporary vegetation mapping efforts, especially at regional scales, and varied by vegetation 
attribute (Ohmann and Gregory 2002, Pierce et al. 2009). We relied extensively on 1 key GNN 
attribute, live tree overstory canopy cover (CANCOV), for nutrition modeling and to calculate 
distance to edge for the habitat-use model (Table B2). Estimates of live tree canopy cover from 
GNN had an average root mean square error of 0.98 and an average correlation coefficient of 
0.72 (n = 1998) in relation to empirical field estimates used for validation. 

Roads.—We explored several sources of digitized roads layers for creating human 
disturbance covariates. We found that the continuous coverage transportation vector layer 
(GTRN) provided by the BLM (USDI Bureau of Land Management 2015) had the greatest 
spatial accuracy and coverage in our modeling region. This dataset spanned ownerships and 
included nearly every road in our modeling area. Visual examination of GTRN roads overlaid 
with digital aerial photos showed a high level of agreement (>90%) with road locations. Where 
omission errors were observed, we digitized missing roads. We identified roads absent from the 
GTRN data using imagery from the appropriate year of elk data locations, from maps provided 
by local field offices, and with assistance from local resource experts who had knowledge of 
local road systems. We also corrected placement of road segments that were >50 m from actual 
locations based on imagery. 

We created an open-closed attribute for roads to reflect whether they were open to the 
public for motorized use during modeling periods (i.e., Jun–Aug, and by appropriate modeling 
year). Sources of information for open-closed status were USFS, private timber companies, and 
county governments. We relied on personnel familiar with each our study areas to verify whether 
a road was accessible (e.g., designated open but access blocked because of overgrown 
vegetation, landslides, etc.). If roads were officially designated as closed, but known to be 
occasionally used by the public, we classified them as closed. We did not formally evaluate 
accuracy of the classification of road types (open or closed to motorized access). Instead, these 
classifications were carefully reviewed and refined by resource professionals with expert field 
knowledge of local road status and use. 

U.S. Geological Survey elevation data. —Physical model covariates were based on 
elevation estimates from the National Elevation Dataset (1/3 arc-second resolution), with 
mapping errors of <1 m at 10-m vector resolution (Gesch et al. 2014). Elevation data were the 
most accurate of any in our modeling, and a wide variety of physical covariates in both nutrition 
and habitat-use modeling were derived from elevation (Tables B1, B2).  
 
Temporal Matching of Data Layers 
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Because some data layers we acquired did not match the vintage of elk telemetry data, we 
modified the layers to match the timeframe of our modeling period when possible. When 
telemetry data spanned multiple years for a single data set, we selected imagery from the year in 
which most locations were obtained for adjustments of vegetation inputs. For data sets in which 
the tree canopy cover input layer (CANCOV from GNN) was generated before the modeling 
year, we either obtained timber harvest boundaries from local land managers or hand-digitized 
harvest boundaries by viewing 1- to 3-m true color aerial photography from the National 
Agriculture Imagery Program 
(https://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf, accessed 20 Feb 2014) 
from the modeling year. We assigned all cells within harvested units the canopy cover value 
associated with the acquired boundaries or estimated through photointerpretation. For data sets 
where the existing canopy cover layer was generated after the year modeled, such as Coquille, 
we identified and digitized polygons that had been harvested between the modeling year and the 
year of the canopy layer by comparing the 2 sources of information. We created a 100-m buffer 
around each harvest boundary, excluding areas in the buffer that were obviously harvested in 
prior years. We then calculated mean canopy cover within each buffered area and applied that 
value to all cells within the associated harvest unit to reflect canopy cover values that likely 
existed during the year modeled. We also adjusted stand height and hardwood proportion values, 
used to derive cover-forage patches (height) and DDE (hardwoods), within harvest polygons. In 
clearcuts, we assigned a value of 0 for stand height and hardwood proportion. In thinned units, 
however, we applied the original stand height and hardwood values to the polygon. 
 
Derivation of Cover-Forage Patches and Edges 
 
To create distance to cover-forage edge, we first defined cover as any 30-m cell with ≥40 percent 
canopy cover and >2 m stand height. To avoid creating a pixelated cover map, we identified 
cover patches as groups of at least 3 × 3 adjacent cover cells. We classified all remaining cells as 
non-cover, including isolated cover cells. We then defined forage patches as patches of at least 3 
× 3 adjacent non-cover cells. We assigned a no data value (i.e., data not used in cover-forage 
calculations) to any remaining cells not satisfying the cover or forage patch criteria above. We 
then created a line shapefile to represent edges between cover and forage patches; from that line 
we created a distance grid (distance-to-edge grid; Table B2). We calculated summary statistics 
for key modeling covariates (Table B4). 
 

https://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf
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Table B1. Covariates initially considered in development of nutrition and habitat-use models for elk in western Oregon and 
Washington, USA, organized by covariate category. Grid cell size was 30-m × 30-m for all covariates. 
 
Category Covariatea Units Description 
Nutrition Accepted biomass kg/ha Mean biomass of neutral or selectedb forage species within 

circular sampling unitc 
 DDE kcal/g Mean DDE within circular sampling unit 
 MGE kcal/g Mean DDE of pixels with values ≥2.40 (i.e., marginal or 

better) within circular sampling unit  
 % MGE % % of circular sampling unit with DDE values ≥2.40 (i.e., 

marginal or better) 
 Distance to nearest MGE patch 

(2 patch sizes) 
m Distance from center pixel of circular sampling unit to 

nearest patch of at least 3 × 3 or 7 × 7 contiguous pixels 
with DDE ≥2.40 

Human 
disturbance 

Distance to nearest high traffic 
open roadd 

m Distance from center pixel of circular sampling unit to 
nearest open road classified as high traffic use 

 Distance to nearest low traffic 
open road 

m Distance from center pixel of circular sampling unit to 
nearest open road classified as low traffic use 

 Distance to nearest closed road m Distance from center pixel of circular sampling unit to 
nearest closed road  

 Distance to nearest open roadd m Distance from center pixel of circular sampling unit to 
nearest road open to public motorized use 

 Distance to nearest road, all 
types 

m Distance from center pixel of circular sampling unit to any 
road type, open or closed 

 Distance to nearest open road or 
trail 

m Distance from center pixel of circular sampling unit to 
nearest road or ATV trail open to public motorized use 

 Distance to nearest road or trail 
open to administrative 
motorized use only 

m Distance from center pixel of circular sampling unit to 
nearest road or ATV trail open for administrative use only 

 Density of open roads and trails km/km2 Density of open roads and ATV trails within circular 
sampling unit 

 Density of open roads km/km2 Density of open roads within circular sampling unit 
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Category Covariatea Units Description 
Vegetation % canopy cover % Mean % canopy cover of live trees within circular sampling 

unit 
 Dominant canopy cover class category Dominant category of canopy cover within circular 

sampling unit, using 5 categories of 20% canopy cover 
intervals (e.g., 0–20%, 20–40%)  

 Distance to nearest forage patch m Distance from center pixel of circular sampling unit to 
nearest forage patche  

 Distance to nearest cover patch 
(3 patch sizes) 

m Distance from center pixel of circular sampling unit to 
nearest cover patch of at least 3 × 3, 7 × 7, or 33 × 33 pixelsf 

 Distance to cover-forage edge m Distance from center pixel of circular sampling unit to 
nearest edge between cover and forage patches 

 Cover-forage ratio % Ratio of number of cover pixels to number of forage pixels 
within circular sampling unit 

Physical % slope (center) % Percent rise at center pixel of circular sampling unit  
 % slope (mean) % Mean % slope within circular sampling unit 
 % slope (median) % Median % slope within circular sampling unit 
 Sine of aspect NA Sine of aspect at center pixel of circular sampling unit 
 Cosine of aspect NA Cosine of aspect at center pixel of circular sampling unit 
 Dominant slope category category Dominant of 3 categories of slope: flat or gentle (0–30%), 

moderate or steep (31–70%), very steep (>70%); assigned to 
circular sampling unit  

 % area in flat or gentle slope % % pixels in flat or gentle slopes (0–30%) within circular 
sampling unit  

 % area in moderate or steep 
slope 

% % pixels in moderate or steep slopes (31–70%) within 
circular sampling unit 

 % area in very steep slope % % pixels in very steep slopes (>70%) within circular 
sampling unit  

 Convexityg  Convexity at center pixel of circular sampling unit 
 Curvature 1/100 of 

a z-unit 
Curvature at the center pixel of circular sampling unit 

 Mean solar radiation WH/m2 Mean solar radiation within circular sampling unit 
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Category Covariatea Units Description 
 Dominant landowner category Dominant landowner class among generalized 

landownerships within circular sampling unit 
 

a Abbreviations: ATV, all-terrain vehicle; DDE, dietary digestible energy (kcal/g); MGE, marginal, good, or excellent DDE 
(see Cook et al. 2004 for details); WH, watt hours. 

b Neutral species are forage species for which use by elk was approximately equal to availability; selected species are forage 
species with a positive Ivlev index. See Cook et al. (2016) for details.  

c 350-m radius circular sampling unit used to summarize covariate values for model development areas. 
d Open included any road or trail open to motorized use by the public. 
e Forage pixels were defined as those with <40% tree canopy cover and stand height ≤2 m; a forage patch was at least 3 × 3 

contiguous forage pixels (see Appendix B text). 
f Cover pixels were defined as those with ≥40% canopy cover and stand height >2 m; a cover patch was at least 3 × 3 

contiguous cover pixels (see Appendix B text). 
g Measure of the convex or concave nature of a site, estimated by evaluating differences in elevation between center pixel and 

adjacent pixels (see Johnson et al. 2000 for details). 
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Table B2. Methods in ArcGISa and data sources used to derive covariates for final habitat-use models for elk in western Oregon and 
Washington, USA, organized by model set. Grid cell size was 30 × 30 m for all covariates. 
 

Model set 
Covariate 

nameb Derivation Data source 
Nutrition Accepted 

biomass 
Create accepted biomass raster using several 
expressions in RASTER CALCULATOR tool; 
use FOCAL STATISTICS tool to calculate mean 
of accepted biomass raster within circular 
sampling unitc 

GNN: CANCOV, TPH_GE_3, 
TPHH_GE_3d; U.S. Forest Service: 
PNV zone; equations in Table 6  

 DDE Create DDE raster using several expressions in 
RASTER CALCULATOR tool; use FOCAL 
STATISTICS tool to calculate mean of DDE 
raster within circular sampling unit 

Equations in Table 4 

 MGE Extract DDE pixels ≥2.40 (marginal or better) 
using expression in RASTER CALCULATOR 
tool; use FOCAL STATISTICS tool to calculate 
mean of MGE raster within circular sampling 
unit 

Equations in Table 4 

 % MGE Extract DDE pixels ≥2.40 (marginal or better) 
using expression in RASTER CALCULATOR 
tool, then use RASTER CALCULATOR to 
calculate percent area of MGE within circular 
sampling unit 

Equations in Table 4 

Human 
disturbance 

Distance to 
nearest road 
open to 
motorized use 
by public 

Select all roads open to public with the SELECT 
tool; use EUCLIDEAN DISTANCE tool to 
calculate distance from center pixel of circular 
sampling unit to nearest pixel from roads raster 
grid 

Various; primary base layer was 
Ground Transportation (GTRN) 
roads database from Bureau of Land 
Management; updated based on local 
knowledge about road conditions 

Vegetation Distance to 
cover-forage 
edge 

Create cover-forage patches (see text); create line 
feature representing edge between patches; use 
EUCLIDEAN DISTANCE tool to calculate 

GNN: CANCOV, STNDHGT 
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Model set 
Covariate 

nameb Derivation Data source 
distance to nearest edge from center pixel of 
circular sampling unit (distance-to-edge grid) 

Physical % slope Convert DEM raster to percent slope using 
SLOPE (Spatial Analyst) tool; use FOCAL 
STATISTICS tool to calculate mean percent 
slope of raster within circular sampling unit 

DEM (http://ned.usgs.gov/) 

 Density of 
open roads 

Select all roads open to public with the SELECT 
tool; use LINE DENSITY tool to calculate road 
density 

Various; primary base layer was 
Ground Transportation (GTRN) 
roads database obtained from Bureau 
of Land Management; updated based 
on local knowledge about road 
condition (i.e., open to public, closed 
because of mudslides) 

 

a ArcGIS Desktop version 9.3 and 10.0 with Spatial Analyst extension (Environmental Systems Research Institute, Inc.). 
b Abbreviations: CANCOV, canopy cover of live trees; DDE, dietary digestible energy (kcal/g); DEM, digital elevation model; 

GNN, gradient nearest neighbor, model region 200; MGE, marginal, good, or excellent DDE (see Cook et al. 2004); IMAP_LAYER, 
number of tree canopy layers present; PNV, potential natural vegetation; QMDA_DOM, quadratic mean diameter of all dominant and 
co-dominant trees; STNDHGT, stand height, calculated as average height of all dominant and co-dominant trees; TPH_GE_3, density 
of live trees (stems/ha) ≥2.5 cm dbh; TPHH_GE_3, density of hardwoods (stems/ha) ≥2.5 cm dbh. 

c 350 m-radius circular sampling unit used for model development areas and for calculation of mean values for moving 
window analyses in validation modeling areas. 

 d We calculated proportion of total trees that are hardwoods, a variable used in the biomass equations, by dividing hardwood 
tree density (TPHH_GE_3) by total tree density (TPH_GE_3). 

http://ned.usgs.gov/
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Table B3. Existing vegetation types considered non-habitat and masked from analysis in elk 
nutrition and habitat-use models developed for western Oregon and Washington, USA. 
 
Ecological systema Area (ha) % Area 
Barren land (rock/sand/clay) 517 <0.01 
Developed, high intensity 53,467 0.46 
Developed, low intensity 353,216 3.01 
Developed, medium intensity 53,303 0.45 
Developed, open space 189763 1.62 
North American alpine ice field 27,489 0.23 
North Pacific alpine and subalpine bedrock and scree 20,585 0.18 
North Pacific coastal cliff and bluff 247 <0.01 
North Pacific maritime eelgrass bed 428 <0.01 
North Pacific montane massive bedrock, cliff and talus 41,612 0.35 
North Pacific volcanic rock and cinder land 14,837 0.13 
Open water 111,876 0.95 
Perennial ice/snow 1,519 0.01 
Rocky Mountain alpine bedrock and scree 89 <0.01 
Rocky Mountain cliff, canyon and massive bedrock 2,816 0.02 
Temperate Pacific intertidal mudflat 2,340 0.02 
Unconsolidated shore 12,748 0.11 
Total 886,853 7.56 

 

a Ecological system code for existing vegetation type (from LEMMA project: 
http://www.fsl.orst.edu/lemma/main.php?project=nwfp&id=studyAreas). 

http://www.fsl.orst.edu/lemma/main.php?project=nwfp&id=studyAreas
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Table B4. Values of covariates (mean and range) used to create Westside elk habitat-use and nutrition models for 5 modeling data sets 
from western Oregon and Washington, USA. 
 
Covariate (unit) Green-Cedar 2008 Pysht 2009 White River 2004 White River 2005 White River 2007 
Accepted biomass 

(kg/ha) 
174 (0–707) 352 (46–707) 138 (3–683) 178 (5–640) 181 (5–683) 

DDEa (kcal/g) 2.53 (2.40–2.93) 2.48 (2.31–2.65) 2.56 (2.41–2.93) 2.58 (2.41–2.92) 2.58 (2.41–2.93) 
MGEb (kcal/g) 2.53 (2.40–2.93) 2.59 (2.42–2.66) 2.57 (2.42–2.93) 2.58 (2.42–2.92) 2.59 (2.42–2.93) 
% MGE 97.35 (41.38–100) 54.83 (4.62–100) 96.24 (27.85–

100) 
95.30 (17.77–100) 95.06 (17.77–

100) 
Distance to open 

road (m) 
4,769 (0–12,431) 1,574 (0–5,357) 2,115 (0–9,347) 1,819 (0–5,414) 2,049 (0–7,241) 

Distance to cover-
forage edge (m) 

506 (0–2,460) 121 (0–1,300) 376 (0–2,074) 288 (0–1,842) 263 (0–1,745) 

% slope 28.92 (0–76.87) 16.00 (1.39–65.53) 41.39 (1.24–100) 34.73 (1.23–87.69) 39.40 (1.23–100) 
 

a Dietary digestible energy (kcal/g). 
b Marginal, good, or excellent categories of DDE; values ≥2.4. 
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APPENDIX C. PLOTS OF RESIDUALS FROM PREDICTION EQUATIONS FOR 
FORAGE BIOMASS 
 
Residuals from prediction equations (Table 6) for accepted, neutral, and selected biomass were 
plotted with overstory canopy cover to identify heteroscedasticity and to evaluate our success in 
accounting for non-linearity. Data were collected in the western hemlock zone (WHZ) and the 
Pacific silver fir and mountain hemlock zones (SFMHZ) in western Oregon and Washington, 
2000–2002.  
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APPENDIX D. REGRESSION MODELS TO EVALUATE PROBABILITY OF ELK USE 
 
All logistic regression models, organized by model set, used to evaluate probability of use by elk during summer for 5 model 
development data sets in western Oregon and Washington, USA. We evaluated models with Akaike’s Information Criterion (AIC) and 
Akaike weights (wi). Data set name includes the study area (PY = Pysht; WR = White River; GC = Green-Cedar) and the last 2 digits 
of the year. 
 
Model set Data set Model 

number 
Model AIC wi Ka 

Nutrition GC08 1 DDEb 5,132.175 0.456 3 
  2 ABc 5,132.951 0.309 3 
  3 MGE,d %MGE, MGE × %MGE 5,133.496 0.235 5 
 PY09 1 DDE 1,081.136 0.372 3 
  2 AB 1,081.381 0.329 3 
  3 MGE, %MGE, MGE × %MGE 1,081.580 0.298 5 
 WR04 3 MGE, %MGE, MGE × %MGE 5,143.024 0.995 5 
  1 DDE 5,153.818 0.005 3 
  2 AB 5,182.784 <0.001 3 
 WR05 1 DDE 2,207.810 0.534 3 
  2 AB 2,208.638 0.353 3 
  3 MGE, %MGE, MGE × %MGE 2,210.928 0.112 5 
 WR07 2 AB 5,474.779 0.511 3 
  3 MGE, %MGE, MGE × %MGE 5,474.892 0.483 5 
  1 DDE 5,483.633 0.006 3 
Human 
disturbance 

GC08 1 Distance to open roade 5,139.023 0.720 3 
 2 (Distance to open road)2 5,140.910 0.280 4 

 PY09 1 Distance to open road 1,106.362 0.638 3 
  2 (Distance to open road)2 1,107.497 0.362 4 
 WR04 2 (Distance to open road)2 5,199.115 0.994 4 
  1 Distance to open road 5,209.218 0.006 3 
 WR05 2 (Distance to open road)2 2,224.345 0.551 4 
  1 Distance to open road 2,224.757 0.449 3 
 WR07 1 Distance to open road 5,492.623 0.730 3 
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  2 (Distance to open road)2 5,494.610 0.270 4 
Nutrition + 
(vegetation and/or 
physical) 

GC08 2 DDE, distance to cover-forage edge, slope 5,111.601 0.873 5 
 1 DDE, slope 5,115.462 0.127 4 
 3 DDE, distance to cover-forage edge 5,126.100 0.001 4 

 PY09 1 DDE, slope 1,066.048 0.579 4 
  2 DDE, distance to cover-forage edge, slope 1,066.687 0.421 5 
  3 DDE, distance to cover-forage edge 1,082.074 <0.001 4 
 WR04 2 DDE, distance to cover-forage edge, slope 5,106.355 0.972 5 
  1 DDE, slope 5,113.444 0.028 4 
  3 DDE, distance to cover-forage edge 5,145.650 <0.001 4 
 WR05 1 DDE, slope 2,180.626 0.729 4 
  2 DDE, distance to cover-forage edge, slope 2,182.604 0.271 5 
  3 DDE, distance to cover-forage edge 2,206.834 <0.001 4 
 WR07 2 DDE, distance to cover-forage edge, slope 5,386.633 0.667 5 
  1 DDE, slope 5,388.025 0.333 4 
  3 DDE, distance to cover-forage edge 5,467.943 <0.001 4 
Human 
disturbance + 
(vegetation and/or 
physical) 

GC08 3 Distance to open road, distance to cover-forage edge, 
slope 

5,104.795 >0.999 5 

 1 Distance to open road, slope 5,126.607 <0.001 4 
 2 Distance to open road, distance to cover-forage edge 5,127.149 <0.001 4 

PY09 1 Distance to open road, slope 1,102.463 0.543 4 
  3 Distance to open road, distance to cover-forage edge, 

slope 
1,103.102 0.395 5 

  2 Distance to open road, distance to cover-forage edge 1,106.788 0.062 4 
 WR04 3 Distance to open road, distance to cover-forage edge, 

slope 
5,132.589 >0.999 5 

  2 Distance to open road, distance to cover-forage edge 5,169.631 <0.001 4 
  1 Distance to open road, slope 5,178.014 <0.001 4 
 WR05 3 Distance to open road, distance to cover-forage edge, 

slope 
2,199.049 0.945 5 

  1 Distance to open road, slope 2,204.730 0.055 4 
  2 Distance to open road, distance to cover-forage edge 2,215.938 <0.001 4 
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 WR07 3 Distance to open road, distance to cover-forage edge, 
slope 

5,371.231 >0.999 5 

  1 Distance to open road, slope 5,409.320 <0.001 4 
  2 Distance to open road, distance to cover-forage edge 5,466.124 <0.001 4 
Nutrition + human 
disturbance + 
(vegetation and/or 
physical) 

GC08 3 DDE, distance to open road, distance to cover-forage 
edge, slope 

5,102.532 0.990 6 

 2 DDE, distance to open road, slope 5,111.663 0.010 5 
 1 DDE, distance to open road, distance to cover-forage 

edge 
5,128.094 <0.001 5 

 PY09 2 DDE, distance to open road, slope 1,065.397 0.603 5 
  3 DDE, distance to open road, distance to cover-forage 

edge, slope 
1,066.239 0.396 6 

  1 DDE, distance to open road, distance to cover-forage 
edge 

1,077.767 0.001 5 

 WR04 3 DDE, distance to open road, distance to cover-forage 
edge, slope 

5,087.763 0.894 6 

  2 DDE, distance to open road, slope 5,092.033 0.106 5 
  1 DDE, distance to open road, distance to cover-forage 

edge 
5,140.555 <0.001 5 

 WR05 2 DDE, distance to open road, slope 2,176.349 0.723 5 
  3 DDE, distance to open road, distance to cover-forage 

edge, slope 
2,178.270 0.277 6 

  1 DDE, distance to open road, distance to cover-forage 
edge 

2,207.858 <0.001 5 

 WR07 3 DDE, distance to open road, distance to cover-forage 
edge, slope 

5,361.212 0.985 6 

  2 DDE, distance to open road, slope 5,369.609 0.015 5 
  1 DDE, distance to open road, distance to cover-forage 

edge 
5,467.984 <0.001 5 

Final set of 
candidate models 

GC08 6 DDE, distance to open road, distance to cover-forage 
edge, slope 

5,102.532 0.750 6 

  5 Distance to open road, distance to cover-forage edge, 
slope 

5,104.795 0.242 5 
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  4 DDE, distance to cover-forage edge, slope 5,111.601 0.008 5 
  1 DDE 5,132.175 <0.001 3 
  3 DDE, distance to open road 5,133.410 <0.001 4 
  2 Distance to open road 5,139.023 <0.001 3 
 PY09 6 DDE, distance to open road, distance to cover-forage 

edge, slope 
1,066.239 0.553 6 

  4 DDE, distance to cover-forage edge, slope 1,066.687 0.442 5 
  3 DDE, distance to open road 1,076.302 0.004 4 
  1 DDE 1,081.136 <0.001 3 
  5 Distance to open road, distance to cover-forage edge, 

slope 
1,103.102 <0.001 5 

  2 Distance to open road 1,106.362 <0.001 3 
 WR04 6 DDE, distance to open road, distance to cover-forage 

edge, slope 
5,087.763 >0.999 6 

  4 DDE, distance to cover-forage edge, slope 5,106.355 <0.001 5 
  5 Distance to open road, distance to cover-forage edge, 

slope 
5,132.589 <0.001 5 

  3 DDE, distance to open road 5,148.597 <0.001 4 
  1 DDE 5,153.818 <0.001 3 
  2 Distance to open road 5,209.218 <0.001 3 
 WR05 6 DDE, distance to open road, distance to cover-forage 

edge, slope 
2,178.270 0.897 6 

  4 DDE, distance to cover-forage edge, slope 2,182.604 0.103 5 
  5 Distance to open road, distance to cover-forage edge, 

slope 
2,199.049 <0.001 5 

  1 DDE 2,207.810 <0.001 3 
  3 DDE, distance to open road 2,208.344 <0.001 4 
  2 Distance to open road 2,224.757 <0.001 3 
 WR07 6 DDE, distance to open road, distance to cover-forage 

edge, slope 
5,361.212 0.993 6 

  5 Distance to open road, distance to cover-forage edge, 
slope 

5,371.231 0.007 5 

  4 DDE, distance to cover-forage edge, slope 5,386.633 <0.001 5 
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  1 DDE 5,483.633 <0.001 3 
  3 DDE, distance to open road 5,485.131 <0.001 4 
  2 Distance to open road 5,492.623 <0.001 3 

 

a Number of parameters in model. 
b Mean dietary digestible energy (kcal/g) within circular sampling unit. 
c Mean accepted biomass of elk forage species (kg/ha) within circular sampling unit. 
d Mean of marginal, good, or excellent categories of DDE (i.e., values ≥2.4) within a circular sampling unit and percentage of 

sampling unit in MGE. 
e Distance to nearest road open to motorized use by public.
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APPENDIX E. PREDICTIVE MAPS OF RELATIVE PROBABILITY OF USE BY 
ELK 
 
We developed maps that display relative probability of elk use for 8 model validation 
data sets in western Oregon and Washington, USA, classified into 4 equal-area prediction 
bins for display: low, medium-low, medium-high, and high. Dots represent observed 
locations of elk used to validate the habitat-use model. Masked areas represent non-
habitat, such as rock or water, and are displayed as gray in the maps. 
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