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wo types of error are possible when assessing the

Taccuracy of models predicting species presence or
absence: omission error (failure to predict species oc-
currence in an occupied area) and commission error
(prediction of species occurrence in unoccupied
areas)(see Fielding, Chapter 21). Of these two, omis-
sion errors are relatively easy to measurc (Krohn
1996; Karl et al. 2000) because observation of a
species in an unpredicted area necessitates an omission
error. Conversely, failure to observe a species in a pre-
dicted area, while necessary to the definition, 1s not
sufficient to classify it as a commission error (Krohn
1996; Boone and Krohn 1999; Karl et al. 2000). This
can be due to inefficient or inappropriate sampling,
species life history characteristics (€-8- avoids hu-
mans, cryptic nature, episodic), Or temporal and spa-
tial variation in species distributions (Karl et al. 2000;
Fielding, Chapter 21; Schaefer and Krohn, Chapter
3%). Thus, field measures of commission error contain
both true error and apparent error (Karl et al. 2000;
Schacfer and Krohn, Chapter 36)-

Attributes of species biology can affect our esti-
Mates of model accuracy, but the effect of rarity on
Mode] accuracy is not well defined. It has been pro-
:::ed that the presence of “species with high spatial
‘pecitemPOral evenness” (Krohn 19?6) (C-g-, CO“C)‘.“":
G tieS) V.V0uld be easier to predlct. with habita

onship models (e.g., gap analysis models) than
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species with low evenness (Boone and Krohn 1999)
for most modeling applications. Karl et al. (2000) re-
ported a significant decline in commission €rror ac-
companied with a slight increase in omission error
with number of species detections on two study areas
in north Idaho. As such, apparent error decreased
with increased sample size. However, it was unclear
whether high error rates at low numbers of detections
were a result of differences in model accuracy between
rare and common species or an artifact of sample size
used to estimate model performance.

A rarity effect would exist if the models for species
less-frequently encountered were less accurate than
those for common species. Lower model accuracy for
rare species in one situation could be caused by in-
complete knowledge of the species’ range or habitat
associations, or the species responding to habitat fea-
tures that cannot be measured (or mapped). Alterna-
tively, because large numbers of rare species detections
often take a large investment of time and money,
model accuracy is assessed with few data points (if
done at all). Depending on the statistics used, accuracy
assessment with small sample sizes could lead to erro-
neous measures.

We investigated whether the pattern described by
Karl e‘t al. (2000) was due to a rarity effect or to
an artifact of sample size. We simulated small sample
sizes by randomly subsampling our data set for
the most common species and using the subset of
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observations to test model accuracy. By doing this, we
held the biological attributes of species constant, vary-
ing only the sample size. If models developed for rare
species (i.e., those with few detections) have poorer
prediction accuracy than common ones (rarity effect),
then the slope of regression lines from a plot of error
rates against number of detections for field data set
should be steeper than that obtained by simulation.
Although this approach did not consider reasons for
rarity and may not appropriately approximate distri-
bution of rare species, it was adequate for examining
the effects of sample size on model accuracy.

Study Area

Our study area encompassed most of the Idaho por-
tion of U.S. Forest Service (USFS) Northern Region
(the Idaho Panhandle, Clearwater, and Nez Perce Na-
tional Forests) as well as land owned by the Potlatch
Corporation (Fig. 51.1). This area (2.75 million
hectares) begins just north of the Clearwater River, ex-
tending northward to the tip of the Idaho panhandle,
but excluding the dry grasslands of the Snake River
Valley and the Palouse agriculture lands. Most of this
area is dominated by mixed coniferous forests in vari-
ous stages of timber management.

Methods

Breeding birds were surveyed on the U.S. Forest Service
Northern Region in 1994 to 1996 (R. L. Hutto and
U.S. Forest Service unpublished data; P. J. Heglund,
Potlatch Corporation unpublished data) using a vari-
able-radius circular plot technique (Ralph et al.
1995a). Each of 1,628 survey points was surveyed one
time per year for up to three years following the meth-
ods described by Hutto and Hoffland (1996).

We eliminated from the data set all birds that were
flying when detected, except for those birds whose de-
tections are mostly restricted to aerial foraging (i.e.,
swallows, swifts, hawks). We further truncated the
data set to only those observations occurring within
50 meters of the survey point for two reasons. First,
the ability to accurately judge the distance of an ob-
servation and the cover type in which it occurred de-
creases with distance from the survey point (Hutto

and Hoffland 1996; see also Scott et al. 1981). Sec-
ond, limiting the area of ?u_lﬂ])'SiS v*”“)“”fl the survey
point reduces the potential ‘tor variation ‘m the valyes
of the geographic information system (GIS) data lay-
ers around the survey point.

We received GIS coordinates for the survey points
from the U.S. Forest Service Northern Region’s Land-
bird Monitoring Program. These coordinates were
digitized from geo-registered aerial pll()togra?hs of the
study area. We then converted the vcc‘tor p(.)mt cover-
ages from each study area to raster grids with a 0.09.
hectare cell size.

We used models developed by Scott et al. (unpub-
lished data) for the Idaho Gap Analysis Project to pre-
dict the presence/absence of the species detected in the
breeding bird surveys. These models were built using
methods proposed by Scott et al. (1993) (see also But-
terfield et al. 1994; Csuti 1996; Smith and Catanzaro
1996) consisting of four major steps: (1) establishing a
species list, (2) defining species range limits, (3) col-
lecting species habitat information and determining
habitat relationships, and (4) modeling the species
habitat in a GIS using the information gathered.

To assess model accuracy, we compared the model
predictions with survey data for each species detected.
We tallied the number of omission errors (observed,
not predicted) and commission errors (predicted, not
observed) and calculated percent omission (number of
omissions divided by the total number of observa-
tions) and commission error (number of commissions
divided by the total number of survey points), respec-
tively. All species measures were combined into one
data set. We plotted omission and commission error
by the number of species detections for all species. An
inverse relationship existed between omission and
commission errors (Karl et al. 2000); but, this rela-
tionship was not easily quantifiable. For this reason,
we treated omission and commission error separately.
We separately regressed omission and commission
crror rates against number of detections to achieve @
regression coefficient and standard error describing

the re!atlonship between model error and number of
detections.

We selected the seven s
hundred detections and s
sessment to g simulatio

pecies with more than five =
ubjected their accuracy as-
n designed to approximate




rarity. Exploratory data analysis indicated variability
of omission error estimates was small for species with
more than five hundred detections. Additionally, the
seven species selected shared similar life history attrib-
utes (i.e., broadly distributed, similar habitat associa-
tions). For each species, we randomly selected a subset
of its observations and estimated accuracy with this
subset. Subset size was varied from five to the full
number of observations for that species by increments
of five (e.g., 5, 10, 15, . - - )- We repeated this proce-
dure for each of the seven species- Simulation data for
nto one data set.

Once the simulations were run, We plotted the simu-
¢ of observa-

lated accuracy data against the numbe

tions included in each subset. We separately regressed

5 : 2
omission and commission error rates against numbe

all seven species were combined 1

Figure 51.1. The Idaho portion of the U.S. Forest Service Northern Region consists of 2.75 million hectares dom-
inated by coniferous forest land cover types, interspersed with dry grasslands and shrublands.

of detections to achieve a regression coefficient and
standard error describing the relationship between
model error types and number of detections.

If the observed pattern of change in error rates with
number of species detections is an artifact of sample
size, the slope of a linear regression line for the field
data should be the same as that obtained by simula-
tion. However, if there is a rarity effect, causing the
models of less-common species to have lower accuracy
than more common ones, then the slope of the field
data regression line should be greater. To test for this,
we used a student’s t-test with the following null
hypotheses:

HO: Bes = Bes

HO: Bof = Bos

(1.1

(51.2
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Figure 51.2. Maximum and minimum bounds on the possible
values that an estimate of omission error assumes are de-
pendent on the sample size. Sample size has been scaled to
the percentage of points necessary to sample every individual
in the study area.

where b is the slope of the regression line from the
field observations for commission error, bes 1s the
slope of the regression line from simulation for com-
mission error, by¢ is the slope of the regression line
from field observations for omission error, and by is
the slope of the regression line from simulation for
omission error. Because the simulations yielded large
amounts of data behaving in mostly predictable pat-
terns, the standard errors for the simulation regression
coefficients were very small with respect to the param-
eter estimates. Thus, for the purpose of comparison,
we constructed our statistical tests treating the simula-
tion results as constants (Ramsey and Schafer 1997).
Plotting the possibilities that an estimate of omis-
sion or commission error could attain for a given sam-
ple size gave insight into the bounds within which
error rates must be. To see how upper and lower
bounds for omission error rates changed (Fig. 51.2),
we assumed that a given model had a true omission
error (O,), that there were a definite number of indi-
viduals within the modeling area at a given time (N),
and at some maximum amount of effort all individu-
als (N) were sampled and O, obtained. For all detec-
tions of n individuals (where n is less than or equal to
N), omission error rates were bounded by 0.0 and 1.0
as long at n/N is less than or equal to O,. When the
proportion of sampled individuals (n) to the total
number of individuals on the study area (N) exceeded

the true omission error of the model, the upper bound

decreased as

Onmx = ()KN/n (51'3)

m bound for omission errors remained
0.0 as long as /N < 1 = O,. When tl?c. proportion of
samples individuals (n) to total individuals (N) ex-
e minus the true omission €rror rate (Oy),

The minimu

ceeded on
the lower bound increased as

Omin = O - (N - n)/N (514)

When n reached N, the only value that could be ob-
tained for estimated omission error is O¢.

To see how upper and lower limits of commission
error rates changed with sample size (Fig. 51.3), the
same types assumptions for omission error rate
bounds were made (i.e., actual number of sampling
units and true commission error rate [Ci that could
be attained with some maximum effort). Additionally,
the total number of predictions made (P) and the true
omission error rate (O,) must be known. The mini-
mum bound for commission error rates originated at
1.0 for n = 0 and decreased linearly until estimated
commission error reached C,. The maximum commis-
sion error rate bound was 1.0 until n/N exceeds the
omission error rate when it decreased linearly at the
same rate as the minimum bound until C; was
reached. The greatest difference between the maxi-
mum and minimum bounds for commission error
rates was O,.

Results

The graph of commission error by number of detec-
tions (Fig. 51.4a) showed a strong negative trend as
sample sizes increased across all species (R2 = 0.9861:
P<< 0.0001) and behaved as predicted (Fig. 51.3). The
regression line intercept was approximately equal to 1
(i.e., no observations necessitates total commission
error). Commission error rates decreased 0.1 (or 10
percent) for every 167 observations. Five species had
commission error rates less than predicted by the re-
gression line (western meadowlark [see Appendix for

scientific names and number of detections)
3
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ulation did not significantly change the regression co-
cfficient (Bef = -0.0007; R% = 0.9577; P << 0.0001)

Omission error rates showed a statistically signifi-
cant decrease with changes in number of detections
(Fig. 51.4b; R2 = 0.0716; P = 0.0051). Given the low
correlation, however, we did not consider this biologi-
cally significant because the change was less than
0.025 across the range of sample sizes 5 to 899. Vari-
ation in the values of omission error rates decreased as
sample size increased. This was in line with our pre-
diction (Fig. 51.2). Four species had significantly
higher omission error rates than other species with
similar numbers of detections (yellow warbler, song
sparrow, black-capped chickadee, warbling vireo).
Omitting the seven species included in the simulation
significantly changed the regression coefficient (Bof =
-0.0009; R2 = 0.0617; P = 0.0123). We also did not
consider this biologically significant-
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Figure 51.4. Change in error rates with number of detections
for 108 bird species detected on the Idaho portion of U.S. For-
est Service Northern Region. The seven species with more
than five hundred detections (marked with dark triangles) were
used in the simulation exercise. The dispersed nature of esti-
mated commission (a) and omission (b) error rates obscured
trends in the data due to sample sizes. Given that models with
high commission error rates had low omission error and vice
versa (indicating either over- or underprediction, correspond-
ingly), we averaged commission and omission error rates for
each model. Black triangles indicate the seven species in-
cluded in the simulation. BCCH = black-capped chickadee (See
Appendix for scientific names), WAVI = warbling vireo, YEWA =
yellow warbler, SOSP = song sparrow, SPTO = spotted towhee,
and WEME = western meadowlark.

Field and Simulation Comparison

Field estimates of commission €rror change with

ber of detections were not significantly different

simulation estimates (P = 0.1747). The slope of
gression line for change in field estimates of
1 error with number of detections was signif-
ss than that of simulation estimates (P =

num
from
the re
omissio
icantly le

0.0065). Given the variability in the omission error
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Figure 51.5. Change in error rates with simulated number of
detections for the seven most common species detected on
the U.S. Forest Service Northern Region. Because random sub-
sets of observations were selected from the total observation
set for each species, commission error decreased in a pre-
dictable manner (a). Omission error rates were low and exhib-
ited more variability (b). Mean error rates for the simulations in-
dicated similar patterns in error rate change with number of
detections as the field observations.

data, we do not believe that this difference is biolog-

ically significant.

Error Rate Possibilities

We found it was possible to account for the pattern in
model error by changing the number of species detec-
tions. Error rates at small sample sizes were character-
ized by high estimates of commission error and high
variability in omission error estimates. Commission
error rates declined predictably with increasing num-
ber of observations. Variability in omission error esti-
mates also decreased with increased observations. For
predicting presence and absence of the seven simu-
Jated species, we can estimate the true versus apparent

error at sample sizes less than the full number of de-

tections (assuming that commission error at the fyll

number of detections is the actual commission error of

). At the smallest sample size (five detec-
accounted for as much as §§

the model
tions), apparent error
percent of measured commission error when averaged
over the seven simulated species.

Simulation results suggest for forest songbirds on
our study area, appr()ximatcly 167 observations are
needed to decrease commission error estimates by 10
percent. Potentially, more data would be needed for
highly confident accuracy measures than was neces-
sary for constructing the model. However, this is un-
doubtedly related to number of survey points versus
area modeled. Still, this is a significant finding, as most
accuracy assessments for wildlife-habitat models are
either carried out with a very small number of field
observations or not conducted at all (Salwasser and
Krohn 1982; Morrison et al. 1998; Verbyla and Lit-
vaitis 1989; T. C. Edwards personal communication).
Project goals and the precision of results may need to
be modified to fit within budgetary constraints. Thus,
the additional expense in getting a test set of sufficient
size may not always be possible to managers operating
with small budgets.

Rabinowitz et al. (1986; see also Rabinowitz 1981)
described rarity in terms of the interaction of geo-
graphic range, habitat specificity, and local density.
Under this hypothesis, a species that occurred over a
large region and in a variety of ecological conditions
but had naturally low densities can be distinguished
from a narrow endemic species that was strongly asso-
ciated with localized habitat features but occurred in
dense populations. This has important implications
for assessing the accuracy of wildlife-habitat models.
For habitat-general species that occurred in low densi-
ties over large regions, commission error rates at low
sample sizes would contain a large apparent error
component. However, for habitat-specific species oc-
Cu.f“_ng in high densities over small areas, true com-
mission error may be much greater than apparent
model- error. Boone and Krohn (1999) attempted to
q}xannfy the attributes associated with rarity in Maine
birds to predict whether wildlife-habitat models could
B0y e.cted to have high apparent error components.

The intermountain northwest of the United States

for
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pas relatively few endemic bird species (AOU 1998
Therefores the species that we detected infreque ‘l)_
would most likely fit into the category of brm(ﬁ ,m[ y
lo“,_dcnsity species (after Rabinowitz et al. 1“)8(:)&”5;’
di[ionall)’, simulation of rarity by random sul).s;mi
pling of a data set would tend to produce distributions
equivalent to that of a broad-range, low-density
species- We then would not expect the models\foyr
most species we detected infrequently to perform any
worse than more-abundant species. However, more re-
search should be directed toward the effects of other
factors contributing to rarity (i.e., geographic range,
pabitat specificity).

Given that the presence or absence of a species is
related to habitat features that are easily mapped, it
is plausible that the ability to correctly model species
occurrence could be as much a function of how
much is known about the species as it is a function of
factors contributing to rarity. In the case of a species
with a limited geographic range, incomplete knowl-
edge as to the extent of its range could result in
higher commission €rror. For widely distributed
species occurring at low densities, apparent model
error is likely very high given the difficulty in collect-
ing sufficient observations. However, often more is
known about the habitat associations and ranges of
the rarest species than many common ones. There-
fore, small sample sizes preclude reliable estimates of
accuracy of habitat-relationship models for many
rare species.

To the manager using habitat-rel
t0 aid decision-making, this means that reported accu-
g. We do not advocate that

ationship models

racies could be misleadin
effort should not be spent toward assessing model ac-
the smallest sample size

ut model performance-
alculations should be

curacy. Assessment with even
can give some information abo
However, the results of such ¢
viewed with extreme caution since actual error rates

could by above or below what 1s estimated.

Appendix

cies detected on
(Region 1), and
s was detected.

Common and scientific names for spe

Us. Forest Service’s Northern Regioﬂ_
h each speci€

the number of sites at whic

Common name
Mallard
Common merganser
Osprey
Sharp-shinned hawk
Cooper’s hawk
Northern goshawk
Red-tailed hawk
American kestrel
Blue grouse
Ruffed grouse
Wild turkey
California quail
Spotted sandpiper
Common snipe
Mourning dove
Barn owl
Common poorwill
Vaux's swift
White-throated swift
Calliope hummingbird
Broad-tailed hummingbird
Rufous hummingbird
Belted kingfisher
Lewis's woodpecker
Williamson's sapsucker
Red-naped sapsucker
Downy woodpecker
Hairy woodpecker
Three-toed woodpecker

Black-backed woodpecker Picoides arcticus

Northern flicker
pileated woodpecker
Olive-sided flycatcher
Western wood-pewee
Willow flycatcher
Hammond’s flycatcher
pusky flycatcher
Cordilleran flycatcher
Violet-green swallow
Barn swallow

Gray jay

Steller's jay

Clark's nutcracker
American Crow
Common raven
Blackcapped chickadee

No. of
detection
Sclentific name sites
Anas blaiyrhynghos 2
Mergus merganser 2
Pandion haliaetus 2
Accipiter striatus 4
Accipiter cooperii 1
Accipiter gentilis 5
Buteo jamaicensis 8
Falco sparverius 12
Dendragapus obscurus 2
Bonasa umbellus 84
Meleagris gallopavo 3
Callipepla californica 1
Actitis macularia 1
Gallinago gallinago 3
Zenaida macroura 9
Tyto alba at
Phalaenoptilus nuttallii 1
Chaetura vauxi 2
Aeronautes saxatalis 1
Stellula calliope 9
Selasphorus platycercus 2
Selasphorus rufus 59
Ceryle alcyon 7
Melanerpes lewis 4
Sphyrapicus thyroideus 8
Sphyrapicus nuchalis 122
Picoides pubescens 7
Picoides villosus 63
Picoides tridactylus 8
1
Colaptes auratus 112
Dryocopus pileatus 42
Contopus cooperi 56
Contopus sordidulus 11
Empidonax traillii 34
Empidonax hammondii 302
Empidonax oberholseri 247
Empidonax occidentalis 23
Tachycineta thalassina 1
Hirundo rustica 1
Perisoreus canadensis 94
Cyanocitta stelleri 67
Nucifraga columbiana 5
Corvus brachyrhynchos 1
Corvus corax 15
Poecile atricapilla 171

(continues)




Appendix. (Continued)

Common name
Mountain chickadee
Boreal chickadee

Chestnut-backed chickadee Poecile rufescens

Red-breasted nuthatch

White-breasted nuthatch

Pygmy nuthatch
Brown creeper
Rock wren
Canyon wren
House wren
Winter wren
American dipper
Golden-crowned kinglet
Ruby-crowned kinglet
Western bluebird
Mountain bluebird
Townsend'’s solitaire
Veery
Swainson'’s thrush
Hermit thrush
American robin
Varied thrush
Gray catbird
Cedar waxwing
European starling
Plumbeous vireo
Warbling vireo
Red-eyed vireo
Orange-crowned warbler
Nashville warbler
Yellow warbler
Yellow-rumped warbler
Townsend’s warbler

No. of
detection
Scientific name sites
Poecile gambeli 165
Poecile hudsonica it
385
Sitta canadensis 635
Sitta carolinensis 40
Sitta pygmaea 4
Certhia americana 74
Salpinctes obsoletus 1
Catherpes mexicanus 1
Troglodytes aedon 102
Troglodytes troglodytes 335
Cinclus mexicanus 14
Regulus satrapa 740
Regulus calendula 120
Sialia mexicana 1
Sialia currucoides 13
Myadestes townsendi i75
Catharus fuscescens il
Catharus ustulatus 524
Catharus guttatus 33
Turdus migratorius 439
Ixoreus naevius 187
Dumetella carolinensis 4
Bombycilla cedrorum 34
Sturnus vulgaris 1
Vireo cassinii 327
Vireo gilvus 361
Vireo olivaceus 17
Vermivora celata 127
Vermivora ruficapilla 100
Dendroica petechia 129
Dendroica coronata 678
Dendroica townsendi 865

Common name
American redstart
Northern waterthrush
MacGillivray’s warbler
Common yellowthroat
Wilson’s warbler
Western tanager
Black-headed grosbeak

Lazuli bunting
Spotted towhee
Chipping sparrow
Savannah sparrow

Fox sparrow

Song sparrow
Lincoln’s sparrow
White-crowned sparrow
Dark-eyed junco
Red-winged blackbird
Western meadowlark
Brewer's blackbird
Brown-headed cowbird
Bullock’s oriole

Pine grosbeak
Cassin’s finch

Red crossbill
White-winged crossbill
Pine siskin

American goldfinch
Evening grosbeak

House sparrow

No. of
detection
Scientific name sites
stophaga rutciia IEAONE
Seiurus noveboracensis 7
Oporornis tolmiei 719
Geothlypis trichas 8
Wilsonia pusilla 158
Piranga ludoviciana 444
Pheucticus
melanocephalus 128
Passerina amoena 104
Pipilo maculatus 74
Spizella passerina 273
Passerculus
sandwichensis 3
Passerella iliaca 147
Melospiza melodia 156
Melospiza lincolnii 7
Zonotrichia leucophrys 8
Junco hyemalis 899
Agelaius phoeniceus il
Sturnella neglecta 9
Euphagus cyanocephalus 2
Molothrus ater 120
Icterus bullockii 1
Pinicola enucleator 5
Carpodacus cassinii 43
Loxia curvirostra 45
Loxia leucoptera 4
Carduelis pinus 202
Carduelis tristis 4
Coccothraustes
vespertinus 59
Passer domesticus 2



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

