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ARTICLE

Tree recruitment at the treeline across the Continental Divide in the Northern
Rocky Mountains, USA: the role of spring snow and autumn climate
Grant P. Elliott and Christopher A. Petruccelli

Department of Geography, University of Missouri, Columbia, MO, USA

ABSTRACT
Background: Topoclimate can influence tree establishment within treeline ecotones. Yet
much less is known about how regional topography, such as the Continental Divide, Rocky
Mountains, mediates the role of climate in governing treeline dynamics.
Aims: To utilise the Continental Divide to test whether contrasts in growing-season moisture
regimes to the west (summer-dry) and east (summer-wet) impact the spatio-temporal pat-
terns of tree establishment and rates of treeline advance in the Northern Rocky Mountains.
Methods: We sampled trees at sites on north- and south-facing slopes, west and east of the
Continental Divide. We used dendroecological techniques to reconstruct patterns of tree
establishment. Age-structure data were quantitatively compared with climate to evaluate
possible mechanistic linkages.
Results: Across all sites, 96% of trees established after 1950. There was a treeline advance
(range = 39–140 m) accompanied by increases in tree density. Significantly more trees
established during wet springs on both sides of the Divide.
Conclusions: Overall, snow duration in spring and autumn temperatures appear to influence
patterns of tree recruitment at the treeline. Continued warming will likely amplify the role of
autumn climate in regulating tree establishment throughout treeline ecotones in the
Northern Rocky Mountains, particularly west of the Divide where summer-dry conditions
persist.
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Introduction

Measuring the influence of rising temperatures
on ecological processes at the treeline is challen-
ging because mountain topography modifies
radiation and moisture budgets across multiple
spatial scales. At a local scale, for example,
topography partitions the top-down influence
of climate into topoclimates based on slope
angle and aspect, which creates distinct tem-
perature-moisture interactions on north- and
south-facing slopes (Barry 2008). Global change
ecology research from treeline ecotones suggests
that these slope aspect-meditated variations in
plant water availability have measurable impacts
on the position/elevation of upper treeline
(Brown 1994; Bader and Ruijten 2008; Kharuk
et al. 2010; Stueve et al. 2011; Case and Buckley
2015; Chhetri et al. 2017), species composition
(Elliott and Baker 2004; Schickhoff et al. 2015;
Shrestha et al. 2015; Dearborn and Danby
2017), seedling establishment (Weisberg and
Baker 1995; Germino et al. 2002; Elliott and
Kipfmueller 2010; Shen et al. 2014; Millar
et al. 2015) and the climate sensitivity of both

annual tree growth (Leonelli et al. 2009; Bunn
et al. 2011; Salzer et al. 2014; Zhang et al. 2015)
and patterns of tree establishment required for
upper treeline advance (Bunn et al. 2005; Danby
and Hik 2007; Dang et al. 2015; Elliott and
Cowell 2015; Alatalo and Ferrarini 2017;
Young et al. 2017). Despite widespread study
of how topoclimate influences upper treeline
dynamics (but see Wang et al. 2013), surpris-
ingly little is known about how regional topo-
graphy, such as the Continental Divide, modifies
the role of climate in governing tree recruitment
at the treeline in the Rocky Mountains.

The Continental Divide is termed for the
crest of the generally north-south trending
Rocky Mountains that interrupts the flow of
prevailing westerly winds to create separate
regional climates to the west and east (Mitchell
1976; Mock 1996; Kittel et al. 2002). In the
Northern Rocky Mountains (ca. 45° N), for
instance, annual water budgets are dominated
by cool season snowfall on both sides with dis-
parate summer moisture regimes. To the west,
subtropical high pressure creates summer-dry
conditions (Brunelle et al. 2005), whereas

CONTACT Grant P. Elliott elliottg@missouri.edu

PLANT ECOLOGY & DIVERSITY
2018, VOL. 11, NO. 3, 319–333
https://doi.org/10.1080/17550874.2018.1487475

© 2018 Botanical Society of Scotland and Taylor & Francis

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/17550874.2018.1487475&domain=pdf


frequent convective storms produce summer-
wet conditions to the east (Crawford et al.
2015). Reconstructed climate-disturbance inter-
actions from upper montane forests in the
region suggest that these opposite growing sea-
son moisture regimes persisted throughout the
Holocene (Brunelle et al. 2005), yet studies
examining what these mean for treeline
dynamics are lacking. This is notable because
heat-induced drought stress is expected to
impact trees in environments not currently con-
sidered moisture-limited, such as the treeline
(Allen et al. 2015). In fact, recent research
from the treeline east of the Divide in the
Southern Rocky Mountains has suggested that
these differences in regional climate and grow-
ing season moisture regimes could exert consid-
erable control on treeline dynamics; seedling
establishment was temperature-limited until
drought stress began limiting tree function mid-
way through the growing season (Moyes et al.
2013, 2015).

In this paper, we utilised the Continental
Divide to test whether contrasts in growing-sea-
son moisture regimes to the west and east impact
the spatio-temporal patterns of tree establish-
ment and rates of treeline advance in the
Northern Rocky Mountains. To achieve this, we
used dendroecological techniques to reconstruct
tree establishment which helps fill a sizable gap
in tree-ring studies concerned with high-eleva-
tion climate-vegetation linkages along the
American Cordillera. For example, results from
previous research have underscored the key role
that both temperature and moisture play in shap-
ing tree demography at the treeline in the Andes
Mountains of northern Patagonia (Villalba and
Veblen 1997; Daniels and Veblen 2004; Srur
et al. 2016), the Sierra Nevada (Lloyd and
Graumlich 1997; Millar et al. 2004; Bunn et al.
2005), Great Basin (Millar et al. 2015), northern
Cascades (Rochefort and Peterson 1996) and
south-west Yukon, Canada (Danby and Hik
2007). Moreover, research from east of the
Divide in the Southern (Weisberg and Baker

1995; Hessl and Baker 1997; Elliott and
Kipfmueller 2011; Elliott 2012) and Northern
(Alftine et al. 2003) Rocky Mountains corrobo-
rate these findings, but comparable data from
regions west of the Divide are non-existent.
Given these results, we hypothesised that both
temperature and moisture would play a role in
facilitating tree recruitment at the treeline. Taken
at large, our motivation for this research was to
generate empirical evidence that further eluci-
dates the role of regional- and local-scale topo-
climatic gradients in modifying the ecological
response of upper treeline ecotones to global
climate change.

Materials and methods

Study area

A total of four study sites were selected a priori
through the use of satellite imagery, topographic
maps and extensive field reconnaissance owing to
the relative dearth of climatic treelines through-
out this section of the Northern Rocky
Mountains. Two of the study sites were west of
the Continental Divide in the Lost River Range
of east-central Idaho. Here, one site was on a
north-facing slope (site code = WNF) and the
other was on a south-facing slope (WSF). The
other two study sites were east of the Continental
Divide on the opposite north- and south-facing
slope (ENF and ESF) of Sugarloaf Mountain in
the Pioneer Range of south-west Montana
(Table 1; Figure 1).

Temperature trends analysed from western
Montana have indicated that this region has
experienced a + 1.33°C increase in mean annual
temperature from 1900 to 2006, which exceeds
the global average of + 0.74°C (Pederson et al.
2010). On seasonal timescales, warming since
the 1980s has caused an earlier spring thaw
and delayed the first autumn frost (Pederson
et al. 2010). Increases in mean summer tem-
perature are more pronounced in Idaho,
although nearly identical patterns of warming

Table 1. Study site characteristics, Northern Rocky Mountains, USA. Ecotone denotes the width of the treeline ecotone as
measured from the elevational extent of the outpost tree downslope to timberline (m).
Site Lat. (°N) Long. (°W) Elev. (m) Aspect (°) Slope (°) Transect (m) Ecotone (m) Dominant tree species (%)

WNF 44.2 113.8 2863 350 22 140 109 Pinus albicaulis (77)
WSF 44.3 113.8 2995 172 24 70 37 P. albicaulis (84)
ENF 45.5 112.8 2700 0 26 39 39 P. albicaulis (100)
ESF 45.5 112.8 2539 220 10 96 79 Pseudotsuga menziesii (97)
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are evident among sites since ca. 1980
(Figure 2). Precipitation regimes are dominated
by snow, which is delivered most often by zonal
flow off the Pacific during winter (Mitchell
1976). Snow cover typically persists into late
spring and there has been an increase in the
amount and variance since the late 1970s
(Pederson et al. 2011).

The dominant tree species at our sites were
whitebark pine (Pinus albicaulis Engelm.) and
subalpine fir (Abies lasiocarpa [Hook] Nutt),
with fewer Engelmann spruce (Picea engelman-
nii [Parry] Engelm.) and Douglas fir

(Pseudotsuga menziesii [Mirb.] Franco) confined
to site ESF in Montana. Possible disturbance
agents include grazing and fire, with outbreaks
of native mountain pine beetle (Dendroctonus
ponderosae Hopkins) and invasions of exotic
blister rust fungus Cronartium ribicola (J.C.
Fisch.) on whitebark pine (Larson 2011; Smith-
McKenna et al. 2013). Each of our study sites
lacked a clear indication of these disturbances,
but mountain pine beetle mortality was evident
for whitebark pine in areas at and near the
treeline throughout the eastern Pioneer
Mountains.

Figure 1. Study area map and representative images from each study site. Circles denote location of study sites.

Figure 2. Mean growing-season temperature and seasonal differences in temperature and precipitation west and east of the
Continental Divide.
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Field methods

We carried out field work during the summer of
2013 and focused our study site selection on
identifying climatic treeline boundaries.
Climatic treelines refer to environments where
tree establishment and potential treeline
advance into alpine tundra are unimpeded by
local topography or geomorphological condi-
tions, such as steep and rocky slopes, often
devoid of soil, or frequently disturbed avalanche
tracks (see Holtmeier and Broll 2005; Butler
et al. 2007). We refer to the treeline ecotone
as the transition zone from the uppermost
extent of closed-canopy upper montane forest
(also called timberline or forest line) to alpine
tundra (Malanson et al. 2007; Körner 2012).
Depending on local topography and wind con-
ditions, multi-stemmed krummholz were pre-
sent, but we did not sample them because
their low stature creates a different microcli-
mate than that experienced by upright trees
and thus may not reflect suitable conditions
for tree establishment within the treeline eco-
tone (Holtmeier 2009).

At each site, we placed a nested-belt transect
through the treeline ecotone. Transects began at
the outpost tree (term after Paulsen et al. 2000),
which was classified as the furthest upright tree
(≥5 cm diameter at breast height [dbh]) or sap-
ling (<5 cm dbh, ≥1.2 cm diameter at ground
level [dgl]) existing within the treeline ecotone
and then descended downslope perpendicular to
slope contours, through the timberline boundary
and 40 m into relatively closed-canopy upper
montane forest. Transects were divided into two
parts to ensure an adequate number of saplings
were collected to analyse regeneration patterns.
Above the timberline (ATL), we sampled all trees
and saplings within a 40-m wide belt (20 m on
each side of transect). Below the timberline
(BTL), the total width was reduced to 20 m

(10 m per side) to account for increasing stand
density downslope. The only exception to this
was on the north-facing slope of Sugarloaf
Mountain (site ENF), where we were unable to
sample BTL because of a precipitous cliff 39 m
downslope from the outpost tree. As a result of
variations in tree density and elevation of the
outpost tree, overall transect length varied at
each site (Table 1). We recorded local conditions
at each site including elevation and geographic
coordinates of the outpost tree, slope aspect,
slope steepness and distance from the outpost
tree to timberline (i.e. width of the ecotone;
Table 1).

Age-structure data

For reconstructing tree colonisation within the
treeline ecotones, we collected age-structure
data by extracting increment cores as close to
the base of each tree as possible to minimise
error when assigning calendar dates of establish-
ment. Every sapling was harvested at ground
level and seedlings (<1.2 cm dgl) were inventor-
ied by species and position relative to timberline
(above or below) along the entire transect. All
cores and cross-sections were processed follow-
ing standard dendrochronological procedures
(Stokes and Smiley 1996). All tree-ring samples
were visually crossdated by identifying individual
marker rings under a stereo microscope
(Yamaguchi 1991). Pith estimators were used to
geometrically determine the number of rings to
centre when the pith was not obtained during
field sampling (Applequist 1958). Considering
the uncertainty involved in assigning an annual
value for tree establishment, we combined our
age-structure data (Table 2) into more conserva-
tive five-year age classes for the period 1900 to
2000 (Hessl and Baker 1997; Elliott and
Kipfmueller 2011).

Table 2. Summary of dendroecological data, collected at the treeline ecotone, Northern Rocky Mountains, USA. Sapling cross-
sections were not included when calculating age corrections. Cross-section (%) refers to the proportion of total trees sampled at
each site (cross-sections/total trees).

Site
Total trees

(n)
Core samples

(n)
Mean age correction

(years)
Age correction

(α)
Pith
(%)

Cross- sections
(n)

Cross- sections
(%)

Seedlings
(n)

WNF 52 17 2.5 2.7 41.2 35 67.3 12
WSF 38 27 5.8 3.5 11.1 12 31.6 1
ENF 24 9 2.3 2.1 33.3 15 62.5 25
ESF 35 22 2.9 2.5 27.3 13 37.1 0
Mean 37.3 18.8 3.4 2.7 28.2 18.8 49.6 9.5
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Climate data

To analyse climate-vegetation interactions at
each site, we used Precipitation-elevation
Regression on Independent Slopes Model
(PRISM) climate data (PRISM Group, Oregon
State University, www.prismclimate.org, created
5 May 2014). We used PRISM data because they
account for physiographic variation and in the
topographically complex western United States,
these data more accurately represent mountain
climate (Daly et al. 2008). To calculate seasonal
climate values (temperature and precipitation),
we used monthly PRISM data (1899–2000). For
each climate variable, we calculated five-year
means to align with the temporal resolution of
our age-structure data and these included the
following: (1) cool season (Oct–May) precipita-
tion; (2) cool season maximum temperature
(Tmax); (3) cool season minimum temperature
(Tmin); (4) spring (March–May) precipitation;
(5) spring Tmin; (6) summer (June–August) pre-
cipitation; (7) summer Tmin; (8) autumn
(September–November) precipitation; (9)
autumn Tmax and (10) autumn Tmin. Cool sea-
son data were used in lieu of winter data to
more accurately capture the entire period of
snowfall in this region.

Data analyses

We analysed the spatio-temporal patterns of
treeline dynamics in three ways. To begin, we
used a two-sample Kolmogorov-Smirnov test to
quantitatively compare the temporal patterns of
tree establishment west and east of the Divide.
We then reconstructed the uppermost extent of
the outpost tree (m) and tree density above and
below timberline (trees ha−1) at five-year inter-
vals during the twentieth century. We used a
natural-log transformation to standardise tree
density data because ecotone size varied consid-
erably between sites (Elliott and Kipfmueller
2011). Reconstructing the position of the outpost
tree within the treeline ecotone was used as a
general proxy for measuring treeline advance
(Elliott 2012). This permits the comparison of
outpost tree establishment with tree density
data to determine if upslope advance was accom-
panied by site-wide increases in establishment or
likely represents an artefact of a random regen-
eration event.

We examined the influence of climate on tree
establishment during the twentieth century
using three statistical measures. First, we com-
pared age-structure data to identical pentads of
key climate variables using Spearman’s rank
correlation coefficients (rs) because the data
were not normally distributed. Given the multi-
tude of linear correlations analysed with this
non-parametric method (n = 10), we used a
Bonferroni correction (α = 0.05/10 = 0.005) to
measure statistical significance (Gamache and
Payette 2005). Second, we used regime-shift
analysis to identify statistically significant
(P ≤ 0.05) deviations in age structure and cli-
mate data (Rodionov 2004). This method iden-
tifies a stepwise regime shift when the
cumulative sum of normalised deviations from
the mean value of a potential new regime is
significantly different from the mean of the cur-
rent period (Rodionov and Overland 2005). We
selected the default cut-off length of 10 years for
the moving window of sequential t-tests. We
used this technique to identify abrupt biotic
(tree establishment) or abiotic changes in the
time-series data that are potentially representa-
tive of a non-linear, threshold-type switch in
climate-vegetation interactions at the treeline
(Elliott 2012). Our rationale for employing this
method in addition to correlation analysis was
to examine how well the spatio-temporal pat-
terns of tree establishment could be explained
by both linear (e.g. correlation) and non-linear
dynamics during the twentieth century. Finally,
to gain a more complete understanding of how
important moisture was over time in facilitating
tree establishment, we carried out a chi-square
goodness-of-fit test to determine if significantly
more trees (P ≤ 0.05) established during ‘wet’
conditions based on the proportion of wet
spring pentads during the twentieth century
(e.g. Ziegler et al. 2008). To do this, we stan-
dardised spring precipitation values relative to
the 1900–1999 mean and averaged these into
matching five-year bins for comparison with
age-structure data. Wet periods were defined
by a positive z-score anomaly and dry years by
a negative z-score anomaly. We chose spring
precipitation to account for snowmelt water
available to trees during the onset of the rela-
tively dry growing season, which has been
shown to impact tree function into late summer
(Hu et al. 2010).
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Results

Tree regeneration dynamics

A total of 149 trees were crossdated, with a mean of
37.3 trees per site, of which 49.6% were sapling cross-
sections harvested at ground level (Table 2). Among
these trees, 96.4% (n = 141) established after 1950
(Figure 3). WSF is the only site where trees existed
both above and below timberline before this time
(1925–1950; Figure 3). Based on our sampling design,
we excluded five krummholz groups based on the fact
that although identical in height and dgl to the numer-
ous saplings present at site ENF, they were formed by
at least three stems (Table 2). Given the nearly ubiqui-
tous existence of relatively young trees west and east of
the Divide, no significant differences in the temporal
patterns of establishment (P > 0.05) were detected
using two-sample Kolmogorov-Smirnov tests. Tree

seedlings were rare and almost exclusively confined
to more mesic north-facing slopes (Table 2).

Dendroecological reconstructions of the outpost
tree elevation at each site indicated considerable tree-
line advance during the twentieth century
(mean = 86.2 m; range = 39–140 m), with the upper-
most extent of present boundaries established between
1960 and 1985 (Figure 4). Increases in tree density
above (ATL) and below (BTL) timberline accompa-
nied initial colonisation at each site (Figure 4). Taken
together, these results suggest a switch toward more
favourable conditions for tree establishment both west
and east of the Divide since 1950 (Figures 3 and 4).

Climate and tree establishment

Statistically significant correlations between cli-
mate and rates of tree establishment (P ≤ 0.005)

Figure 3. Age-structure data (1900–2000) in pentads for each study site. Climate data exhibit statistical (P < 0.05) or ecological
significance with tree establishment. Bold lines denote quantitative results from regime-shift analysis. Grey boxes are used to
highlight possible synchrony between abrupt shifts in establishment and climate. Refer to Table 1 for site abbreviations and
note the non-uniform y-axes for climate variables.
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varied west and east of the Continental Divide
and with slope aspect. For example, spring pre-
cipitation, which primarily falls as snow, was
the only climate variable that produced a sig-
nificant (and positive) correlation with tree
establishment west and east of the Divide on
north-facing slopes (WNF and ENF; Table 3).
Tree establishment at WNF was also signifi-
cantly and positively correlated with summer
Tmin and inversely correlated with autumn
Tmax. There were no significant correlations
between climate and tree establishment at site
WSF (Table 3). In addition to the aforemen-
tioned positive correlation with spring snowfall,
rates of establishment east of the Divide were
significantly and inversely correlated with
autumn Tmin, and this pertained to both aspects
(ENF and ESF; Table 3).

The synchronous timing of regime shifts in
tree establishment with significantly correlated
climate variables provided insight into possible
abiotic forcing mechanisms behind the observed
increases in recruitment since 1950 (Figure 3).
West of the Divide, this synchrony was pre-
ceded by a non-linear increase in spring snow
(1955), which may have facilitated later biotic
regime shifts coincident with an abrupt increase
in summer Tmin and decrease in autumn Tmax at

WSF (1960) and WNF (1980), respectively
(Figure 3). East of the Divide, spring snow also
exhibited a non-linear switch towards a new
mean state in 1955, which was synchronous
with the initiation of tree establishment at
ENF. At ESF, the initiation of tree establishment
coincided with a regime-shift towards cooler
autumn Tmin between 1975 and 1979 (1975 age
class; Figure 3).

Plotting the cumulative percentage of tree establish-
ment at each site over five-year intervals during the
twentieth century indicated that the sharpest increases
took place during wet springs from ca. 1950 to 1994
both west and east of the Divide (Figure 5).
Quantitative results from chi-square analysis corrobo-
rated this superficial trend, with significantlymore tree
establishment during wet springs (P < 0.05). This was
most apparent on north-facing slopes, where 96% and
88% of trees established during wet springs, which
comprised only 38% and 48% of pentads during the
twentieth century at sties WNF and ENF, respectively
([WNF] χ2 = 74.64, P = 0.000, df = 1; [ENF] χ2 = 15.00,
P = 0.000, df = 1). During the period of maximum
establishment from 1975 to 1990, the percentage of
trees present more than doubled at three of four sites
(excluding WSF; Figure 5). This period was charac-
terised by above-average spring snow west and east of
the Divide, with only a brief interlude of dry

Figure 4. Reconstructed changes in tree density above (ATL) and below timberline (BTL) for five-year intervals during the
twentieth century. Tree density data (trees ha-1) were normalised by a natural-log transformation to compensate for differences
in ecotone area. Reconstructed distance of outpost tree advance is plotted so that the present extent of tree establishment was
reached when the value equals zero (e.g. 1985 for WNF).

PLANT ECOLOGY & DIVERSITY 325



conditions from 1985 to 1989 to the east (Figure 5).
Considered together, these three lines of evidence for
evaluating possible mechanistic linkages between cli-
mate and tree establishment within upper treeline
ecotones west and east of the Continental Divide
imply that temperature-moisture interactions may be
particularly influential during both the initiation
(spring) and termination (autumn) of the growing
season.

Discussion

This study included four distinct topoclimatic
settings from two treeline sites west and east of
the Continental Divide in the Northern Rocky
Mountains. Our findings represent the first
examination of how climate interacts with

topographic moisture gradients at both a local
(topoclimate) and regional scale (Continental
Divide) to impact patterns of tree establishment
within upper treeline ecotones. Below we discuss
results within the context that more widespread
dendroecological data are needed from climatic
treelines in the Northern Rocky Mountains, espe-
cially west of the Continental Divide, to test
proposed connections between seasonal climate
and treeline dynamics.

Treeline type in the Rocky Mountains

Extensive field observations across the region
have suggested that climatic treelines were rela-
tively rare throughout much of central Idaho
and portions of south-west Montana,

Table 3. Spearman’s rank coefficients (rs) between five-year bins of tree establishment and climate variables at the treeline
ecotone, Northern Rocky Mountains, USA. Significant correlations in bold and significance level (α) Bonferroni adjusted to 0.005.
Seasonal climate variables calculated from monthly PRISM data available from www.prism.oregonstate.edu. Cool season data
are measured from October to May.

WNF WSF ENF ESF

Climate Variable (rs) (P) (rs) (P) (rs) (P) (rs) (P)

Cool season precipitation 0.308 0.174 0.374 0.095 0.524 0.015 0.215 0.350
Cool season Tmax −0.564 0.008 −0.054 0.816 −0.198 0.390 −0.015 0.949
Cool season Tmin 0.372 0.097 0.230 0.315 −0.393 0.078 −0.543 0.011
Spring precipitation 0.593 0.005 0.371 0.098 0.608 0.003 0.367 0.102
Spring Tmin 0.427 0.053 0.099 0.669 −0.101 0.663 −0.090 0.698
Summer precipitation 0.207 0.368 0.3112 0.169 0.272 0.233 0.382 0.087
Summer Tmin 0.676 0.001 0.296 0.193 −0.264 0.247 −0.413 0.063
Autumn precipitation −0.024 0.918 0.413 0.062 0.324 0.152 0.128 0.581
Autumn Tmax −0.685 0.001 −0.338 0.134 −0.247 0.281 −0.202 0.379
Autumn Tmin 0.095 0.681 0.047 0.839 −0.586 0.005 −0.593 0.005

Figure 5. Proportion of tree recruitment during wet and dry springs. Wet and dry values based on positive and negative
z-scores, respectively. Based on chi-square goodness-of-fit tests, significantly more trees established during wet springs
(P < 0.05).
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particularly on the same mountain peak, which
differs from the Southern Rocky Mountains,
where it is more common for treeline ecotones
to extend upslope into sizable expanses of alpine
tundra (e.g. Elliott and Kipfmueller 2010).
Further, we do not dispute the importance of
low threshold temperatures in triggering tree
function at the treeline (sensu Körner 2007),
yet the position of ecotone boundaries was
strongly dictated by local geologic and/or geo-
morphic constraints to tree establishment. This
supports Butler et al. (2007) who argue for the
subservient role of temperature in governing the
position and structure of the treeline through-
out much of the western United States. Other
researchers have used the term orographic/
edaphic treeline (Holtmeier and Broll 2005;
Schickhoff et al. 2015) and geologic treeline
(Elliott 2017) to reference instances when tree
recruitment at the treeline is more of a function
of local landform constraints than temperature
alone (sensu Butler et al. 2007). Herein lies the
arguably understated importance of study site
selection because site-level conditions have
been shown to override sufficient temperature
regimes in determining whether treeline
advance occurs (e.g. Macias-Fauria and
Johnson 2013; McIntire et al. 2016) and/or cre-
ate climate-pattern-feedback interactions that
decouple linkages between climate and tree
recruitment (Elliott 2011; Liang et al. 2016). In
this study, the prevalence of non-climatic tree-
line ecotones contributed to our lack of replica-
tion from more study sites and, similar to most
treeline studies, limits our ability to make gen-
eralisations beyond the site scale.

Changes in treeline structure

Dendroecological reconstructions of tree age
revealed consistent and sometimes sharp increases
in tree density accompanied by upper treeline
advance between ca. 1950 and 1995. The densifica-
tion or in-filling of treeline ecotones is the most
commonly reported change in treeline structure as
temperatures have warmed during the latter half of
the twentieth century, with examples spanning the
Northern Hemisphere (Szeicz and MacDonald
1995; Klasner and Fagre 2002; Alftine et al.
2003; Lloyd and Fastie 2003; Danby and Hik
2007; Batllori and Gutiérrez 2008; Kharuk et al.
2010; Liang et al. 2011; Fajardo and McIntire
2012; Mamet and Kershaw 2012; Mathisen et al.

2014; Trant and Hermanutz 2014; Chhetri and
Cairns 2015; Sakulich 2015; Shrestha et al. 2015).
Treeline advance, however, has only been reported
by a slight majority of studies worldwide (52%)
since A.D. 1900 and these episodes were attributed
to pronounced winter warming (Harsch et al.
2009). Similar spatio-temporal patterns of tree
establishment across a regional topographic bar-
rier, such as the Continental Divide, indeed suggest
that the broad-scale influence of rising tempera-
tures may have contributed to changes in treeline
structure since 1950. Yet based on quantitative
analyses of dendroecological and climate data
from this section of the Northern Rocky
Mountains, we conclude that regional-scale
changes in treeline structure (i.e. tree density and
treeline advance) since 1950 were most likely dri-
ven by temperature-moisture interactions. As sta-
ted above, these findings align closely with other
dendroecological studies at the treeline along the
American Cordillera but perhaps, most impor-
tantly, raise questions about how seasonal climate
variability influences patterns of tree establishment
at treeline.

Role of spring climate

Despite a lack of site-level snow cover data, the
apparent influence of snow in facilitating tree
regeneration is evident across the region, as signif-
icantly more trees established during relatively wet
springs at all four sites. Wet springs mean more
snow (e.g. Pederson et al. 2011) and it is well
recognised that temperature-snow interactions
during this time exert considerable control on
tree establishment and treeline advance by modify-
ing the depth, distribution and duration of snow-
pack (Hättenschwiler and Smith 1999; Holtmeier
2005; Hiemstra et al. 2006; Barbeito et al. 2013).
Simultaneous increases in temperature and snow
during the past 65 years, for instance, facilitated
treeline advance in north-western China (Wang
et al. 2006) and in mountain ranges across Russia
(Devi et al. 2008; Kirdyanov et al. 2012; Hagedorn
et al. 2014). Plots of spring minimum and max-
imum temperature further support the likely inter-
active role temperature played in shaping patterns
of tree recruitment (Figure 6). In the Southern
Rocky Mountains, however, comparable changes
in treeline structure were facilitated by warmer
springs with less snow that accelerated the onset
of amenable growing season conditions (Elliott
2012). Results from this work therefore highlight
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regional variability in how temperature-snow
interactions during spring govern patterns of tree
establishment at upper treeline along the U.S.
Rocky Mountains, which has strong implications
for how ongoing rises in temperature (Pepin et al.
2015), decreasing spring snowpack (Mote et al.
2018) and projected drought conditions
(Allen et al. 2015) will impact treeline dynamics.

The role of autumn temperature

Cooler Tmax during autumn appears to exert a
strong influence on recruitment dynamics at the
treeline west of the Continental Divide.
Mechanistically, clouds effectively lower maximum
temperature, especially during autumn when mini-
mal latent heat is released from the normally dry
soil (Dai et al. 1999). With respect to the treeline,
experimental field research from the Medicine Bow
Mountains in southern Wyoming suggests that

cloud cover facilitates seedling establishment by
reducing diurnal temperature range, increasing the
likelihood of precipitation and enhancing carbon
gain (Germino et al. 2002; Johnson et al. 2004).
Taken together, we propose that cloud cover could
ameliorate late in the growing season moisture
stress, which would be expected to develop with
rising summer temperatures (Figures 2 and 3) dur-
ing the dry season, and ultimately facilitate tree
establishment at treeline in central Idaho. In other
words, a testable hypothesis worth exploring is that
cooler autumns help to prolong soil moisture avail-
ability provided by spring snowpack, thus highlight-
ing the importance of temperature-moisture
interactions during the entire growing season.

East of the Divide, we interpret the significant
and inverse correlation between autumn Tmin and
tree establishment to mean that autumn snow plays
a crucial role by providing physical and thermal
protection for tree seedlings because colder

Figure 6. Spring maximum (Tmax) and minimum (Tmin) temperature for study sites west and east of the Continental Divide. Data
are from PRISM (prism.oregonstate.edu) and grey boxes highlight period of time with maximum tree recruitment (1950–1995).
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temperatures increase the likelihood of precipita-
tion falling as snow rather than rain (Table 3;
Figure 3). Unlike to the west, treeline environ-
ments along the eastern flank of the Rocky
Mountains are exposed to arctic air masses that
create exceptionally cold and dry conditions during
the cool season (Barry 2008). This contributes to
the formation of abrasive ice crystals that once
windborne, physically damage trees and limit seed-
ling survival/establishment at the treeline (Smith
et al. 2003). In the absence of autumn snow
cover, diurnal exposure to severe frosts and clear
skies predisposes seedlings to temperature and
moisture stress and has led to high seedling mor-
tality in the Southern Rocky Mountains (Germino
et al. 2002) and Tibet (Shen et al. 2014). Thus, it is
certainly plausible that as continued warming
exacerbates growing-season moisture stress,
autumn temperature in general and a protective
snow layer more specifically could become critical
limiting factors to patterns of tree recruitment
within upper treeline ecotones.

Alternative mechanisms for tree establishment

In addition to studying how climate influences tree
physiology (e.g. Körner 2012) and annual ring-
width formation (e.g. Salzer et al. 2014), examining
patterns of successful tree establishment is a widely
accepted method for determining the level of cli-
mate sensitivity at the treeline (Holtmeier and Broll
2005). Yet, it remains challenging to disentangle the
role of climate because nearly identical spatio-tem-
poral patterns of regeneration can result from the
rapid onset of amenable climate conditions (Elliott
2012; Camarero et al. 2015) and/or forest regrowth
following the cessation of grazing (e.g. Moen et al.
2008; Aakala et al. 2014; Ameztegui et al. 2016). To
address this, Batllori et al. (2010) have compared
disturbed versus undisturbed treeline ecotones in
the Pyrenees and concluded that disturbance history
was less influential on initial seedling establishment
than local environmental conditions. The obvious
influence of topoclimate on seedling establishment
in this study, with 97% confined to north-facing
slopes, likely offers further support for this
(Table 2), although extrapolations from seedlings
observed during a single growing season can be
tenuous (see Lloyd and Fastie 2003). Additionally,
further study is needed to rule out the possibility
that pulses in tree establishment were not triggered
by disturbance, or in the case of site ENF (an

outcrop above the upper montane forest), from
seed caching by Clark’s nutcrackers (Nucifraga
columbiana Wilson) who effectively disperse white-
bark pine seeds in alpine tundra beyond treeline
(Holtmeier 2009).

Conclusions

Key findings from this research are twofold. First,
these results add further evidence that general cli-
mate warming trends since the middle of the twen-
tieth century (e.g. Pederson et al. 2010) have played
a role in facilitating sharp increases in tree density
and treeline advance across the Northern
Hemisphere. With respect to the Rocky
Mountains, these results support our hypothesis
and build on prior work (Elliott 2012) to provide
empirical evidence for treeline advance since 1950
across a latitudinal gradient of ca. 1100 km (ca.
35–45°N). Second, and arguably most compelling,
is that our findings suggest tree recruitment in the
Northern Rockies was most likely to occur when
growing seasons were bracketed by heavy snow in
the spring and cooler temperatures in autumn to
prolong soil moisture availability. This was most
pronounced west of the Continental Divide where
summer-dry conditions persist. These results are
novel and worthy of further exploration, particu-
larly since autumn temperature variability is poised
to play an increasingly important role shaping
demographic patterns at upper treeline as tempera-
tures continue to rise and drought stress becomes
more frequent during the growing season.
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