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Abstract

Predicting long-term trends in forest growth requires accurate characterisation of how the
relationship between forest productivity and climatic stress varies across climatic regimes. Using a
network of over two million tree-ring observations spanning North America and a space-for-time
substitution methodology, we forecast climate impacts on future forest growth. We explored dif-
fering scenarios of increased water-use efficiency (WUE) due to CO2-fertilisation, which we simu-
lated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted
forest growth rates in the interior west and positively impacted forest growth along the western,
southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of
warming on high-latitude forests, leaving no evidence for continued ‘boreal greening’; and (3) it
took a 72% WUE enhancement to compensate for continentally averaged growth declines under
RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to
handle regional differences in growth responses to climate change.
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INTRODUCTION

Forests play a key role in coupled land–atmosphere exchange
processes, which determine a range of ecosystem services
(Bonan 2008; Carpenter et al. 2009). Changes in forest func-
tion with climate change are expected to feedback on the cli-
mate system at multiple spatiotemporal scales (Bonan 2008),
as forests play a substantial role in mitigating anthropogenic
greenhouse gas emissions (Pan et al. 2011). The fate of forests
in a warming world is thus of major ecological, societal and
economic concern. Evidence is mounting, however, that the
global forest carbon sink may not be sustained in the future
due to saturation effects (Nabuurs et al. 2013), increased
drought- and disturbance-related tree mortality (Allen et al.
2010; McDowell et al. 2015; Millar & Stephenson 2015) and
biome shifts that may counteract the positive effect of rising
temperatures on boreal forest growth (Williams et al. 2011;
Piao et al. 2014). Existing models of forest growth dynamics
include large uncertainties which ramify and lead to diver-
gence in forecasts of how climate change will impact the
future terrestrial carbon cycle (Keenan et al. 2012; Piao et al.
2013). To reduce these uncertainties, it is necessary to extend
assessments of current observation networks using novel ana-
lytical approaches and data sources (Lindner et al. 2014).
A challenge for climate-impact modelling is assessing the

contribution of uncertainty introduced by applying contempo-
rary species-environment relationships to future climate

conditions. Observed correlations between climate and growth
rates at a given location are often used to estimate future
growth rates at the same location. However, such estimates
will include increasing inaccuracies as growth becomes con-
strained by different limiting factors under future climate con-
ditions, for example, Liebig’s Law of the Minimum (Albright
& Peterson 2013). One way to address this challenge is to use
a space-for-time substitution approach: future species-environ-
ment relationships at a given location are inferred from dis-
tant locations where the current climate resembles future
climate at the focal location (Blois et al. 2013).
For plants, one key way that future conditions may differ

from the past is the increased availability of atmospheric car-
bon. When forecasting responses to climate change, the degree
to which increased atmospheric CO2 might directly increase
future plant growth, that is, ‘carbon fertilisation’ (van der
Sleen et al. 2014; Farrior et al. 2015), remains an important
unresolved effect. Increased atmospheric CO2 may influence
plant growth through several pathways and these effects are
integrated within metrics of water-use efficiency (WUE; Ains-
worth & Long 2005; Farrior et al. 2015). Increased WUE has
been invoked to explain observations such as accelerated
growth in free-air carbon enrichment experiments (Norby &
Zak 2011), but its role in reducing water-stress is actively
debated (Allen et al. 2015).
Here, we present a novel analytical pipeline, leveraging a

continental-scale tree-ring network to forecast changes in
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North American forest growth rates over the 21st century.
While inferences drawn from use of historical data sets should
be subject to heightened scrutiny when projecting future cli-
mates (Williams & Jackson 2007), tree-ring records calibrated
against 20th century instrumental records have been success-
fully used to infer climate patterns thousands of years into the
past (B€untgen et al. 2011; Trouet et al. 2013). We use these
climate-growth relationships to project growth changes in the
near future, complementing predictions made by vegetation
models and environmental niche models. Within this frame-
work, we examined the influence of shifting growth-climate
relationships as well as that of enhanced WUE.

METHODS

Vulnerability to climate change can be assessed using two
kinds of information: an organism’s sensitivity to climate and
its projected exposure to climate change (Dawson et al. 2011).
Accordingly, we combined estimates of how tree growth
responds to climate (sensitivity) with estimates of how climate
will change in the future (exposure) to forecast how climate
change may impact tree growth. Our detailed analytical work-
flow is summarised with a mathematically defined relationship
for each location on the landscape (Fig. 1). We refer to this
as the ‘perturbation function’, because the input is a perturba-
tion in climate and the output is a perturbation in growth.
The detailed steps of this process are outlined below.

Assessing climate response

The first step in our forecasting workflow was to characterise
the relationship between tree growth and climate. We obtained
radial tree growth measurements from 1457 single-species sites
in the International Tree Ring Data Bank (ITRDB) and com-
piled them into a network spanning continental North America
(Fig. S3). Each site record consists of data from a single species
and was quality checked to ensure (1) a minimum sample of
five trees, (2) a minimum signal-to-noise ratio of 0.85, that is,
expressed population signal (Wigley et al. 1984), and (3) full
coverage from 1901 to 1950 CE, the period over which the
most tree-ring records were available (Supplementary Methods
Note 1). The ITRDB offers limited information on community
structure and demography, as well as on the sampling schemes
that were applied, but a recent analysis suggested that growth-
climate relationships are relatively insensitive to the choice of
the sampling scheme at a given site (Nehrbass-Ahles et al.
2014). The final network included 1240 coniferous site records
and 217 broadleaf site records, with the following dominant
genera: Pinus (n = 519), Picea (n = 245), Pseudotsuga
(n = 218), Quercus (n = 204), Tsuga (n = 112), Taxodium
(n = 28), Juniperus (n = 26), Cedrus (n = 23), and Larix
(n = 12; see also Table S1). Age-related trends in radial tree
growth were removed from each individual tree-ring series at
each site to obtain annual ‘detrended’ growth rates, d, for each
site (Supplementary Methods Note 2).
At each site, we assessed trees’ response to climatic varia-

tion by correlating d with climate records over the period
1900–1950. For this purpose, we obtained the Climatic
Research Unit (CRU) 3.21 gridded monthly temperature (T)

and precipitation (P) data at 0.5° spatial resolution (Mitchell
& Jones 2005). These data were downscaled to a resolution of
1 km using the WorldClim database of climate normals as a
base topography to improve the representation of site climate,
particularly in complex terrain (Babst et al. 2013). Pearson
correlation coefficients were calculated between March of the
previous year and August of the current year to account for
contemporary and lagged growth responses (36 correlations in
total: T correlations for 18 months and P correlations for
18 months). The climate response at each site was defined as
the combination of the 36 correlations, corr(d, ci), between d
and the focal climate variable, ci.
To identify the principal types of climate responses in North

American forests, we split the 1457 sites into 13 groups
according to their monthly climate correlations using a neural
network clustering algorithm based on self-organising maps
(Supplementary Methods Note 4). The number of groups was
set a priori to equal the number of ecoregions represented by
at least 20 sites in the tree-ring network, but a sensitivity anal-
ysis (exploring a priori choices of 1, 2, 4, 9, 12, 13, 16, 20 and
25 groups) showed that our conclusions are largely insensitive
to this choice (Supplementary Methods Section 10). We tested
for statistical significance of the groups using a nonparametric
randomisation test (Supplementary Methods Section 9) before
averaging the monthly climate correlations of the sites that
constitute each group. This resulted in 13 types of climate
responses.

Mapping climate response zones

Next, we projected the 13 climate responses across a raster
map of the entire landscape of North America, yielding 13
spatially defined climate response zones. To do so, we used
climate data extracted at the tree-ring sites (19 bioclimatic
variables derived from CMIP5 climate projections averaged
over 1900–1950) to predict climate response (1 through 13) as
a categorical response variable in a Random Forest analysis
(Supplementary Methods Note 5). The fitted Random Forest
model was then used to assign each 0.5° grid cell to a climate
response zone – once based on 1900–1950 climate normals,
and once based on 2051–2099 climate normals. The resulting
two maps of historic and future zones describe how the
growth of trees in every cell on the landscape is expected to
respond to climate variation.

Projecting change in tree growth

Lastly, we combined our climate response zone maps with
predicted climate change to forecast the impacts of climate
change on tree growth. The growth-climate correlations for
each of the 13 zones are treated as local slopes along a global
response curve where growth rate (G) is on the y-axis and cli-
mate (C) is on the x-axis (Fig. 2). Multiplying the projected
change in climate (DC) by the local slope (dGdC) provides an esti-
mate of projected change in growth rate (DG), limited by the
approximation that the tangent characterises the local curve.
We capture global nonlinearity of tree growth response to cli-
mate by parsing climate space into 13 different zones, each
with different characteristic local slopes. In practice, the
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climate space is multi-dimensional and the projections require
calibration, as detailed below.
A key principle behind our approach is that forecasts are

relative, based on differences, not absolute values (Fig. 2). We
project the change in growth for a point on the landscape
based upon the co-located change in climate, without needing
to model the absolute growth, allowing us to make inferences
across the entire landscape. To accomplish this, we combined
slopes from multiple climate dimensions without including
intercepts, as required in a standard multiple-linear regression.
This enabled us to incorporate sites from across a broad cli-
matic gradient into the construction of perturbation functions

for each zone and then apply these functions across the
gradient.
To project change in tree growth for a given cell on the

landscape, we generated a ‘vulnerability index,’ V (step 2 in
Fig. 1). For this purpose, the monthly Pearson correlations
that constitute the climate response for a zone were (1) con-
verted to linear slopes through multiplication with the ratio of

the standard deviations: rd
rci

corrðd; ciÞ, (Supplementary Meth-

ods Note 6); (2) multiplied by the projected change in the
respective climate variables Dci; and (3) summed across all 36

monthly climate variables, yielding V ¼P36
i¼1

rd
rci

corrðd; ciÞDci.

Figure 1 (a) Equation for forecasting changes in tree growth rates based on climate change, where ci corresponds to one of the 36 (previous March through

current August) monthly temperature and precipitation values, d represents the site-level annual detrended tree-ring chronology anomaly values, corrðd; ciÞ is
the Pearson correlation coefficient between d and ci, rd is the standard deviation of detrended growth rate, rðciÞ is the standard deviation of the focal climate

value, Dci is the projected difference in the mean of the focal climate value, A, is the slope from a linear regression between hindcast vulnerability index values

and observed d, and the function g() converts changes in detrended growth values to percent change in absolute ring width. Numbered boxes correspond to

the numbered steps in our (b) workflow for parameterising and applying the equation. We (1) calculate growth-climate correlations, (2) convert these to

linear slopes and sum over all 36 climate axes to produce an un-calibrated vulnerability index, and (3) calibrate and convert the output into meaningful units

of (4) forecast growth change, which we calculate at each location on the landscape under varying assumptions and climate change scenarios.
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The vulnerability index V was generated for each grid cell
on the landscape. This describes the impact of potential cli-
mate change on tree growth in units that are not inherently
meaningful – they require calibration. To translate V into eco-
logically relevant units, we first converted to detrended growth
rates using the coefficient A, defined as the slope from a linear
regression between hindcast V values and observed d over the
1901–1950 period (Supplementary Methods Note 7). We then
converted the detrended growth values to percent change in
absolute ring width using the data-derived function g() (see
step 3 in Fig. 1 and Supplementary Methods Note 8). We
parameterised g() using all consecutive year-pairs during the
historical fitting period and the corresponding ring widths for
all individual trees at every site. After applying A and g() to
V, the output was percent change in radial growth rates in
each grid cell (step 4 in Fig. 1).
Combined, the workflow can effectively be described as a

perturbation function defined separately for each climate

response zone. Given a difference in climate calculated
between two points in time at a given location (DC) and the
perturbation function for the zone associated with that loca-
tion (ƒ), we project the percent difference in absolute radial
growth rates expected for a tree of any size growing under the
two climatic conditions (DG) as: DG = ƒ(DC). In full, a zone’s
perturbation function is thus defined as

fðDCÞ ¼ g A
X36
i¼1

rd
rci

corr d; cið ÞDci
 !

All parameters are zone-specific, except for the parameters
forming the function, g(), which is a common conversion
defined globally across the tree-ring network.
Recognising that a grid cell may be assigned to a different

climate response zone historically compared to the future, we
can apply either the perturbation function associated with the
historic (ƒH) or future (ƒF) climate in that cell when calculat-
ing DG. Future projections based on the historic perturbation
function, ƒH(DC), neglect changing climate-growth relation-
ships (Fig. 2b, DG1). However, projections based on the future
perturbation function, ƒF(DC), likely over-estimate the contri-
bution of changing climate-growth relationships (Fig. 2b,
DG2). We thus used the mean of the function outputs as our
best estimate for growth change incorporating changes in cli-
mate-growth relationships. Finally, to estimate mean growth
changes across the entire continent, we weighted forecasted
growth change in each grid cell by the cell’s geographic area
and percent forest cover derived from MODIS data prior to
averaging.

Simulating a theoretical water-use efficiency enhancement

To incorporate uncertainty due to potential CO2 fertilisation
effects in our tree growth forecasts, we used a first-order
approximation approach examining a range of theoretical
WUE enhancements. As a combined measure, WUE measures
the amount of carbon uptake per unit of water loss without
distinguishing the underlying components. Because plants
actively control their stomata to optimise carbon gain while
minimising water loss, elevated atmospheric CO2 may lead to
reduced stomatal opening (Lin et al. 2015). The stomatal clo-
sure, combined with the capacity for increased assimilation
rates at higher CO2 concentrations, is predicted to cause smal-
ler increases in the leaf-internal CO2 concentrations relative to
the magnitude of external CO2 increases, while simultaneously
reducing water loss (Keenan et al. 2013).
Whether increasing WUE is consistent with water savings

via reductions in stomatal conductance, or consistent with
increased growth from CO2 fertilisation, is an active area of
research. While there is evidence from flux towers and tree-
ring records that plants have become more water-use efficient
(Frank et al. 2015), additional evidence from experimental
and observational work suggests an increase in water savings
that can be obscured by climate change and changes in plant
form (e.g. increases in leaf area index) that counter water sav-
ings at the leaf level (Norby & Zak 2011). Observations of
increased soil moisture in free-air CO2 experiments (Leuzinger
& Koerner 2007) and increased continent-wide runoff

Figure 2 (a) Climate response zones in our model are characterised by

distinct linear relationships between growth rates and climate. We do not

assume a set intercept for the relationship, but rather a family of parallel

lines within each zone. When climate change forces movement through

this space, movement occurs parallel to these lines. (b) Our model takes

these slopes and uses them to predict change in growth rates (DG) from

change in climate (DC). In any forecast, we can either use the slope of the

relationship from the historic zone (zone 1; green line), or the slope of the

relationship from the future zone (zone 2; blue line). The best estimate for

change in growth is expected to be bounded by DG1 and DG2, thus, we

make use of the mean of these values for our final forecast. Across a

large population of raster cells randomly distributed with respect to zone

boundaries, the mean of this approximation should approach the true

global mean. The difference between DG1 and DG2 (Z) is a relative

measure of the importance that a changing growth-climate relationship

has on the model forecasts.
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(Gedney et al. 2006) suggest that leaf-level responses are scal-
able to stand-level hydrologic dynamics. Thus, increase in
water availability, be it actual or effective, with increasing
CO2 appears at least plausible based on available evidence.
We therefore built enhanced WUE as an unresolved hypothe-
sis within our forecasting workflow.
Farquhar (1997) formulated an approximation for enhanced

WUE, finding that ‘doubling the CO2 concentration is almost
like doubling the rainfall as far as plant water availability is con-
cerned.’ Donohue et al. (2009) later used this approach as part
of their analysis of climate-related trends in Australian vegeta-
tion. Following this theory, we modelled enhanced WUE as a
proportionate increase in effective precipitation. In application,
this approach assumes that water-limited plants are also car-
bon-limited, and vice versa, because stomatal conductance cou-
ples CO2 uptake with water loss. Thus, an increase in
atmospheric CO2 elicits the same response as would an
increase in water availability. Because we manipulate precipita-
tion in the simulations, we assume that a change in precipita-
tion causes a proportionate change in water available to the
focal trees. This approach furthermore assumes that the
observed growth-precipitation correlations represent a real
causal link between precipitation and growth. We thus note
that our treatment of WUE should be regarded as scenarios
conditioned upon the above assumptions and limitations.
We implement WUE enhancement scenarios by multiplying

future precipitation inputs by a scaling factor prior to project-
ing future zone distributions and prior to applying the pertur-
bation functions. For instance, if a given grid cell is forecast
to have an average of 2 cm of January precipitation under
future climates, in scenarios where we enhance WUE by 50%,
we would scale the future January precipitation in that cell to
3 cm prior to forecasting growth changes. For cells in zones
with weak correlations between precipitation and tree growth,
this modification should have little impact on growth fore-
casts. However, in zones with strong precipitation responses,
increasing effective precipitation should have a large impact
on growth forecasts.
To understand the sensitivity of growth forecasts to WUE,

we stepped through various scenarios for simulated WUE
increases for each future representative concentration path-
way (RCP) scenario ranging from 0% increase to 150%
increase in WUE in 1% interval steps. The upper limit for
WUE enhancement would be an increase proportional to the
percent increase in atmospheric CO2 (Medlyn et al. 2011).
Comparing mean CO2 concentrations during the historic and
future time periods, the four RCP scenarios 2.6, 4.5, 6.0,
and 8.5 respectively project 42, 72, 88, and 137% increases
in CO2 (http://tntcat.iiasa.ac.at/RcpDb). We take these per-
cent increases to be the upper limits for potential WUE
enhancement under the four RCP scenarios assuming a
directly linear response.

RESULTS

Spatial projections of the 13 climate response zones for the
1901–1950 period confirm well-known gradients (Babst et al.
2013), with strong precipitation limitation of tree growth in
hot and dry regions and temperature limitation in cold and

humid regions (Fig. 3b). With no WUE feedback, our projec-
tion for 2051–2099 based on a business-as-usual greenhouse
gas emission scenario (RCP 8.5) indicates a dramatic north-
ward expansion of the most precipitation-limited zones (i.e.
zones 10–13; Fig. 3c) as far as interior Alaska. Averaged
across the 18 months and then across the 13 zones, the mean
temperature-growth correlations were �0.029 (SD = 0.058,
n = 13), while the mean precipitation-growth correlations were
0.072 (SD = 0.057, n = 13). Although these correlations are
similar orders of magnitude, with a slightly stronger precipita-
tion response, the projected future change in temperature is
much larger than the projected future change in precipitation;
the mean ratio of projected change divided by historical
annual variance is 28 times larger for temperature than for
precipitation. Thus, in concurrence with other studies, the
increase in water limitation is attributable primarily to long-
term increased temperature and associated evaporative
demand, rather than reduced precipitation (Williams et al.
2012). After weighting by MODIS forest cover data, we pro-
ject that 57% of the forested North American land surface
shifts to a new climate response zone by the end of the 21st
century, and that the area characterised by temperature-lim-
ited tree growth (zones 1–2) will decrease from 1.7 million
km2 to 0.5 million km2 (Fig. S5c). When we simulated
extreme WUE increases of 137%, we project contraction of
both the most water-limited and most temperature-limited cli-
mate zones, and expansion of the climate zones that currently
characterise most of the eastern half of the continent (zones 7
and 9, Fig. 3d), with a shift in zones across 61% of the
forested landscape (Fig. S5d).
Comparing projections based on static growth-climate rela-

tionships (ƒH) with projections that allow grid cells to shift cli-
mate response zones (ƒF), shifts in climate-growth
relationships modulated or even reversed growth changes
expected from climate change alone. This effect was most pro-
nounced in temperature-limited zones under constant WUE
assumptions (zones 1–2, Fig. 4; Fig. S6), where, with static cli-
mate-growth relationships, growth was otherwise projected to
increase (i.e. ‘boreal greening’; Alcaraz-Segura et al. 2010).
Under both the enhanced and static WUE scenarios, we pro-
jected growth declines or stasis across much of the central,
western and boreal regions of North America (Fig. 5). Some
of the regions with the strongest expected growth declines are
places where forests currently exist at their dry limits (Allen
et al. 2010). This was contrasted by higher growth rates along
the Pacific coast, the Gulf of Mexico and in northeastern
Canada. Extreme enhancement of WUE (+137%) accelerated
growth in these areas where growth increased under the static
WUE scenario, while simultaneously reversing the growth
declines projected under the static WUE scenario across much
of the eastern United States (Fig. 5e).
In the absence of increased WUE, changes in temperature

and precipitation were forecast to cause a continent-wide
average growth decline between �6.3% (RCP 2.6;
SD = 3.4%) and �19.4% (RCP 8.5; SD = 8.1%). It took a
72% increase in WUE to balance the projected growth decli-
nes under RCP 8.5 (Fig. 5f). Under the extreme scenario that
WUE increased in proportion to CO2, average continental
growth increased between 2.4% (RCP 2.6; SD = 2.9) and
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17.0% (RCP 8.5; SD = 8.0; Fig. S11). Examining spatial vari-
ance in climate change impacts, the standard deviation in pro-
jected growth change across grid cells increased between RCP

2.6 and RCP 8.5 by factors of 2.4 and 3.0 for the constant
WUE and full WUE enhancement models, respectively
(Fig. 5c).

Figure 4 Projected tree growth change in 13 climate response zones spanning North America based on (a and b) historic climate-growth relationships, (c

and d) future climate-growth relationships and (e and f) the difference between these projections assuming static WUE (left) or 137% increased WUE

(right). Bar heights represent means weighted by the land area and percent forest within each cell. Error bars represent standard deviations. For each zone,

the historic, future and difference bars represent the same set of cells identified by their historic zone assignment.

Figure 3 Projected spatial distribution of 13 climate response zones across North America. (a) The mean monthly correlation between detrended tree-ring

width and temperature (orange) and precipitation (blue) in each of 13 climate response zones (plus and minus standard deviations, shaded). Months from

the current year are denoted with capitalised letters. (b) Spatial projection of each of the climate response zones during the fitting period, 1901–1950, (c) for
2051–2099 assuming static water-use efficiency (WUE), and (d) for 2051–2099 assuming WUE increases in proportion to increased CO2, given RCP

scenario 8.5, with colours corresponding to swatches in (a). Zones are ordered by the relative strength of temperature and precipitation correlations.
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DISCUSSION

This study provides new empirically based constraints on
modelled climate-induced changes in forest growth across
North America and represents a novel approach by consider-
ing geographic shifts in climate response zones in 21st century
forecasts. This is an important advance in quantifying ecologi-
cal responses to climate change, because, although it is
acknowledged that ecosystem vulnerability to climate change
depends on both climate forcing and organismal response,
adequately incorporating shifting sensitivities remains a major
challenge (Dawson et al. 2011). The observed differences
between projections with and without shifting climate sensitiv-
ities (ƒF vs. ƒH) demonstrate the significance of this effect.
Our zone-mapping technique, hence, provides a framework
that other researchers can use to better integrate geographic

variation in species ecologies into climate change models while
accounting for intraspecific variation. Regional differences in
the direction of projected growth declines and enhancements
are particularly relevant for forest monitoring, management
and research. In addition, the varying magnitude of the pro-
jected continental-scale decline in forest growth among the
four RCP scenarios (Fig. 5c) underscores the importance of
continued efforts to limit global greenhouse gas emissions
(Boyd et al. 2015).
An important finding of this study is that over half of the

forested land in North America shifted climate response
zones, with most of that area shifting towards stronger precip-
itation limitation. Our projections are supported by recent
observations that high-latitude forests are shifting from tem-
perature-limited growth to precipitation-limited growth in
areas where we project this pattern (Juday et al. 2015;

Figure 5 (a) Projected change in tree growth rates due to climate change under RCP 8.5 assuming no increase in water use efficiency (WUE). Values

represent the percent difference in diameter growth rates expected for a tree growing under the climate projected for the last half of the 21st century

compared to a comparable tree in a comparable ecological context under the climate observed at that location in the first half of the 20th century. (b)

Standard deviations are calculated across all forecast trials and individual GCMs under RCP 8.5 with no increase in WUE. (c) Boxplot provides the

distributions of growth change on a cell-by-cell basis for four different climate scenarios. Small maps show projections adjusted by an increase in WUE of

(d) 50% and (e) 137%, which is equal to projected CO2 increases. (f) Line plot shows growth change as a function of WUE enhancement, where the dotted

red line gives projections based on historic zones (ƒH), solid red line is based on future zones (ƒF), black line is the mean, and the vertical grey line is 137%

increase in WUE.
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Marcinkowski et al. 2015), which suggests that CO2-driven
WUE feedbacks will become increasingly important. This is
particularly relevant for tree mortality algorithms used in
dynamic global vegetation models, which would benefit from
greater clarity of the relative importance of temperature and
precipitation on tree mortality (McDowell et al. 2011).
Indeed, Williams et al. (2012) identified uncertainty in the rel-
ative importance of evaporative demand vs. precipitation to
tree mortality as a major barrier to our ability to forecast the
future fates of forests using global climate model output.
Most reports of drought-induced tree mortality come from
low- and mid-latitude tropical and temperate forests, but
recent work has indicated that North American boreal forests
have also experienced drought-induced mortality in the last
half century (Peng et al. 2011). In our forecasts of boreal for-
ests, the shift from temperature limitation to precipitation lim-
itation was a major driver of declining growth rates. The fate
of boreal forests has been identified as critical to a tipping
point in the Earth’s global carbon cycle (Lenton et al. 2008).
Thus, our forecasts that they may become negatively sensitive
to temperature, together with evidence suggesting this transi-
tion is already happening (Juday et al. 2015), underscores the
potential for this current carbon sink to become a source.
Species’ phenotypes vary widely across their ranges as a

result of exposure to divergent environments. Thus, differences
in tree growth are often driven more by site-level differences
than species-level differences (Fritts 1974; Martin-Benito &
Pederson 2015). Accordingly, we use a tree’s location in cli-
mate space to predict the climate response without explicit ref-
erence to the species identity. The results of our cluster
analysis support the use of models that emphasise intraspecific
variation, as species were widely distributed among the climate
response groups (Table S1). There were 11 species that exhib-
ited at least 7 of the 13 climate response types, and these 11
species represent 52% of sites. The most abundant species in
our data set, Pinus ponderosa (Douglas ex C. Lawson), exhib-
ited 10 of the 13 climate response types. As a consequence,
81% of P. ponderosa sites are projected to experience growth
declines (up to �70% growth; on average �50% growth),
whereas 19% of P. ponderosa sites are projected to experience
growth increases (up to +27% growth; on average +11%
growth). This same basic pattern, of a single species exhibiting
divergent climate responses, was found for most of the domi-
nant species in our network. This contrasts with frameworks
such as ecological niche modelling, in which species are often
treated as homogenous units (Gotelli & Stanton-Geddes 2015).
Because our model implies a global underlying climate-

growth response surface for all trees, projected shifts in the
geographic distribution of climate response zones do not
imply similar shifts in the species’ geographic distributions.
The time frame of our projections is relatively short compared
to the time required for new tree species to colonise and dom-
inate forests in other zones. To the extent that populations
exhibit adaptations to their local climate, as opposed to phe-
notypically-plastic climate responses, the standing composition
of forests is likely to be maladapted for projected 21st century
climate conditions. The likely implication is that actual decli-
nes in tree growth rates would be greater than those forecast
here.

In our explorations of WUE enhancement, the importance of
this effect varied depending on climate response zone and, as
expected, was generally most important in more water-limited
zones. Yet this effect, represented via an increase in effective
precipitation (Farquhar 1997), remained insufficient to reverse
projected growth declines across much of North America (e.g.
zones 4, 10–13 Fig. 4; Fig. S1), even with the unlikely upper-
limit scenario under which WUE increased proportionally with
CO2 (Medlyn et al. 2011). The advantage of our approach to
simulating WUE enhancement is that it does not treat all
ecosystems in a similar manner. Rather, increased effective pre-
cipitation results in greater growth enhancement in more
drought-stressed ecosystems, consistent with theoretical and
observational lines of evidence (Donohue et al. 2013). The limi-
tations of our approach are evident in the most temperature-
limited zone (Fig. 4, zone 1) where the observed growth-precipi-
tation correlations are slightly negative. These negative correla-
tions cause an unrealistic decrease in growth associated with
increased WUE for 5.6% of the forest-weighted landscape
(Fig. 5e). Thus, our implementation of increased WUE should
be viewed as an imperfect but useful first-order approximation
of potential effects. As a sensitivity analysis implemented across
a wide range of WUE scenarios, this contributes to an area of
active debate, in which a significant body of literature highlights
uncertainties in the capacity for increased WUE to translate
directly into increased growth rather than water savings (Allen
et al. 2015; Frank et al. 2015). This includes empirical observa-
tions of enhanced WUE failing to translate into enhanced
growth (van der Sleen et al. 2014), nutrient limitations that
dampen WUE effects (Norby et al. 2010) and the inability of
increased atmospheric CO2 to prevent drought-induced mortal-
ity (Allen et al. 2010; Duan et al. 2014).
Underlying observed climate-growth relationships are a

complex set of physiological processes governing the
responses of tree growth to drought and heat stress. Although
directly modelling growth may provide more mechanistically
based projections, these processes are confounded by high
uncertainties due to complexities with varying degrees of rep-
resentation in current models (Fatichi et al. 2014). Differences
in how factors such as stomatal regulation are parameterised
in mechanistic models contribute to radically different
estimates of terrestrial carbon cycling (Friedlingstein et al.
2006). Our approach offers a phenomenologically based com-
plement to these mechanistic models. Uncertainty analyses
(Supplementary Methods Note 10) demonstrate good preci-
sion, allowing us to have confidence in the regional patterns,
the effect of shifting sensitivities and comparisons among
various RCP scenarios. It is more difficult to assess systematic
biases that may reduce forecast accuracy and thus alter the
magnitude of absolute estimates. For instance, spatial projec-
tions of climate response zones could be complicated by
missing covariates such as geology, soils or other spatially
autocorrelated factors (Record & Charney 2016). Further-
more, dendroclimatological site selection may bias results by
emphasising those trees that are most sensitive to climate
(Babst et al. 2014).
A persistent problem confronting climate change forecasting

is that future climates may have no analogue in the historical
data (Williams & Jackson 2007). Our space-for-time

© 2016 John Wiley & Sons Ltd/CNRS
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substitution approach coupled with the ability of trees to shift
their sensitivities in our modelling framework partially
addresses this problem. Given the continent-wide scale of our
analysis, the values of all 19 individual bioclimatic variables
used to project climate response zones fall within the range of
values represented in the historical fitting data for 96% of
cells under the most extreme RCP forecast.
In examining direct effects of climate on growth, we

capture just one component of the ultimate fate of forests,
which will also depend upon the frequency and intensity of
extreme events (Reichstein et al. 2013), stand demography
(Stephenson et al. 2014), disturbances such as wildfire and
pathogen outbreaks (Millar & Stephenson 2015) and man-
agement practices (Carpenter et al. 2009). While many forces
will shape trees of the future, an analysis based on tempera-
ture and precipitation impacts offers an important baseline
for predicting the underlying limits of future growth (Choat
et al. 2012). Our projections highlight forested areas of
particular vulnerability to climate change (e.g. areas of
continental climates in western interior North America),
which are consistent with predictions from other studies
using different methods to locate where forest stress and
mortality linked to climate change will likely be most severe
(Allen et al. 2010; Williams et al. 2012). Following the 21st
Conference of the Parties (COP21), where 196 nations
unanimously committed to take steps to address climate
change, there is an increasing understanding of the need to
manage the carbon cycle on a planetary scale. For most of
recent history, forests have played a significant role mitigat-
ing the effects of greenhouse gas emissions. However, the
possibility that rising temperatures may shift large swaths of
forest towards negative growth-temperature correlations
represents a feedback loop with the potential to accelerate
climate change beyond critical tipping points.
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