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Forests worldwide are impacted by a wide variety of disturbances that are happening more frequently
with more intensity than in the past due to global climate change. Forest managers, therefore, need to
identify new ways to quickly and accurately predict post-disturbance forest landscape composition.
We suggest the use of Landsat satellite imagery and an image processing tool to map percent canopy
cover (PCC) by species and sub-canopy species counts to be used in adaptive forest management strate-
gies. We used zero-inflated models to successfully predict PCC and sub-canopy counts (number of regen-
erating trees per pixel, also called biotic legacies) for 4 tree species, along with overall PCC and percent
mortality, for a large portion of the Rio Grande National Forest (RGNF) in 2013. The RGNF had recently
been disturbed by spruce beetle (Dendroctonus rufipennis) infestation since the early 2000s and the
West Fork Fire Complex in 2013. Our PCC models resulted in pseudo median differences between
observed and predicted values of 0.2-6.5%, RMSE of 10.9-17.0%, and 95% confidence interval widths of
4.4-24.9%, depending on the species. The percent mortality model resulted in pseudo median differences
between observed and predicted values of 1.1%, RMSE of 12.4%, and 95% confidence interval width of
4.6%. The sub-canopy PCC model resulted in a pseudo median differences between observed and pre-
dicted values of 1.3%, RMSE of 9.4%, and 95% confidence interval of 3.0%. The sub-canopy count models
resulted in mean differences of 0.1-1.4 trees, RMSE of 3.0-13.4 trees, and 95% confidence interval widths
of 1.1-5.0 trees, depending on species. By mapping PCC and sub-canopy counts, we have provided forest
managers with knowledge of the current surviving forest (PCC) as well as the biotic legacies (sub-canopy
counts) that can aid in forming hypotheses as to what the forest might become in the future, adding to
the forest manager toolbox for forest management strategies. The methods described can be applied to a
variety of issues within the field of disturbance ecology and, combined with change analyses, will provide
forest managers with empirical evidence of current and future forest composition along with biological
legacies that will impact forest regeneration.
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1. Introduction

Large portions of forests worldwide have been disturbed over
the past 50 years (Hansen et al., 2013; Hicke et al., 2016), and land
managers face the daunting task of determining how these changes
will affect their forests ecologically, economically, and historically.
Land managers need a new way to quickly and accurately predict
forest succession, since successional patterns, fire regimes, and
pathogen resistance are evolving with the changes brought on by
global climate change (Hicke et al., 2016). Adaptive management
strategies that incorporate ecological principles and climate
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change-related effects are realistically the most appropriate
approach for today’s land managers (Crisafulli et al., 2005; Millar
et al., 2007; Negrén et al, 2008; Schmid and Frye, 1977;
Temperli et al., 2015).

Global climate change is a critical driving force in forest ecosys-
tem balance (IPCC, 2014; Kennedy et al., 2014), resulting in severe
disturbances in many locations across the globe. Bark beetles in
particular have been observed to move to higher latitudes and ele-
vations due to higher temperature suitability as well as depletion
of host trees from drought and drought stress, and tree species at
these higher locations have not yet adapted to insect outbreaks
and are less likely to survive an outbreak (Bentz et al., 2010;
Hart et al., 2014; Hicke et al., 2006, 2016; Jenkins et al., 2014;
Jewett et al., 2011; Temperli et al., 2015).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.foreco.2017.05.017&domain=pdf
http://dx.doi.org/10.1016/j.foreco.2017.05.017
mailto:shannon.savage@msu.montana.edu
http://dx.doi.org/10.1016/j.foreco.2017.05.017
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco

10 S.L. Savage et al./Forest Ecology and Management 399 (2017) 9-23

Land managers are limited in their ability to plan for economic,
ecological, and historic impacts and protection without knowledge
of the current species composition of their forests, particularly
after a large disturbance. Land managers can make more informed
decisions - and perhaps better decisions — when they approach
their tasks through the lens of disturbance ecology. Traditional dis-
turbance response/succession models tend to be long term and lin-
ear - i.e,, moving from stand initiation through stem exclusion to
understory re-initiation and finally arriving at an old growth stage
with the process taking decades or centuries (Oliver, 1980) - leav-
ing near-term (i.e., shortly after a disturbance) forest composition
and structure uncertain, since successional patterns have changed
due to global climate change (Derderian et al., 2016; Jewett et al.,
2011; Temperli et al., 2015).

Disturbance ecology considers how the dynamic ecosystem
might change over time (Bebi et al., 2003; Kennedy et al., 2014;
Kulakowski et al., 2003; Lawrence and Ripple, 1999, 2000;
McDowell et al., 2015; Walker et al., 2007). We have made great
progress in understanding the driving forces and impacts of distur-
bances (Kennedy et al., 2014; Kulakowski et al., 2003). Biological
legacies — vegetation that remains post-disturbance, including
regeneration and colonizing vegetation - are among the most
important variables influencing forest recovery after a disturbance
(Crisafulli et al., 2005; Lawrence and Ripple, 2000; Sibold et al.,
2007). Observation of forest vegetation patterns over time is essen-
tial for disturbance-related prevention, suppression, and restora-
tion of forest ecosystems (Crisafulli et al., 2005; Fettig et al.,
2007; Jenkins et al., 2014; Walker et al., 2007). Mortality of large
trees in a forest stand from beetle-kill or stand-replacing fires,
for example, could open the stand to faster and more dense regen-
eration (Derderian et al., 2016; Sibold et al., 2007) through reduc-
tion of competition for biological legacies. Efficient mapping of
post-disturbance biological legacies using remote sensing has the
potential to greatly assist in post-disturbance forest evaluation
and planning.

Remote sensing scientists can take advantage of free Landsat
satellite imagery to map many different types of ecosystems. Few
studies have used Landsat imagery to predict species composition
of a young forest after significant disturbance, or more specifically,
through the lens of disturbance ecology. Lawrence and Ripple
(2000) looked at the response of the Mount St. Helens landscape
to the drastic changes caused by the volcanic eruption in 1981
and suggested that landscape-scale understanding of the distribu-
tion of biological legacies is critical to understanding post-
disturbance vegetation responses. More recent studies have shown
promise for mapping species composition and/or mortality as a
percentage of each pixel rather than simply presence/absence.
Savage et al. (2015) used zero-inflated modeling to accurately
map percent canopy cover by species in northwestern Montana.
Several recent studies have utilized Landsat imagery to detect tree
mortality. Percent mortality within pixels was predicted using
zero-inflated modeling for portions of the Helena National Forest
in Montana with very accurate results (Long and Lawrence,
2016). A study in Texas was able to accurately detect drought-
induced tree canopy loss using zero-or-one-inflated beta regres-
sion (Schwantes et al., 2016). In southwestern Colorado research-
ers successfully applied methods for classing mountain pine
beetle-induced tree mortality and ecologically informed post-
classification correction to detect spruce beetle-induced tree mor-
tality (Hart and Veblen, 2015).

Our primary goal for this study was to characterize the struc-
ture and composition of a mixed conifer forest after major
beetle-kill and large fires by using freely available Landsat imagery
to evaluate within-pixel percent mortality and predict surviving
tree composition by species for both dominant upper canopy spe-
cies and sub-canopy regeneration. A secondary objective was to

test and compare a series of prediction algorithms that have been
previously applied to remotely sensed data in order to maximize
predictive accuracy (as demonstrated in Savage et al. (2015)). We
suggest that remote sensing applications can play a key role in
monitoring ecosystems and assisting planning for future manage-
ment (Nagendra et al., 2013). Our image analysis method is a pow-
erful tool that allows land managers to predict and project
compositions of future forests following disturbance (Long and
Lawrence, 2016; Savage et al., 2015).

2. Methods
2.1. Study area

The Rio Grande National Forest (RGNF) covers 783,742 ha in
Colorado and includes portions of the San Juan mountain range
east of the continental divide. The study area covers approximately
347,000 ha, includes much of the RGNF Divide and Conejos Peak
ranger districts (Fig. 1), and falls within one Landsat scene. It is a
mountainous region ranging from 2550 to 4280 m in elevation
with a variety of grassland, brushland, and forest types.

Rapid ecological changes have occurred in the high-elevation
spruce-fir (Picea engelmannii — Abies lasiocarpa) zone within the
RGNF due to a spruce beetle (Dendroctonus rufipennis) outbreak in
the early 2000s that affected a large portion of the spruce-fir forests
of the study area. Approximately 85% of the mature spruce-fir habi-
tat on the RGNF had been influenced by the end of 2013 (Blakeman,
2013; RWEACT, 2016). The beetle-kill trees contributed to the dead
fuel load of the forest, and the West Fork Fire Complex of 2013
burned approximately 44,515 ha of spruce-fir/aspen (Populus
tremuloides) mix on the San Juan National Forest (SJNF) and RGNF
(USFS, 2014). The fires, initially starting on the west (SJNF) side of
the Continental Divide, spread to about 35,612 ha on the RGNF.
Much of the burn occurred in spruce-fir cover types that already
had significant rates of tree mortality due to the spruce beetle.

2.2. Data

2.2.1. Field data collection

We collected overstory and sub-canopy percent canopy cover
(PCC) and sub-canopy tree count reference data in 2015 at 463
field locations randomly located within 500 m from roads and
trails within the study area. Points were reviewed to be spatially
homogenous and more than 40 m from the edge of a stand. Several
points were excluded due to cloud cover in the imagery, providing
454 total reference points for use in modeling, exceeding the
results of a Power test for proportion that suggested a minimum
of 384 random sample points for our study (Chow et al., 2008).

We used two types of data collection methods: (1) 20-m x 20-
m grid plot to estimate PCC and mortality (per Savage et al., 2015)
and (2) line-intercept sampling to estimate sub-canopy count/-
composition. Field crews established sample points on a 20-m by
20-m grid oriented to the north. Crews used a moosehorn, a tool
for vegetation sampling (Fiala et al., 2006), to identify presence
or absence of canopy cover every 5 m within the 20 x 20 grid (25
readings per field data point). Every tree observed as present with
the moosehorn was identified (1) by species, (2) as live, red (dead
or dying with red needles that have not fallen yet), or dead, and (3)
whether upper canopy or sub-canopy. The total PCC for each spe-
cies was calculated by adding together the number of times that
species was listed as “live” in the upper canopy within the
25-point grid and multiplying that number by 4. Percent mortality
was calculated by counting the number of times a tree’s condition
was listed as “dead” in the upper canopy within the 25-point grid
and multiplying that number by 4 (regardless of species). The
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Fig. 1. Location map of the Colorado study area showing the Rio Grande National Forest (RGNF) ranger districts, West Fork Fire perimeters, and the boundary of the
surrounding Landsat scene. The study area is displayed over Colorado and New Mexico 1-m NAIP (National Agriculture Imagery Program) imagery.

sub-canopy PCC was calculated by counting the number of times
any tree was observed and listed as “live” in the sub-canopy within
the 25-point grid and multiplying that number by 4 (regardless of
species).

The line-intercept sampling was applied between each of the 25
grid points described above, where the presence of forest sub-
canopy was recorded as a count of each sub-canopy species
observed (live, red, or dead) on the line between points. The sub-
canopy counts were calculated by adding the number of times a
tree was recorded as “live” in the sub-canopy line intercept data.
This was done for all instances to calculate total sub-canopy count
as well as separately for each species observed.

We focused our analyses on four tree species that on average col-
lectively represented approximately 94% of the total observed
canopy cover and 97% of the live sub-canopy counts within our ref-
erence data: (1) subalpine fir (10% of total canopy cover), (2) Engel-
mann spruce (27% of total canopy cover), (3) quaking aspen (43% of
total canopy cover), and (4) Douglas-fir (Pseudotsuga menziesii) (14%
of total canopy cover). The remaining eight species were observed
only rarely at these sites: (1) Rocky Mountain white fir (Abies con-
color) (<1% of total canopy cover), (2) mountain alder (Alnus tenuifo-
lia) (<1% of total canopy cover), (3) bristlecone pine (Pinus aristata)
(3% of total canopy cover), (4) lodgepole pine (P. contorta) (0% of
total canopy cover), (5) pinyon pine (P. edulis) (<1% of total canopy
cover), (6) limber pine (P. flexilis) (1%of total canopy cover), (7) pon-
derosa pine (P. ponderosa) (<1% of total canopy cover), and (8) blue
spruce (Picea pungens) (1% of total canopy cover).

2.2.2. Digital data acquisition and pre-processing

Airborne and satellite imagery are freely and easily accessible
from a variety of outlets. Imagery from sensors that collect visible
and infrared signatures is often used by image analysts to map veg-
etation communities (USGS, 2017; Xie et al., 2008). The most com-
mon bands of the electromagnetic spectrum used for
distinguishing vegetation species include green, red, and near
infrared (NIR), while the blue and short-wave infrared (SWIR)
bands are helpful when considering vegetation moisture (i.e.,
deciduous versus conifer species) (USGS, 2017). Derived data such
as tasseled cap (TC) and normalized difference vegetation index

(NDVI) are especially useful in mapping vegetation with moderate
resolution imagery. The TC transformation reduces the spectral
information within the image (blue, green, red, NIR, SWIR) into
three ecologically interpretable bands: (1) brightness (soil bright-
ness or total reflectance), (2) greenness (relative amounts of leafy
green vegetation), and (3) wetness (soil moisture status) (Crist
and Cicone, 1984). The NDVI calculation uses the red and NIR
bands of the electromagnetic spectrum to identify the presence
of leafy green vegetation. These indices can be calculated with
Landsat data and are commonly included in analyses for regional
scale community-level vegetation mapping (Xie et al., 2008).

We downloaded the mostly cloud-free Landsat 8 Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images for
Path 34/Row 34 from August 6, 2015 and June 16, 2014 from the
USGS EROS Center (Table 1). The images were rectified by the USGS
EROS Center in UTM coordinate system, Zone 13, WGS84 datum.
There were no cloud-free Landsat 8 images acquired by the

Table 1

Data used in the predictions. Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) from Path 34, Row 34, August 6, 2015 with cloud-fill from June
16, 2014.

Number Component name

1 August 2015 - OLI Band 1, Coastal Aerosol
2 August 2015 - OLI Band 2, Blue

3 August 2015 - OLI Band 3, Green
4 August 2015 - OLI Band 4, Red

5 August 2015 - OLI Band 5, NIR

6 August 2015 - OLI Band 6, SWIR1
7 August 2015 - OLI Band 7, SWIR2
8 August 2015 - OLI Band 10, TIR1
9 August 2015 - OLI Band 11, TIR2
10 DEM

11 Aspect (9 categories)

12 Slope (percent)

13 Tasseled Cap Brightness

14 Tasseled Cap Greenness

15 Tasseled Cap Wetness

16 NDVI

17 2015 NAIP texture mean

18 2015 NAIP texture minimum
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satellite for the scene that covers our study area for either 2015 or
2014, therefore, the most cloud-free 2015 image was selected as
the master image and the best 2014 Landsat 8 image was used
to fill most of the data gaps in the 2015 image (after radiometric
normalization through no-change regression normalization (Yuan
and Elvidge, 1996)). Locations that were cloudy in both images
were masked out and not used in this study.

Four-band (blue, green, red, near-infrared), one-meter aerial
imagery from the National Agriculture Imagery Program (NAIP)
for the growing season of 2015 was acquired for the study area
from the USDA Farm Service Agency Aerial Photography Field
Office  (https://www.fsa.usda.gov/programs-and-services/aerial-
photography/) and used to produce texture data (Brown and
Barber, 2012) to be included in the analyses (Table 1). Texture
information is helpful for distinguishing between species. We also
used the NAIP imagery to check for errors in the field data such as
bad GPS coordinates, cloud cover in the texture data, or incorrect
identification of cover types. Topographic slope and aspect were
derived from the digital elevation model (DEM) downloaded from
the USGS National Elevation Dataset (ned.usgs.gov); and NDVI and
three TC bands were calculated from the Landsat imagery (Table 1).
The USFS provided boundary data for major disturbances within
the study area, specifically for the West Fork Fire complex of
2013 and annual beetle infestation boundaries from 2000 to 2013.

2.3. Zero-inflated modeling with built-in 10-fold validation

Most of the datasets were zero-inflated, i.e., a large proportion
of the data points within the dataset had values of zero, however,
mortality and the combined species sub-canopy data were not
(Table 2). We therefore approached the different datasets with dif-
ferent methodologies.

Zero-inflated data were analyzed using the methodology devel-
oped for predicting relative species composition in mixed conifer
forests (Savage et al., 2015). We altered the approach slightly in

Table 2

Number of zeroes observed in the reference data by category modeled - out of 463
total reference points. A high number of observed zeroes indicates that the data are
zero-inflated and zero-inflated modeling should be utilized (Savage et al., 2015) if the
Power test indicates there are enough observations to model. A low number of
observed zeroes indicates that the data should be modeled using traditional methods.
Percent canopy cover (PCC) and sub-canopy count were predicted using zero-inflated
methods. Percent mortality and total sub-canopy PCC were predicted using
traditional methods. Dead PCC and dead sub-canopy count were not modeled,
however, the values are included here for species composition comparison. Dead is
defined as a tree that is either fully dead (grey or no needles/leaves) or dying (red
needles or unhealthy leaves) and NOT a snag (a dead tree that cannot be identified as
a particular species).

Species/category Number Number of
of zeroes non-zeroes

Live subalpine fir PCC 323 140

Live Engelmann spruce PCC 195 268

Live quaking aspen PCC 283 180

Live Douglas-fir PCC 386 77
Mortality® 80 383
Sub-canopy PCC* 89 374

Live subalpine fir sub-canopy count 263 200

Live Engelmann spruce sub-canopy count 145 318

Live quaking aspen sub-canopy count 295 168

Live Douglas-fir sub-canopy count 402 61

Dead subalpine fir PCC 414 49

Dead Engelmann spruce PCC 205 258

Dead quaking aspen PCC 394 69

Dead Douglas-fir PCC 437 26

Dead subalpine fir sub-canopy count 423 40

Dead Engelmann spruce sub-canopy count 337 126

Dead quaking aspen sub-canopy count 395 68

Dead Douglas-fir sub-canopy count 446 17

4 Not zero-inflated.

Table 3

Statistical models/functions tested in this study (R Code for these models can be
found in the Caret Package at http://topepo.github.io/caret/List.html). Several models
were used for both the binary and continuous predictions, while others were used
only for binary predictions (°) or only for continuous predictions (€).

Model Function R package
CART rpart rpart
Conditional Inference Random Forest® cforest party
Cubist® cubist Cubist
C5.0° C5.0 C5.0, plyr

Generalized Linear with Step AIC
Feature Selection®

glmStepAIC MASS

Linear Discriminant Analysis® lda MASS
Multivariate Adaptive Regression Splines® earth earth
Naive Bayes” nb klaR

K Nearest Neighbors kknn kknn
Feed-Forward Neural Net nnet nnet
Partial Least Squares® pls pls
Random Forest rf randomForest
Ridge Regression with Variable Selection® foba foba
Stacked AutoEncoder Deep Neural Network® dnn deepnet
Support Vector Machine with Linear Kernel svmLinear kernlab
Support Vector Machine with Polynomial Kernel svmPoly kernlab
Support Vector Machine with Radial Kernel svmRadial kernlab

that we separated the process into three distinct steps: (1) a binary
prediction of presence/absence of the category of interest, (2) a
continuous prediction of data that were predicted as present in
step 1, and (3) combining the best models from steps 1 and 2.
We were able, using this approach, to test 17 different statistical
models (Table 3) without testing every possible 2-step combina-
tion of these methods (see Fig. 3 in Savage et al., 2015). The Caret
Package in R enabled parameter tuning for each of the methods,
which allowed for improved model fitting compared to accepting
default model parameters.

Two sets of predicted maps were produced for our final zero-
inflated results, one of presence/absence with an overall accuracy
and kappa statistic and one of continuous values with a p-value,
RMSE, 95% confidence interval (CI) width, and pseudo median or
mean differences. The Wilcoxon’s signed rank test was used for
all percent canopy cover and mortality predictions since they are
proportions (pseudo median). A standard t-test was used for the
sub-canopy count predictions since they have a normal distribu-
tion (mean differences). These statistics were calculated through
a 10-fold validation process where each model was executed 10
times while withholding a random 25% of the data each time.
The results of the 10 models were averaged to provide the final val-
idation statistics for each predicted map. We chose the models
with the smallest average width as the final models with which
to predict canopy cover (as long as the p-value was greater than
0.05, indicating the difference was not statistically significantly dif-
ferent from zero). The best binary model and the best continuous
model for each category were then combined to produce one com-
plete map of that category for the study area. All values of zero
(absence) in the binary model were included, while the values
from the continuous model were used where presence was pre-
dicted in the binary model.

2.4. Continuous modeling with built-in 10-fold validation

We used a single-step process where the data were not zero-
inflated (percent mortality and sub-canopy PCC; Table 2): continu-
ous prediction using all of the reference data (rather than just those
with a value greater than zero). A p-value, RMSE, 95% CI width, and
pseudo median (Wilcoxon’s signed rank test for PCC and mortality)
or mean differences (standard t-test for sub-canopy counts) were
calculated by performing a 10-fold validation process as described
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above and choosing the model with the smallest average CI width
as the final model to predict for each species/category.

3. Results
3.1. Field data
Most of the species that were recorded in the 463 reference site

data were zero-inflated - i.e., a large portion of reference sites
contained observations of zero for said species (as noted in Table 2).

Table 4

The minimum PCC values were zero for all species, while the max-
imum values ranged from 48% for subalpine fir to 100% for aspen,
with the maximum percent mortality of 64% (Table 4). Average live
PCC values ranged from 10.9% for subalpine fir to 38.6% for aspen,
with the average percent mortality of 21.0% (Table 4). Maximum
live sub-canopy counts ranged from 34 trees per plot for
Douglas-fir to 151 trees for aspen (Table 4). Average live sub-
canopy count values ranged from 5 trees for Douglas-fir to 16.6
trees for aspen (Table 4). The dominant species of each site was
identified as the species that had the highest PCC or count for each
data point. For live trees, Engelmann spruce was the most domi-
nant for both the PCC (33% of the reference sites were dominated
by Engelmann spruce) and the sub-canopy counts (41% of the ref-
erence sites were dominated by Engelmann spruce) (Table 4).
Engelmann spruce was observed dead or red more often than the
other species within the reference data (Table 2), both in the PCC
data (258 of the 463 sites had dead Engelmann spruce PCC) and
the sub-canopy count data (126 of the 463 sites had dead Engelmann
spruce sub-canopy counts). Dead Engelmann spruce had the highest
maximum and mean PCC values (64% and 22.0%, respectively), while
dead quaking aspen had the highest maximum and mean sub-
canopy count values (42 trees and 4.9 trees, respectively; Table 4).

3.2. Percent canopy cover

A total of six predicted PCC maps were created in this process.
The four PCC-by-species maps were modeled with zero-inflated
methods (Table 5). All four PCC-by-species models had p-values

Statistics from the 463 reference sites. Percent dominant represents the percent of the 463 points where that species was observed more often than the other species.

Species/category Maximum (%) Mean (%) Standard deviation (%) Dominant (%)
Live subalpine fir PCC 48 109 7.0 10
Live Engelmann spruce PCC 72 159 134 33
Live quaking aspen PCC 100 38.6 26.0 26
Live Douglas-fir PCC 84 29.7 13.6 11
Percent Mortality 64 21.0 15.1
Sub-canopy PCC 76 12.2 9.3
Dead subalpine fir PCC 24 8.0 3.0
Dead Engelmann spruce PCC 64 22.0 149
Dead quaking aspen PCC 40 8.0 3.7
Dead Douglas-fir PCC 20 7.2 2.0
Maximum (# of trees) Mean (# of trees) Standard deviation (# of trees) Dominant (%)

Subalpine fir sub-canopy count 86 8.5 7.8 17
Engelmann spruce sub-canopy count 43 7.5 6.2 41
Quaking aspen sub-canopy count 151 16.6 15.2 25
Douglas-fir sub-canopy count 34 5.0 2.8 6
Dead subalpine fir sub-canopy count 15 29 1.3
Dead Engelmann spruce sub-canopy count 15 22 1.5
Dead quaking aspen sub-canopy count 42 49 3.4
Dead Douglas-fir sub-canopy count 11 2.6 0.7

Table 5

Statistical results for percent canopy cover (PCC) predictions for individual species, overall mortality, and sub-canopy total. The models used in the multi-step zero-inflated
process are shown (results of the models that were tested but not chosen to be used for the final predictions are listed in the Appendix A). The results of these models were
combined to create the final predicted maps. RMSE, CI width and pseudo median from Wilcoxon’s signed rank test, maximum, and mean values are displayed. The minimum
value for all predictions was zero. Mortality and sub-canopy PCC were not treated as zero-inflated (see Table 2). Dominant represents the percent of all predicted pixels where
that species had a larger PCC than the other species. All values are in percent (%). Model functions are from Table 3.

Species/category Binary model Continuous model RMSE Cl Pseudo Maximum Mean Dominant (percent of
function function width median value value total predicted map)

Subalpine Fir svmlLinear svmLinear 10.9 4.4 2.5 12.8 43 1

Engelmann Spruce svmLinear cubist 14.2 6.5 -0.2 100.0 9.7 73

Quaking Aspen svmPoly rf 17.0 13.1 0.2 92.9 35.3 21

Douglas-Fir rf rf 12.7 249 —6.5 66.6 223 1

Mortality - svmPoly 12.4 4.6 -1.1 100.0 16.6

Sub-canopy - CART 9.4 3.0 13 18.1 7.0
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greater than 0.05 and pseudo median values ranging from 0.2 to
6.5, showing none were significantly different between observed
and predicted. RMSE values ranged from 10.9% for subalpine fir
to 17.0% for aspen (Table 5). PCC-by-species 95% confidence inter-
val widths ranged from 4.4% for subalpine fir to 24.9 for Douglas-fir
(Table 5). PCC-by-species values ranged from 0 to 100%, with aver-
ages ranging from 4.3% to 35.1% depending on species (Table 5).
The mortality and sub-canopy PCC maps were modeled using only
the best continuous methods rather than zero-inflated methods,
because the reference data were not zero-inflated (see Table 2).
Percent mortality resulted in a p-value greater than 0.05, a pseudo
median of —1.1, an RMSE of 12.4%, and a 95% confidence interval
width of 4.6% (Table 5). Percent mortality values ranged from 0
to 100% with an average of 16.6% (Table 5). Total sub-canopy PCC
resulted in a p-value greater than 0.05, a pseudo median of 1.3,
an RMSE of 9.4%, and a 95% confidence interval width of 3.0%
(Table 5). Sub-canopy PCC values ranged from 0 to 18.1% with an
average of 7.0% (Table 5).

3.3. Sub-canopy counts

A total of four predicted count maps were created in this pro-
cess. All species count maps were modeled with zero-inflated
methods. All four models had p-values greater than 0.05 and mean
differences less than 1.4 trees. RMSE values ranged from 3.0 trees
for Douglas-fir to 13.4 trees for aspen (Table 6). 95% confidence
interval widths ranged from 1.1 for Douglas-fir to 5.0 for aspen
(Table 6). Sub-canopy counts ranged from 0 to 42 trees per pixel
with averages ranging from 1 to 7 trees per pixel, depending on
species (Table 6).

4. Discussion

We developed a Landsat-based approach to predict the compo-
sition of a mixed conifer forest after major disturbances. Through
this approach we tested and compared a series of prediction algo-
rithms with the aim of maximizing our predictive accuracy. Our
Landsat-based zero-inflated models successfully predicted PCC-
by-species and sub-canopy species counts out of the zero-rich ref-
erence data (at an alpha of 0.05, the predicted versus observed is
not significantly different from zero), similar to results from
Savage et al. (2015) (Tables 5 and 6). The non-zero-inflated models
were also successful in predicting percent mortality (similar to
Long and Lawrence (2016)) and sub-canopy PCC (Table 5). The
methods applied in this study can provide land managers with a
powerful tool that can help them predict present and future forest
composition.

We believe that all of the bands, indices, and ancillary data
incorporated into our methods (Table 1) are important for mapping
PCC and sub-canopy counts within our study area. While some of
the algorithms used in our models have built-in variable

Table 6

15

importance reporting, most of them do not, so we were unable to
explicitly identify the most important variables that were used
for predicting every PCC and sub-canopy count map. We suggest
that variable importance in predicting forest composition is a topic
for further study, especially to determine if specific datasets might
not be needed and thus need not be included in data acquisition
and pre-processing. Nearly the entire study area (~302,000 ha or
87%) showed some amount of mortality in the percent mortality
map (Figs. 2 and 3), as expected after viewing the study area from
the ground and from the air (large swaths of the study area had
high levels of observed tree mortality and the majority of the ref-
erence data (383 sites out of 463) included observed mortality).
The majority of the mortality pixels were predicted to have values
from 11% to 20% with a mean value of 16.6% (Table 5), while rela-
tively few pixels were predicted with 45% or more mortality
(Fig. 3), though a maximum value of 100% was predicted for
402 ha (0.13% of the entire map) (Table 5).

We believe that the higher error for aspen PCC is due to confu-
sion with shrub species, since aspen is the only deciduous species
we analyzed for this study. The zero-inflated Douglas-fir PCC map
showed relatively poor results compared to the other three species
we modeled, though it still had a low RMSE. The results for the
Douglas-fir PCC indicate that there were possibly too few reference
data points with values greater than zero (77 out of 463 reference
points; Table 2) to be able to predict a continuous PCC value for the
entire study area with as high confidence as other species. On the
other hand, the presence/absence map for Douglas-fir PCC is highly
accurate at 89.7% overall accuracy.

Based on traditional successional models as well as discussion
and observation in the field, we expected the sub-canopy to be
mostly fir while the overstory would have mostly dead spruce
and live fir. The results of the predictions for spruce do not support
these expectations. Despite the observed large-scale spruce beetle
kill and disturbances from the 2013 West Fork fire, there is med-
ium to high regeneration of spruce where there are recorded dis-
turbances (particularly within the spruce beetle kill areas)
(Fig. 4b). Even some areas that have been disturbed show high val-
ues of overstory canopy cover, most likely due to the canopy being
opened up for rapid regrowth of the sub-canopy species that in this
case are often the same species as the upper canopy (Fig. 4). Addi-
tionally, when comparing the dominant species of both the PCC
and sub-canopy counts, we observed that 72% of the study area
has the same dominant species in both categories (or has no dom-
inant species in both categories), and Engelmann spruce is the
dominant species in both categories for much of the study area
(Fig. 5a). The majority (62%) of the unmatched dominant species
falls within the undisturbed areas of the study area, and here we
see that Engelmann spruce and aspen are the dominant sub-
canopy species in much of the area where the dominants do not
match (38% and 17% of the areas that do not match, respectively)
(Fig. 5b).

Statistical results for sub-canopy count data for individual species. The models used in the multi-step zero-inflated process are shown (results of the models that were tested but
not chosen to be used for the final predictions are listed in the Appendix A). The results of these models were combined to create the final predicted maps. RMSE, CI width and
mean of the differences from a standard t-test, maximum, and mean values are displayed. The minimum value for all predictions was zero. “Dominant” represents the percent of
all predicted pixels where that species was observed more often than the other species. Values are number of trees per pixel unless otherwise noted. Model functions are from

Table 3.
Species/category Binary model Continuous RMSE Cl Mean Maximum Mean Dominant (percent of
function model function width differences value value total predicted map)
Subalpine Fir rf cubist 9.0 3.4 -0.9 15.3 3.4 5
Engelmann Spruce svmLinear foba 5.6 2.1 0.1 154 6.7 76
Quaking Aspen svmLinear svmPoly 134 5.0 -1.4 41.9 53 18
Douglas-Fir Ida svmPoly 3.0 1.1 -0.5 9.3 1.2 <1
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Fig. 4. Percent canopy cover (a) and sub-canopy count (b) for Engelmann spruce.
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where dominants do not match (b). The dominant species is identified as the species that had the highest PCC or sub-canopy count for each pixel.
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Our results indicate that post-disturbance forest composition is
likely to be much like pre-disturbance composition, rather than a
shift or successional change, with some exceptions. Mismatches
where the dominant species is Engelmann spruce (Fig. 5b) are
probably a result of substantially or entirely dead overstory Engel-
mann spruce, suggesting the sub-canopy has returned to its previ-
ous state. Where the dominant sub-canopy is subalpine fir or
aspen, we likely are looking at changes in forest composition
post-disturbance, although this is rare (e.g., the sub-canopy aspen
east of the fire perimeters in Fig. 5b). Though rare, several studies
have addressed using Landsat imagery to map PCC and percent
mortality (Hart and Veblen, 2015; Long and Lawrence, 2016;
Savage et al.,, 2015; Schwantes et al., 2016), however, even more
rare are studies that are able to distinguish between upper canopy
and sub-canopy with high accuracy. Recently, for the first time,
researchers in northern Colorado were able to use snow to mask
out understory vegetation to better detect upper canopy vegeta-
tion (Baker et al., 2017). Application of this method to our PCC-
by-species mapping might improve our results. Another recent
study utilized LiDAR to predict basal area and tree density at
species-level in northern Idaho and through comparison of many
different machine learning algorithms concluded that random for-
est produced the best overall results (Hudak et al., 2008). Our
method of testing several algorithms to maximize predictive accu-
racy also found that random forest often produces the best results
(Tables 5 and 6), however, LiDAR data are cost-prohibitive when
mapping large areas, so we do not expect to attempt this method
to improve our PCC and sub-canopy count predictions.

Finally, we know that major disturbances such as stand-
replacing fires and large insect outbreaks are happening at a more
rapid pace in recent years and can have a variety of effects on veg-
etation and forest composition, including by altering the succes-
sional patterns within in a forest, particularly for the biotic
legacies that will establish early after a disturbance (Hicke et al.,
2016; Sibold et al., 2007). We expect to see forest composition
and structure altered in distribution, both in increasing latitude
and altitude, and in increasing extents (Hicke et al., 2006, 2016;
Jewett et al., 2011; Temperli et al., 2015). Establishment, regener-
ation, competition, and the ability of trees to respond to major dis-
turbances are all changing due to global climate change. Land
managers, in order to protect their resources, must be able to adapt
to these drastic changes as they happen. Using freely accessed
Landsat imagery and the methods described in this paper will
not only save time and money for these land managers, but will
also quickly and easily provide information with which to make

Appendix A

highly informed management decisions and pursue additional
analyses of forest composition and succession. From a manage-
ment standpoint, knowledge of the dominant species establishing
after a disturbance (i.e., biotic legacies) is very meaningful for
planning.

5. Conclusion

We successfully used free and easily accessible Landsat satellite
imagery and remote sensing tools to accurately predict PCC and
sub-canopy counts of four different tree species in southwest Col-
orado. Intense and detailed field data collection, along with the
application of zero-inflated prediction methods, was crucial for
the resulting accuracies. Empirical knowledge, in addition to local
knowledge, of the current surviving forest (PCC) combined with
the sub-canopy/regeneration/biotic legacies (counts) will allow
land managers to form an evidence-based hypothesis as to what
the forest will become in the future. Predicting what the “next” for-
est will be - using empirical data - is an important tool for man-
agement/planning regarding many forested landscapes
worldwide and the habitats therein.

The methods described in this paper can be applied to many dif-
ferent disturbance ecology questions. Forest managers will be able
to provide empirical evidence of current and future forest compo-
sition (as well as past composition with change analyses using the
Landsat satellite imagery archive (data available as far back as
1972)) and the biological legacies that will affect the regeneration
and successional patterns that prevail. The knowledge provided by
these methods will allow managers to make more informed and
better decisions when planning for or reacting to ecological, eco-
nomic, and historical impacts within their regions.
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Part 1: Statistical results for percent canopy cover (PCC) predictions for individual species, overall mortality, and sub-canopy total.

BINARY - Subalpine Fir PCC

Overall Accuracy

Random Forest

Support Vector Machine with Linear Kernel
Support Vector Machine with Radial Kernel
Support Vector Machine with Polynomial Kernel
CART

Cc5.0

Feed-Forward Neural Net

K Nearest Neighbors

Naive Bayes

Linear Discriminant Analysis

70.36%
70.98%
69.20%
70.54%
69.64%
68.39%
65.09%
66.70%
66.34%
69.55%
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CONTINUOUS - Subalpine Fir PCC RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 10.10 0.21 6.20 1.34
Partial Least Squares 9.60 0.32 6.34 2.10
Ridge Regression with Variable Selection 9.91 0.34 5.78 2.20
Cubist 10.63 0.55 6.96 -1.12
Conditional Inference Random Forest 9.71 0.40 6.28 1.54
Generalized Linear with Step AIC Feature Selection 10.46 0.50 6.19 1.31
Random Forest 9.62 0.25 6.32 2.32
Support Vector Machine with Linear Kernel 9.51 0.37 5.59 0.18
Support Vector Machine with Radial Kernel 9.47 0.44 5.76 —0.46
Support Vector Machine with Polynomial Kernel 9.82 0.40 6.01 —-1.00
CART 9.93 0.31 6.20 2.05
Feed-Forward Neural Net 15.19 0.00 6.20 —10.00
K Nearest Neighbors 10.24 0.17 5.95 3.15
Multivariate Adaptive Regression Splines 9.57 0.33 6.32 1.72
BINARY - Engelmann Spruce PCC Overall Accuracy
Random Forest 72.95%
Support Vector Machine with Linear Kernel 73.75%
Support Vector Machine with Radial Kernel 70.18%
Support Vector Machine with Polynomial Kernel 71.79%
CART 69.11%
C5.0 74.11%
Feed-Forward Neural Net 66.07%
K Nearest Neighbors 64.64%
Naive Bayes 71.07%
Linear Discriminant Analysis 73.75%
CONTINUOUS - Engelmann Spruce PCC RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 15.26 0.31 7.40 0.94
Partial Least Squares 14.22 0.57 7.17 0.56
Ridge Regression with Variable Selection 14.23 0.60 7.20 0.39
Cubist 14.57 0.37 6.71 -2.09
Conditional Inference Random Forest 14.02 0.54 6.95 —0.54
Generalized Linear with Step AIC Feature Selection 14.61 0.53 6.99 0.26
Random Forest 13.88 0.54 6.87 0.94
Support Vector Machine with Linear Kernel 14.94 0.19 6.95 -2.59
Support Vector Machine with Radial Kernel 14.53 0.20 6.83 —-2.47
Support Vector Machine with Polynomial Kernel 14.61 0.20 6.96 -2.76
CART 15.16 0.61 7.60 0.39
Feed-Forward Neural Net 22.96 0.00 7.40 —16.00
K Nearest Neighbors 15.09 0.60 7.01 0.38
Multivariate Adaptive Regression Splines 14.73 0.59 7.51 0.59

BINARY - Aspen PCC

Overall Accuracy

Random Forest

Support Vector Machine with Linear Kernel
Support Vector Machine with Radial Kernel
Support Vector Machine with Polynomial Kernel
CART

C5.0

Feed-Forward Neural Net

K Nearest Neighbors

Naive Bayes

Linear Discriminant Analysis

81.07%
79.73%
81.70%
82.23%
78.39%
80.18%
72.14%
69.38%
76.43%
80.45%
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CONTINUOUS - Aspen PCC RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 30.87 0.30 20.80 -1.11
Partial Least Squares 20.12 0.50 13.20 1.07
Ridge Regression with Variable Selection 19.52 0.47 12.80 1.05
Cubist 18.88 0.51 11.87 1.22
Conditional Inference Random Forest 18.94 0.45 11.96 1.31
Generalized Linear with Step AIC Feature Selection 19.85 0.55 12.75 1.38
Random Forest 18.40 0.44 11.76 1.54
Support Vector Machine with Linear Kernel 20.31 0.60 13.05 0.36
Support Vector Machine with Radial Kernel 19.65 0.56 13.27 —0.06
Support Vector Machine with Polynomial Kernel 19.69 0.55 13.12 -0.63
CART 21.58 0.30 13.35 2.69
Feed-Forward Neural Net 47.36 0.00 20.80 —36.40
K Nearest Neighbors 21.92 0.46 14.21 2.22
Multivariate Adaptive Regression Splines 23.46 0.38 15.44 2.40
BINARY - Douglas-fir PCC Overall Accuracy
Random Forest 89.73%
Support Vector Machine with Linear Kernel 87.68%
Support Vector Machine with Radial Kernel 87.59%
Support Vector Machine with Polynomial Kernel 87.41%
CART 86.70%
C5.0 87.95%
Feed-Forward Neural Net 87.77%
K Nearest Neighbors 85.27%
Naive Bayes 86.70%
Linear Discriminant Analysis 89.11%
CONTINUOUS - Douglas-fir PCC RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 23.20 0.48 23.20 —2.68
Partial Least Squares 21.19 0.53 21.35 —2.68
Ridge Regression with Variable Selection 21.76 0.45 21.78 -2.59
Cubist 20.90 0.41 21.07 -2.55
Conditional Inference Random Forest 22.31 0.40 22.19 -3.79
Generalized Linear with Step AIC Feature Selection 25.33 0.44 24.88 —4.47
Random Forest 21.02 0.50 20.67 -2.12
Support Vector Machine with Linear Kernel 2334 0.42 23.62 -1.03
Support Vector Machine with Radial Kernel 21.54 0.33 21.02 —4.82
Support Vector Machine with Polynomial Kernel 22.37 0.33 21.84 -547
CART 22.93 0.42 23.20 -3.58
Feed-Forward Neural Net 40.88 0.00 23.20 -33.40
K Nearest Neighbors 21.86 0.48 22.04 -1.08
Multivariate Adaptive Regression Splines 2211 0.46 22.42 -2.51
CONTINUOUS - Percent Mortality RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 15.18 0.29 6.20 1.88
Partial Least Squares 13.78 0.35 5.50 1.06
Ridge Regression with Variable Selection 12.53 0.38 4.65 0.79
Cubist 12.59 0.45 4,77 -0.29
Conditional Inference Random Forest 12.45 0.36 491 0.74
Generalized Linear with Step AIC Feature Selection 12.42 0.35 4.64 0.77
Random Forest 12.58 0.35 4.82 1.16
Support Vector Machine with Linear Kernel 12.66 0.42 4.68 -0.87
Support Vector Machine with Radial Kernel 12.40 0.33 4.62 -1.34
Support Vector Machine with Polynomial Kernel 12.43 0.36 4.60 -1.08
CART 14.36 0.52 5.57 0.73
Feed-Forward Neural Net 22.46 0.00 6.20 —15.00
K Nearest Neighbors 13.66 0.23 5.10 2.32
Multivariate Adaptive Regression Splines 12.60 0.50 4.85 0.50
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CONTINUOUS - Sub-canopy PCC RMSE p-value CI Width Pseudo Median
Stacked AutoEncoder Deep Neural Network 9.48 0.34 3.00 0.95
Partial Least Squares 8.97 0.33 3.24 1.01
Ridge Regression with Variable Selection 8.98 0.32 3.12 1.01
Cubist 9.11 0.63 3.21 —-0.46
Conditional Inference Random Forest 8.99 0.34 3.19 0.93
Generalized Linear with Step AIC Feature Selection 9.07 0.40 3.21 0.86
Random Forest 9.16 0.21 3.26 1.24
Support Vector Machine with Linear Kernel 9.12 0.57 3.17 -0.29
Support Vector Machine with Radial Kernel 9.00 0.42 3.12 —0.65
Support Vector Machine with Polynomial Kernel 9.12 0.39 3.13 -0.66
CART 9.42 0.59 3.00 1.30
Feed-Forward Neural Net 12.96 0.00 3.00 —7.60
K Nearest Neighbors 9.58 0.33 3.27 0.98
Multivariate Adaptive Regression Splines 9.28 0.27 3.30 1.18

Part 2: Statistical results for sub-canopy count data for individual species.

BINARY - Subalpine Fir Sub-canopy Count Overall Accuracy
Random Forest 75.09%

Support Vector Machine with Linear Kernel 74.73%

Support Vector Machine with Radial Kernel 73.21%

Support Vector Machine with Polynomial Kernel 72.95%

C5.0 74.20%

K Nearest Neighbors 68.75%

Naive Bayes 68.66%

Linear Discriminant Analysis 74.46%
CONTINUOUS - Subalpine Fir Sub-canopy Count RMSE p-value CI Width Mean Differences
Partial Least Squares 9.46 0.41 5.28 -0.03

Ridge Regression with Variable Selection 9.84 0.37 5.50 0.03

Cubist 9.59 0.25 5.27 -2.11
Conditional Inference Random Forest 9.59 0.34 5.36 -0.43
Generalized Linear with Step AIC Feature Selection 10.13 0.38 5.67 —-0.09

Random Forest 9.98 0.45 5.54 0.41

Support Vector Machine with Linear Kernel 9.82 0.32 5.41 -2.02

Support Vector Machine with Radial Kernel 9.72 0.19 5.31 -2.38

Support Vector Machine with Polynomial Kernel 9.70 0.18 5.29 -2.43

K Nearest Neighbors 10.31 0.48 5.79 0.29

Multivariate Adaptive Regression Splines 9.75 0.38 5.45 -0.20

BINARY - Engelmann Spruce Sub-canopy Count Overall Accuracy
Random Forest 78.93%

Support Vector Machine with Linear Kernel 79.64%

Support Vector Machine with Radial Kernel 76.52%

Support Vector Machine with Polynomial Kernel 78.93%

C5.0 77.50%

K Nearest Neighbors 73.57%

Naive Bayes 72.32%

Linear Discriminant Analysis 79.20%
CONTINUOUS - Engelmann Spruce Sub-canopy Count RMSE p-value Cl Width Mean Differences
Partial Least Squares 9.46 0.41 5.28 —0.03

Ridge Regression with Variable Selection 9.84 0.37 5.50 0.03

Cubist 9.59 0.25 5.27 -2.11
Conditional Inference Random Forest 9.59 0.34 5.36 -0.43

(continued on next page)
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Appendix A (continued)

CONTINUOUS - Engelmann Spruce Sub-canopy Count RMSE p-value CI Width Mean Differences
Generalized Linear with Step AIC Feature Selection 10.13 0.38 5.67 -0.09

Random Forest 9.98 0.45 5.54 0.41

Support Vector Machine with Linear Kernel 9.82 0.32 5.41 -2.02

Support Vector Machine with Radial Kernel 9.72 0.19 5.31 -2.38

Support Vector Machine with Polynomial Kernel 9.70 0.18 5.29 —2.43

K Nearest Neighbors 10.31 0.48 5.79 0.29

Multivariate Adaptive Regression Splines 9.75 0.38 5.45 -0.20

BINARY - Aspen Sub-canopy Count Overall Accuracy
Random Forest 75.71%

Support Vector Machine with Linear Kernel 79.55%

Support Vector Machine with Radial Kernel 77.86%

Support Vector Machine with Polynomial Kernel 79.38%

C5.0 76.61%

K Nearest Neighbors 71.07%

Naive Bayes 73.57%

Linear Discriminant Analysis 78.39%
CONTINUOUS - Aspen Sub-canopy Count RMSE p-value CI Width Mean Differences
Partial Least Squares 20.17 0.36 12.45 1.06

Ridge Regression with Variable Selection 20.08 0.41 12.52 0.79

Cubist 21.77 0.29 13.40 -3.20
Conditional Inference Random Forest 20.61 0.37 12.76 -0.04
Generalized Linear with Step AIC Feature Selection 20.86 0.47 13.26 0.38

Random Forest 20.16 0.39 12.41 1.59

Support Vector Machine with Linear Kernel 19.74 0.14 12.26 —4.56

Support Vector Machine with Radial Kernel 19.95 0.14 12.39 -4.67

Support Vector Machine with Polynomial Kernel 19.58 0.15 12.14 —-4.71

K Nearest Neighbors 21.89 0.49 13.79 1.66

Multivariate Adaptive Regression Splines 21.32 0.34 13.23 0.60

BINARY - Douglas-fir Sub-canopy Count

Overall Accuracy

Random Forest

Support Vector Machine with Linear Kernel
Support Vector Machine with Radial Kernel
Support Vector Machine with Polynomial Kernel
C5.0

K Nearest Neighbors

Naive Bayes

Linear Discriminant Analysis

87.05%
87.68%
85.18%
85.27%
85.89%
85.98%
86.61%
87.86%

CONTINUOUS - Douglas-fir Sub-canopy Count

These data would not run in the continuous mode, so we ran the zero-inflated process with Linear Discriminant Analysis for the binary
prediction combined with every continuous option. The support vector machine with polynomial kernel produced the best results and was
used for the final prediction of Douglas-fir sub-canopy counts.
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